
Fast Algorithms for Top-k Approximate String Matching

Zhenglu Yang#1 Jianjun Yu ∗2 Masaru Kitsuregawa #3

Institute of Industrial Science, The University of Tokyo, Japan
1 3{yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp
∗Computer Network Information Center,

Chinese Academy of Sciences, Beijing, China
2yujj@cnic.ac.cn

Abstract

Top-k approximate querying on string collections is an
important data analysis tool for many applications, and
it has been exhaustively studied. However, the scale of
the problem has increased dramatically because of the
prevalence of the Web. In this paper, we aim to ex-
plore the efficient top-k similar string matching prob-
lem. Several efficient strategies are introduced, such as
length aware and adaptiveq-gram selection. We present
a generalq-gram based framework and propose two ef-
ficient algorithms based on the strategies introduced.
Our techniques are experimentally evaluated on three
real data sets and show a superior performance.

Introduction
Similar string searching is an important problem because
it involves many applications, such as query suggestion in
search engines, spell checking, similar DNA searching in
large databases, and so forth. From a given collection of
strings, such queries ask for strings that are similar to a given
string, or those from another collection of strings (Li, Wang,
and Yang 2007).

While the applications based on similar string querying
are not new, and there are numerous works supporting these
queries efficiently, such as (Arasu, Ganti, and Kaushik 2006;
Li, Wang, and Yang 2007; Gravano et al. 2001; Ukkonen
1992), the scale of the problem has dramatically increased
because of the prevalence of the Web (Bayardo, Ma, and
Srikant 2007).

To measure the similarity between two strings, different
metrics have been proposed (Levenshtein 1966; Rijsbergen
1979; Cohen 1998). In this paper, we focus on similar-
ity search with edit distance thresholds. We will discuss
the extension of our strategies to other metrics at the end
of the paper. Many algorithms have usedq-gram based
strategies (Ukkonen 1992; Navarro and Baeza-Yates 1998;
Navarro 2001) to measure the edit distance between two
strings. Aq-gram is a consecutive substring of a string with
sizeq that can be used as a signature of the string. To has-
ten the search process, many approaches pre-construct some
index structures (e.g., suffix tree (Ukkonen 1993)) and then

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search these compact indices in an efficient way. However,
most of the works are rooted in a threshold-based framework
(i.e., error threshold predefined), and there are not many
works on exploring the top-k issue of the problem.

In this paper, we propose two efficient algorithms to
tackle the issue of top-k similar string searching. It is chal-
lenging because of the main issue:

• Time consuming frequency counting: The size of the
whole inverted lists corresponding to the query string may
be large. Although the state-of-the-art techniques (i.e.,
divide-merge-skip (Sarawagi and Kirpal 2004; Li, Lu, and
Lu 2008)) are applied, counting the frequency ofq-grams
is still time consuming.

In this paper, we propose efficient strategies to address the
issue. Specifically, we introduce a string length-aware tech-
nique and propose to switch theq-gram dictionary. For the
second strategy, we construct a set ofq-gram dictionaries in
the preprocessing. In each iteration, we select an appropriate
value ofq (hence, aq-gram dictionary is chosen) based on
the top-k similarity score of the last iteration. The new value
of q is guaranteed to increase, which indicates that the size
of the inverted lists is decreasing (i.e., largeq leads to shorter
inverted lists). Hence, the cost of the frequency counting is
reduced.

Our contributions in this paper are as follows:

• We introduce several efficient strategies for top-k approx-
imate string search. The count filtering and length-aware
mechanism are adapted to tackle the top-k similar search
issue, while the adaptiveq-gram selection is employed to
improve further the performance of frequency counting.

• Based on these strategies, we propose two efficient al-
gorithms in a generalq-gram based framework. Several
state-of-the-art techniques are applied (i.e., divide-merge-
skip (Sarawagi and Kirpal 2004; Li, Lu, and Lu 2008)).

• We conduct comprehensive experiments on three real data
sets, and evaluate the querying efficiency of the proposed
approaches in terms of several aspects, such as the dataset
size, value ofk, and q-gram dictionary selection. Our
experimental results show that the proposed algorithms
exhibit a superior performance.

(a) String collection

blue

blunder

blunt

flank

flu

fluence

fluent

flunker

1

2

3

4

5

6

7

8

stringid

(b) Inverted lists

an bl ce de en er fl ke la lu nc nd nk nt ue un

4 1 6 2 6 2 4 8 4 1 6 2 4 3 1 2

2 7 8 5 2 8 7 6 3

3 6 3 7 8

7 5

8 6

7

8

Preprocessing

Query processing

Query word: 2-grams

2-grams

fl lu un nk

4 1 2 4

5 2 3 8

6 3 8

7 5

8 6

7

8

string id q-gram freq sim. score

1 1 3

2 2 4

3 2 2

4 2 1

5 2 2

6 2 3

7 2 2

8 4 2

(c) query string (d) Corresponding inverted lists (e) q-gram frequence, similarity score

flunk

scan

Top-k list (id)

4

3

5

7

8

1

6

2

(f) result

Figure 1: A general framework for approximate top-k string search withq-gram

Problem Statement and Analysis
Let Σ be an alphabet. For a string s of the characters in
Σ, we use “|s|” to denote the length of s, “s[i]” to denote
the i-th character of s (starting from 1), and “s[i,j]” to de-
note the substring from itsi-th character to itsj-th character.

Q-Grams: Given a string s and a positive integerq, a
positionalq-gram ofs is a pair (i, g), whereg is theq-gram
of s starting at thei-th character, that isg = s[i, i + q − 1].
The set of positionalq-grams ofs, denoted byG(s, q), is
obtained by sliding a window of lengthq over the characters
of string s. There are|s| − q + 1 positionalq-grams in
G(s, q). For instance, supposeq = 3, ands = university,
then G(s, q) = {(1,uni), (2,niv), (3,ive), (4,ver), (5,ers),
(6,rsi), (7,sit), (8,ity)}. We use a sliding window of size
q on the new string to generate positionalq-grams. For
simplicity, in our notations we omit positional information,
which is assumed implicitly to be attached to each gram.

Top-k Approximate String Queries: The edit distance
(also known as Levenshtein distance) between two strings
s1 ands2 is the minimum number of edit operations of sin-
gle characters needed to transforms1 to s2. Edit operations
include insertion, deletion, and substitution. We denote the
edit distance betweens1 ands2 ased(s1, s2). For example,
ed(“blank”, “blunt”) = 2. In this paper, we consider the top-
k approximate string query on a given collection of strings
S. Formally, for a query stringQ, finding a set ofk strings
R in S most similar toQ, that is,∀r ∈ R and∀s ∈ (S −R)
will yield ed(Q, r) ≤ ed(Q, s).

To extract the top-k similar strings efficiently, we apply
the q-gram strategy (Ukkonen 1992) with deliberate opti-

mization, as will be discussed shortly. Theq-gram similar-
ity of two strings is the number ofq-grams shared by the
strings, which is based on the following lemma.

Lemma 1 (q-gram lemma (Jokinen and Ukkonen 1991)).
Let P andS be strings with the edit distanceτ . Then, the
q-gram similarity ofP andS is at least

t = max(|P |, |S|)− q + 1− q · τ (1)

A General Framework for Top-k Similar String
Query Processing
We first introduce the generalq-gram based top-k querying
system in this section. In the next sections, we will propose
several efficient strategies and introduce our optimal algo-
rithms for the top-k similar string search . The main issue
is that the cost of counting the frequency of theq-grams is
high, and thus efficient technique is preferred.

Algorithm 1 shows the pseudo code of the general frame-
work, which is based on the traditional threshold-based
framework (i.e., presetting a similarity threshold) (Jokinen
and Ukkonen 1991). An example illustrating the details
of the framework is shown in Fig. 1, which presents the
preprocessing and the query processing.

Example 1.Suppose a user wants to obtain the top-1 similar
word to flunk. While querying, the query wordflunk is
parsed into four 2-grams asfl, lu, un, andnk; their corre-
sponding inverted lists are{4, 5, 6, 7, 8}, {1, 2, 3, 5, 6, 7, 8},
{2, 3, 8}, and{4, 8} respectively. The lists are merged to
count the frequency of the strings in the collection result-
ing in 1:1, 2:2, 3:2, 4:2, 5:2, 6:2, 7:2, and 8:4, where each
pair of values is of type sid:freq. Sid and freq represent

the string ID and the frequency value of then-grams in-
cluded by the string, respectively. For instance, the string
blue (whose ID is 1) includes 1n-gram of the queried
word, giving us1 : 1. Finally, the edit distances between
the candidate strings and the query word are calculated as
blue:3, blunder:4, blunt:2, flank:1, flu:2, fluence:3,
fluent:2, andflunker:2, where each pair of values is of
type string:distance. The top-1 similar string to the query
wordflunk is thusflank.

As the threshold-based similar string search is thoroughly
studied, and the algorithm is self-explanatory with the help
of the example, we did not include the details anymore.
———————————————————————–
Algorithm 1: Similar String Search byQ-gram Matching
———————————————————————–

Input : String collectionsSC, query strings, top-k, q
Output : Top-k similar strings
constructq-gram dictionary as triet, based onSC;1

parse the query strings into a candidateq-gram listCL;2

setq-gram distancet=1; //to include all cand. strs;3

foreachx ∈ CL do4

find the string listSL of x in the triet;5

foreachy ∈ SL do6

frequency[y]++;7

if frequency[y] ≥ t then8

puty into a candidate result listCRL;9

foreachz ∈ CRL do10

compute the similarityed(z, s);11

Output the top-k strings with smallest similarities;12
———————————————————————–

Optimization of Frequency Counting. There are many
techniques in the literature proposed to improve the per-
formance ofq-gram based query processing. The most
time consuming step in the query processing is to count the
frequency ofq-grams, which has to scan a large amount
of inverted lists. Recently, (Sarawagi and Kirpal 2004;
Li, Lu, and Lu 2008) have proposed efficient strategies (i.e.,
divide-merge-skip) to count the frequency ofq-grams. Fig.
2 illustrates the basic idea for efficiently scanning the in-
verted lists. It first divides the inverted lists into short lists
and long lists. The whole short lists are then scanned, and
the elements are collected. Finally, it binary searches these
elements in the long lists to find strings whose frequencies
are larger than the threshold. For example, suppose we aim
to find strings whose frequencies are larger than the thresh-
old t (i.e., 4) in the inverted lists in Fig. 2(a). The five
inverted lists are deliberately divided into three long lists
and two short ones, that is, the number of long lists ist-
1 (Sarawagi and Kirpal 2004). This way, only those strings
that exist in the short lists have the chance to pass the thresh-
old test (i.e., their frequencies are equal to or larger thant).
We scan the two short lists to obtain the candidate strings
whose IDs are 20 and 60. These candidate strings are then
used to for binary searching the long lists, as shown in Fig.
2(a). Many strings can be skipped in the long lists, and
thus the efficiency is improved. Heap operation is applied
to hasten the process. Refer to (Sarawagi and Kirpal 2004;

1

2

3

60

100

.

.

.

.

.

.

.

.

.

.

20

21

22

60

.

.

.

.

.

60

61

62

100

.

.

.

.

.

60 100

Jump
Jump

long lists short lists

(a) Divide inverted lists into short and
long lists, scan short lists and binary
search long lists

Pop 1 and 20

Heap operation

Frequncy threshold=4

(b) Heap operation

Figure 2: Divide-merge-skip strategy
Li, Lu, and Lu 2008) for details.

Top-k similar search algorithms
In this section, we propose two efficient algorithms for top-
k approximate string search. We first introduce two filtering
strategies (i.e., count filtering and length filtering) for the
first algorithm and then we present the adaptiveq selection
strategy for the second algorithm.

Count Filtering

The intuition of count filtering is that strings within a small
edit distance of each other share a large number ofq-grams
in common. Theq-gram count filtering for the top-k similar
string search is derived from that of the traditional threshold-
based framework (Ukkonen 1992). The difference is that the
frequency threshold is dynamically updated for the former
issue, while it keeps static for the later issue. Based on Eq.
1, we have the following.

Lemma 2 (q-gram lemma for top-k approximate string
search). Let P be the query string andS be the top-k sim-
ilar string in the candidate string list so far.P andS have
the edit distanceτ ′top−k. Then, theq-gram similarityt′top−k

of P andS is at least

t′top−k = max(|P |, |S|)− q + 1− q · τ ′top−k (2)

The count filtering for top-k query is a general optimiza-
tion technique. As will be mentioned shortly, in our pro-
posed algorithms, count filtering is implemented in different
cases by combining it with the length filtering and the adap-
tive q-gram strategy, respectively.

Length Filtering

The intuition of length filtering is that if there are two strings
within a small edit distanceτ of each other, then the differ-
ence of their lengths will not exceedτ .

When scanning the inverted lists, we choose to test the
candidate strings in ascending order of the difference be-
tween their lengths and that of the query string. The process
can be early terminated based on the following lemma.

Lemma 3 (Early terminate). Let P be the query string and
S be the top-k candidate similar string so far. We de-
note the setR of the remaining untested strings. If∀r ∈
R, ed(P, S) ≤ ||P | − |r|| + 1, then the search process can
be early terminated.

5

4

7

6

8

5

1

3

7

2

6

8

3

2

8

4

8

fl lu un nk

len-5 grams

len-(4 or 6) grams

Figure 3: Illustration of the length filtering.

The work in (Hadjieleftheriou et al. 2008; Gravano et
al. 2001) also proposed a similar idea on using the length
bounding property. Nevertheless, their works require a user-
specified threshold,τ , to indicate the lower bound of the dis-
tance between the similar strings. This parameter is difficult
for users to set because many answers may be returned if the
value is too large and there may be no answers if the value
is too small. The difference is due to the different purposes
of the two kinds of works: (Hadjieleftheriou et al. 2008;
Gravano et al. 2001) aims to tackle the traditional threshold-
based similar string join (or search), while this paper ad-
dresses the top-k issue. Similar to the count filtering, the
length bound needs to be dynamically updated.

Branch and Bound Algorithm
In this section, we propose an algorithm that follows the
branch and bound manner (BB) based on count filtering and
length filtering. For simplicity and without loss of general-
ity, we assume that a specificq-gram set is constructed in the
preprocessing. The query processing is executed as follows:

• Initialization: Set the frequency thresholdt′top−k=1, and
the length differenceld=0. P is parsed into a set ofq-
grams. The following steps are executed iteratively until
k similar strings are output.

• Branch: Extract the corresponding inverted lists in which
any stringS has||S| − |P || = ld.1 Scan these inverted
lists and discover the candidate similar strings whose fre-
quencies are no less thant′top−k.2

• Bound: Rank the candidate strings and obtain the tem-
poral edit distance thresholdτ ′top−k. Terminate the pro-
cess if the top-k string Q in the candidate list so far
hased(P,Q) ≤ (ld + 1). Compute the temporal fre-
quency thresholdt′top−k based onτ ′top−k (Lemma 2) and
setld = ld + 1.

Example 2. We present an example to illustrate the pro-
cess. The same setting is given as in Example 1. As
the length of the query stringflunk is 5, instead of scan-
ning all the strings in the inverted lists of the correspond-
ing grams (i.e., as done in Example 1), we first only scan
strings whose lengths are equal to 5. As illustrated in Fig.
3, the results are two candidate strings:blunt (whose ID
is 3) andflank (whose ID is 4). We then compute their
edit distance to the query word. We obtain the top-1 similar
word flank and the edit distanceed(flunk, flank)=1. As

1We pre-build an index to record strings based on their lengths.
2Divide-merge-skip strategy is applied as aforementioned.

ed(flunk, flank) ≤ ld + 1, we can outputflank as the
top-1 similar string immediately.

In case we want to extract other top-k similar strings
(wherek >1), we can recursively execute the process. As il-
lustrated in Fig. 3, the next iteration needs to scan the strings
whose lengths are equal to 4 or 6. The pseudo code is shown
in Algorithm 2.
———————————————————————–
Algorithm 2: Branch and bound algorithm (BB)
———————————————————————–

Input : String collectionsS, a query stringP , k
Output : Top-k similar strings
build indexIDX to record strings based on their1

lengths fromS;
constructq-gram dictionaryT ;2

parseP into a set ofq-grams,t′top−k=1, ld=0;3

while truedo4

Inv = the inverted lists inT with any stringS has5

||S| − |P || = ld;
apply skip-merge-skip strategy to get the candidate6

strings fromInv;
rank the candidate strings,Q=the top-k string;7

τ ′top−k=ed(P, Q);8

if ed(P, Q) ≤ (ld + 1) then9

Output the top-k strings; break;10

computet′top−k based onτ ′top−k;11

ld=ld+1;12

End13
———————————————————————–

Adaptive q-gram selection
We assume from above that the value ofq is static, which
indicates that we only use one set ofq-gram inverted lists
in the entire process. However, as well known in the litera-
ture, a larger value ofq results in a smaller size of inverted
lists, which may reduce the cost of the frequency counting.
We propose that an appropriateq-gram dictionary (may be
varying) be chosen in each iteration, which is calculated by
the top-k similarity score in the last iteration. As illustrated
in the experiments, this strategy can reduce the size of the
inverted lists to be scanned, therefore improving the query
performance.

Lemma 4 (Adaptiveq selection). LetP be the query string
and S be the top-k similar string in the candidate string
list so far. P and S have the edit distanceτ ′top−k. Then,
the adaptive value of integerq, q′top−k, is selected in the
following formula.

q′top−k =

{
max(|P |,|S|)

τ ′top−k+1 , if max(|P |,|S|)
τ ′top−k+1 ≥ 2

2 , else
(3)

Note that the formula is derived from Eq. 2 with the fre-
quency thresholdt=1. The reason is that we should ensure
that no similar strings are missing (i.e., they should exist in
the extracted inverted lists witht ≥1) and also guarantee a
large value ofq is selected (i.e., smallert is preferred). As
the search processes,τ ′top−k decreases andmax(|P |, |S|)

increases (i.e., by combining the length filtering strategy).
Therefore,q′top−k is guaranteed to be increasing, which may
further reduce the size of the inverted lists.

After selecting the new value ofq, the new threshold fre-
quencyt′top−k is recomputed based on Eq. 2. Note that
t′top−k may be larger than 1.

Adaptive q-gram Algorithm

The adaptiveq-gram algorithm (AQ) is constructed based
on the three strategies introduced above (i.e., count filter-
ing, length filtering, and adaptiveq-gram selection). The
pseudo code is shown in Algorithm 3. The difference from
the BB algorithm exists in lines [2-3, 6-7, 15-16]. As will be
illustrated in the experiments, theAQ algorithm with adap-
tive q selection strategy can improve the whole performance
of the query processing. In real implementation, we can-
not build all possibleq-gram dictionaries due to limited re-
sources. Moreover, from the experiments, we discover that
it is not always performance optimal to choose a too large
value ofq.
———————————————————————–
Algorithm 3: Adaptiveq-gram Algorithm (AQ)
———————————————————————–

Input : String collectionsS, a query stringP , k
Output : Top-k similar strings
build indexIDX to record strings w.r.t length fromS;1

construct a set ofq-gram dictionaries where2

q ∈ [qmin, qmax];
q′top−k=q′min;3

t′top−k=1, ld=0;4

while notk strings are outputdo5

chooseq′top−k-gram dictionaryT ′;6

parseP into a set ofq′top−k-grams;7

Inv = the inverted lists inT ′ with any stringS has8

||S| − |P || = ld;
apply skip-merge-skip strategy to get the candidate9

strings fromInv;
rank the candidate strings,Q=the top-k string;10

τ ′top−k=ed(P, Q);11

if ed(P,Q) ≤ (ld + 1) then12

Output the top-k strings; break;13

ld=ld+1;14

computeq′top−k based on Eq. 3;15

computet′top−k based onq′top−k andτ ′top−k;16

End17
———————————————————————–

Performance Analysis
To evaluate the efficiency of our strategies, we conducted ex-
tensive experiments. We performed the experiments using a
Intel(R) Core(TM) 2 Dual CPU PC (3GHz) with a 2G mem-
ory, running Redhat linux. TheNaive algorithm was imple-
mented based on the general top-k querying framework. All
the algorithms were written in C++. The default value ofq
is set to 2 forNaive andBB, while for AQ algorithm the

default dictionaries are [2,3]-grams. We conducted experi-
ments on three real life data sets.

1. Dict. It was downloaded from the Web site of GNU As-
pell project3, which is an English dictionary. It included
103K words, with an average length of 8.

2. Person. It was downloaded from the Web site of the
Texas Real Estate Commission4. The file included a list of
records of person names, companies, and addresses. We
used about 151K person names, with an average length of
33.

3. DBLP . It was from the DBLP Bibliography. It included
308K titles, with an average string length of 51.

Efficiency of Query Processing

(a) Dict dataset (b) Person dataset
Figure 4: Query performance of different algorithms

In this section, we evaluate the query answering perfor-
mance of our proposed algorithms when varying the value
of k. To test the effect of top-k query, we randomly selected
1000 different queries from the data sets.

The result is shown in Fig. 4, from where we can see
that our algorithms always perform better thanNaive, espe-
cially whenk is small. This is not surprising because of the
dynamic length filtering and count filtering strategies em-
ployed. Between our two algorithms,AQ is superior toBB
because the former can reduce the cost by adaptively select-
ing a relative large value ofq.

Size of inverted lists scanned

(a) Dict dataset (b) Person dataset
Figure 5: Inverted lists scanned among different algorithms

In this section, we evaluate the size of inverted lists
scanned in different algorithms when varying the value of
k. As illustrated in Fig. 5, we can see thatBB andAQ
scan smaller sets of inverted lists compared with the other
algorithm. This is the intrinsic reason why our algorithms
performed better on query processing (as shown in Fig. 4).

3www.aspell.net/
4www.trec.state.tx.us/LicenseeDataDownloads/trecfile.txt

Effect of qmax

(a) Person dataset (b) Person dataset
Figure 6: Effect ofqmax

We evaluate the effect ofqmax in theAQ algorithm. Fig.
6(a) illustrates the query performance ofAQ when querying
the top-10 similar strings on thePerson dataset. We can
see that the adaptiveq-gram selection strategy improved the
overall performance, when a relative large range ofq-grams
was selected (i.e., [2,4]). The reason why the performance
did not improve on larger value ofqmax, is due to the fail-
ure of selecting theseq-grams during query processing. Fig.
6(b) illustrates the phenomenon.

Effect of data set

(a) DBLP dataset (b) DBLP dataset
Figure 7: Query performance versus data size

We evaluate the query performance on different sizes of
theDBLP data set5, by querying top-10 similar strings. As
illustrated in Fig. 7(a), we can see that our proposed algo-
rithms performed better when the data size becomes larger.
The reason is the same, that many candidate strings in the
inverted lists have not been scanned inBB andAQ.

Conclusions
In this paper we have studied the efficient top-k approxi-
mate string searching problem. Several efficient strategies
are proposed, i.e., length filtering and adaptiveq-gram se-
lection. We present two algorithms in a general framework
by combining these strategies. Extensive experiments are
conducted on three real data sets, the results show that our
approaches can efficiently answer the top-k string queries.

We mention a recent work (Vernica and Li 2009) which
also proposed to tackle the top-k similar search issue. The
authors defined the similarity between two strings as a linear
combination of the Jaccard similarity (or edit distance) and
the weight of the strings, which is different from our defini-
tion which only concerns edit distance. Both of the works
apply the divide-merge-skip and the dynamic count filtering

5To generate different data sets, we follow the same technique
as be used in (Li, Wang, and Yang 2007)

techques yet the difference is that we introduce the adaptive
length-aware and q-gram selection strategies. Further ex-
perimental comparison with their work will be conducted in
the future version of this paper, especially on comparing the
2PH algorithm with an optimal tight similarity threshold.

In addition, we will evaluate some other metrics, such as
dice coefficient, cosine metric, and so forth. We believe our
strategies are general enough, since the length range for a
specific threshold exists for all these metrics (Li, Lu, and Lu
2008), and the adaption of theq-gram selection technique.

References
Arasu, A.; Ganti, V.; and Kaushik, R. 2006. Efficient exact
set-similarity joins. InVLDB, 918–929.
Bayardo, R. J.; Ma, Y.; and Srikant, R. 2007. Scaling up all
pairs similarity search. InWWW, 131–140.
Cohen, W. W. 1998. Integration of heterogeneous databases
without common domains using queries based on textual
similarity. In SIGMOD, 201–212.
Gravano, L.; Ipeirotis, P. G.; Jagadish, H. V.; Koudas, N.;
Muthukrishnan, S.; and Srivastava, D. 2001. Approximate
string joins in a database (almost) for free. InVLDB, 491–
500.
Hadjieleftheriou, M.; Chandel, A.; Koudas, N.; and Srivas-
tava, D. 2008. Fast indexes and algorithms for set similarity
selection queries. InICDE, 267–276.
Jokinen, P., and Ukkonen, E. 1991. Two algorithms for ap-
proximate string matching in static texts. InIn Proc. 2nd
Ann. Symp. on Mathematical Foundations of Computer Sci-
ence, 240–248.
Levenshtein, V. I. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Technical Report 8,
Soviet Physics Doklady.
Li, C.; Lu, J.; and Lu, Y. 2008. Efficient merging and fil-
tering algorithms for approximate string searches. InICDE,
257–266.
Li, C.; Wang, B.; and Yang, X. 2007. Vgram: improving
performance of approximate queries on string collections us-
ing variable-length grams. InVLDB, 303–314.
Navarro, G., and Baeza-Yates, R. A. 1998. A practical q
-gram index for text retrieval allowing errors.CLEI 1(2).
Navarro, G. 2001. A guided tour to approximate string
matching.ACM Computing Survey33(1):31–88.
Rijsbergen, C. J. 1979. Information retrieval.Butterworth-
Heinemann.
Sarawagi, S., and Kirpal, A. 2004. Efficient set joins on
similarity predicates. InSIGMOD, 743–754.
Ukkonen, E. 1992. Approximate string-matching with q-
grams and maximal matches.Theoretical Computer Science
92(1):191–211.
Ukkonen, E. 1993. Approximate string-matching over suffix
trees. InCPM, 228–242.
Vernica, R., and Li, C. 2009. Efficient top-k algorithms for
fuzzy search in string collections. InSIGMOD Workshop on
Keyword Search on Structured Data (KEYS), 9–14.

