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SUMMARY Skyline query is very important because it is the basis of
many applications, e.g., decision making, user-preference queries. Given
an N-dimensional dataset D, a point p is said to dominate another point q
if p is better than q in at least one dimension and equal to or better than q in
the remaining dimensions. In this paper, we study a generalized problem of
skyline query that, users are more interested in the details of the dominant
relationship in a dataset, i.e., a point p dominates how many other points
and whom they are. We show that the existing framework proposed in [17]
can not efficiently solve this problem.

We find the interrelated connection between the partial order and the
dominant relationship. Based on this discovery, we propose a new data
structure, ParCube, which concisely represents the dominant relation-
ship. We propose some effective strategies to construct ParCube. Ex-
tensive experiments illustrate the efficiency of our methods.
key words: skyline query, algorithm, dominant relationship analysis, per-
formance evaluation

1. Introduction

The skyline query [3] has attracted considerable attention
these years because it is the basis of many applications, e.g.,
multi-criteria decision making [3], user-preference queries
[11] [9] and microeconomic analysis [17]. Skyline mining
aims to find those points, which are not dominated by oth-
ers, in a d-dimensional spatial dataset. This problem can be
seen as a special class of pareto preference queries [11], con-
vex hull [23] or maximum vectors [14]. Fig. 1 shows one
classic example of skyline query that customers are always
interested in those “best” hotels that are better than others
at least at one of the two criteria, the distance and the price,
with smaller values. The skyline of the example dataset in
Fig. 1 consists of a and c.

There are many issues related to skyline query, includ-
ing the general full-space skyline points querying [3] [7]
[13] [21], subspace skyline points mining [31] [26] [28],
skyline points extracting in stream [18] [27] [20], Top-k and
high-dimensional skyline points extracting [5] [6], mining
skyline in distributed environments [2] [10] [29], approxi-
mate skyline querying [12]. All these issues, however, con-
cerned only the pure dominant relationship among a dataset,
i.e., a point p is whether dominated by others or not, and got
those non-dominated ones as results.
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Fig. 1 Example of the skyline query

Recently, Li et al. [17] proposed to analyze the dom-
inant relationship in a business model that, users are more
interested in the detail of the dominant relationship in a
dataset, i.e., a point p dominates how many other points and
is dominated by how many others. Here we show an exam-
ple.

Example 1: Consider you are a manager of hotel company.
You want to know the business position of a local hotel b in
the current market with regard to your preference, i.e., price
and distance to the beach, by checking how many other ho-
tels are better/worse than b. For the sample hotels shown in
Fig. 1, you can deduct the conclusion that hotel b is better
than 2 other hotels but worse than another 2 hotels with re-
gard to your preference∗.

In real world, however, users are always interested in
not only “how many” objects are dominating/dominated by
a specific object, but also “whom” they are, which was not
mentioned in [17]. This problem can be seen as a general
dominant relationship analysis to the ones proposed in [17].
It is naively thought, can be easily solved by associating
each object with its corresponding cuboid in DADA [17].
So when users query the dominant relationship, these ob-
jects will be extracted simultaneously. Nevertheless, due to
a huge number of duplicate existence in DADA, the stor-
age overhead and the query time will be unacceptable for
users. In this paper, we aim at proposing efficient and ef-
fective methods to answer the “whom” problem. Because
of the interrelated connection between the partial order and
the dominant relationship, we propose a new data struc-
ture called ParCube, which concisely represents the com-
plete information of the general dominant relationship based
on the partial order analysis. Specifically, we record the
partial order as a Directed Acyclic Graph (DAG) for each

∗Note that the analysis here can be further used to determine
the price of a hotel, which should be competitive in the current
market while reserving the most profit.
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Fig. 2 DAG representation in 2-d space

cuboid in ParCube and propose efficient data structures
and strategies to answer the general dominant relationship
queries. Moreover, we introduce efficient strategies to con-
struct ParCube. The experimental results and performance
study confirms the efficiency and effectiveness of our strate-
gies.

To illustrate the core idea of this paper, here we show
a simple example. Fig. 2 represents the partial order (en-
coded as DAG format) of the example dataset in Fig. 1 in
2-dimensional space. We can know the point b dominates
the points d and e and is dominated by the points a and c,
by counting the out-link and in-link of d, respectively.

Here we solve not only the how many problem, but
also the whom problem. From this example, we know that
the general dominant relationships of a dataset can be rep-
resented into their corresponding partial order representa-
tion (i.e., DAGs). In contrast, the DADA data structure [17]
applies the grid-based index technique, which does not ef-
ficiently record the dominant relationship, as will be illus-
trated in the experimental evaluation.

Our contributions in this paper are as follows:

• We generalize the dominant relationship queries pro-
posed in [17], as General DominantRelationship
Query (GDRQ). We find the interrelated connec-
tion between GDRQ and the partial order analysis.

• We propose a data cube, ParCube, which concisely
represents the complete information of the general
dominant relationship as DAGs based on the partial or-
der for each cuboid. We introduce effective methods to
construct the ParCube.

• We conduct comprehensive experiments to illustrate
the effectiveness and efficiency of our methods.

The remainder of this paper is organized as follows.
In Section 2, we discuss the related work. In Section 3,
we present the preliminaries of this paper. A naive method
based on existing strategy to answer GDRQ is introduced
in Section 4. The computation of ParCube is presented
in Section 5.1 and the query processing strategies for gen-
eralized dominant relationship analysis using ParCube is
described in Section 5.2. The performance analysis are re-
ported in Section 6. We conclude the paper and provide
suggestions for future work in Section 7.

2. Related work

2.1 Skyline Query

Skyline query was first introduced in [3]. The problem

comes from some old classic topics, such as convex hull
[23] and maximum vectors [14].

Skyline query algorithms can be classified into two cat-
egories. The first one is non-index based method, i.e., BNL
[3], SFS [7], DC [3]. The second category is index based
method, i.e., NN [13], BBS [21], SUBSKY [26]. As ex-
pected, the index-based methods have been shown to be
superior over the non-index-based ones and furthermore,
the index-based strategies can progressively return answers
without having to scan the entire data input. Specially, SUB-
SKY [26]† was proposed to compute low-dimensional Sky-
lines and is the best algorithm for subspace skyline discov-
ering. Based on the data distribution, SUBSKY creates an
anchor point for each cluster, and builds a B+-tree on the
L∞ distance between each object to its corresponding an-
chor. Then, SUBSKY scans the tree leaf nodes according
to the ascending order of the points’s smallest value of d-
dimension to get Skylines.

From the view point of dimension concerned, the ex-
isting algorithms can be also classified into two categories,
i.e., full space based method [13] [21], and subspace based
method [26] [31] [28]. Other related work on skyline min-
ing includes mining skyline in distributed environments [2]
[10] [29], skyline query in data stream [18] [27] [20], ap-
proximate skyline query [12], interesting skyline points in
high-dimensional space [5] [6].

All the above works concerned only the pure domi-
nant relationship and, outputted those points which are not
“dominated” by others. Note that in addition to the origi-
nal meaning in [3], “dominated” here can be a variant, i.e.,
k-dominant [6].

In contrast, Li et al. proposed to analyze a more general
dominant relationship from a microeconomic aspect [17].
The users are always interested in not only the binary dom-
inant relation between the points in a dataset, but also the
statistical information, i.e., how many other points are dom-
inating/dominated by a specific point. In [17], the authors
proposed three basic Dominant Relationship Queries
(DRQs) and constructed a data cube, DADA, to efficiently
organize the information necessary to DRQs. Moreover,
a novel data structure, D*-tree, was proposed to fulfill effi-
cient computation for DRQs.

However, users are always interested in not only “how
many” objects are dominating/dominated by a specific ob-
ject, but also “whom” they are, which was not mentioned
in [17]. This problem cannot be easily solved by using the
methodologies proposed in [17] because of the large dupli-
cate storage cost in DADA. In this paper, we propose effi-
cient data structure and strategies to solve such kind of gen-
eral dominant relationship query based on our discovery that
GDRQ has interrelated connection with partial order.

†We describe the detail of SUBSKY because it is one of the
baseline algorithms in the experimental evaluation.
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2.2 Partial Order Mining

Partial order has appeared in many computational models
and there are a lot of applications involves with partial or-
der issues, such as concurrent models [15], optimistic roll-
back recovery [25], biology [16], security [24] and prefer-
ence query [11].

In this paper, we mainly consider the problem that how
to convert the spatial dataset into partial order representa-
tion, which are then queried to get the general dominant re-
lationship efficiently. As far as we know, there is no work on
this problem. An interesting study investigated the problem
of mining a small set of partial orders globally fitting data
best [19]. Particularly, [19] addressed sequence data. Very
different from the problem studied here, [19] tried to find
one or a (small) set of partial orders that fit the whole dataset
as well as possible, which is an optimization problem. An
implicit assumption is that the whole dataset somehow fol-
lows a global order. More recently, [4] were intended for
discovering several small partial orders from a set of se-
quences instead of only one that describes all or most of the
set. They proposed to use closed partial orders to summa-
rize sequential data in a concise manner. Yet different from
this paper, they did not further explore the partial orders for
a specific purpose (i.e., dominant relationship extraction).

In this paper, however, we need to determinate the par-
tial orders given a spatial dataset. We propose a simple
method of converting the spatial dataset to the correspond-
ing sequence dataset and then, apply existing strategies such
as that used in [4] with modification by considering skyline
property to generate the partial orders.

3. Preliminaries

Given a d-dimension space S={s1, s2, . . . , sd}, a set of
points D={p1, p2, . . . , pn} is said to be a dataset on S if
every pi ∈ D is a d-dimensional data point on S. We use
pi.sj to denote the jth dimension value of point pi. For each
dimension si, we assume that there exists a total order rela-
tionship. For simplicity and without loss of generality, we
assume smaller values are preferred [3] (i.e., MIN operation)
in this paper.

Definition 1 (dominate). A point p is said to dominate an-
other point q on S if and only if ∀sk ∈ S, p.sk ≤ q.sk and
∃st ∈ S, p.st < q.st.

A partial order on D is a binary relation � on D such
that, for all x,y,z ∈ D, (i) x � x (reflexivity), (ii) x � y
and y � x imply x=y (antisymmetry), (iii) x � y and y � z
imply x � z (transitivity). We use (D,�) to denote the
partial order set (or poset) of D. We denote by ≺ the strict
partial order on D, i.e., x ≺ y if x � y and x �= y. Given
x,y ∈ D, x and y are said to be comparable if either x ≺ y
or y ≺ x; otherwise, they are said to be incomparable.

The Definition 1 can be translated into the ordering
context as follows:
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(a) Example spatial dataset (b) Representation in 2-d space {D1,D2}

Fig. 3 Example dataset

Definition 2 (dominate in ordering context). A point p is
said to dominate another point q on S if and only if ∀sk ∈ S,
p.sk � q.sk and ∃st ∈ S, p.st ≺ q.st.

The partial order (D,�) can be represented by a DAG
G = (D, E), where (υ, ω) ∈ E if ω � υ and there does
not exist another value x ∈ D such that ω � x � υ. For
simplicity and without loss of generality, we assume that G
is a single connected component.

Definition 3 (dominating set, DGS(p, D, S’)). Given a point
p, we use DGS(p, D, S’) to denote the set of points from D
which are dominated by p in the subspace S’ of S.

Definition 4 (dominated set, DDS(p, D, S’)). Given a point
p, we use DDS(p, D, S’) to denote the set of points from D
which dominate p in the subspace S’ of S.

The problem that we want to solve is as follows:

Problem 1 (General Dominant Relationship Query (GDRQ)).
Given a dataset D, dimension space S’ and a point p, find
DGS(p, D, S’) and DDS(p, D, S’).

Note that a skyline point p has the following property:
DDS(p, D, S’)=0. In other words, the skyline query can be
thought as a special case of the general dominant relation-
ship query.

Example 1. Consider the 3-dimensional dataset D = {a, b,
c, d, e, f} in Fig. 3 (a). Given a query point b, dimension
space S ′={D1, D2}, the dominating set DGS(b, D, S ′) =
{d, e} and the dominated set DDS(b, D, S ′) = {a, c}. We
will use this dataset as a running example in the rest of this
paper.

4. A Naive Method

To solve the problems defined in Section 3, a natural idea is
to extend the framework proposed in [17]. In this section,
we briefly introduce this naive strategy and then, illustrate
its weak points.

The authors in [17] partition the data space by using
griding strategy. For example, Fig. 4 (a) shows a dataset in
2-dimensional space (i.e., {D1, D2}). In Fig. 4 (b), each
grid records the number of the points which current grid
dominates. For instance, the gray grids are all those which
dominates three points. Instead of recording each grid in-
formation, [17] proposed D∗-tree to record the compressed
information (upper/lower bound of a region that dominates
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Fig. 5 The extension of DADA for general dominant relationship analy-
sis

the same number of points). For example, the gray grids can
be partitioned into three regions, which are represented by
their upper bound, i.e., {1, 4}, {3, 4} and {4, 2}, respec-
tively. The whole D∗-tree is shown in Fig. 4 (c), which
is constructed based on the rule defined in [17] (Definition
4.7). Fig. 4 (d) shows the compressed information about the
three gray regions, i.e., the lower bound (1st column), the
upper bound (2nd column) and the number of points domi-
nated (3rd column). Given a point Pquery , to get the num-
ber of the points Pquery dominates, it needs to start from the
root of the D∗-tree and move down the node with the upper
bound that can dominate Pquery . Once it knows that Pquery

is contained in a region that the node dominates, the desired
number of the points which are dominated by P query can be
output. Refer [17] for more detail.

Yet there are two issues arising when processing the
general dominant relationship queries by using DADA’s
strategy. Firstly, the “whom” problem can not be efficiently
solved. For example, although the gray regions in Fig. 4
(b) all dominate three points, they have different dominat-
ing sets, i.e., {b, d, e} for blue and yellow regions and {f,
d, e} for red region. Although by adding the dominating set
into each node of the D∗-tree can naively answer the ques-
tion (as shown in Fig. 5), this simple solution will introduce
serious burden of data duplication problem. Therefore, the
strategy of DADA is not appropriate for the general dom-
inant relationship analysis problem. Another issue is that
the search strategy in DADA while traversing the D∗-tree is
inefficient, especially when the tree has many layers.

5. A Partial Order Based Method

In this section, we propose to efficiently apply the properties
of the partial order to analyze the general dominant relation-
ship. Specifically, we first introduce effective strategies to
construct a partial order data cube (ParCube), which con-
cisely represents the dominant relationship by using DAGs.
Moreover, we propose efficient algorithms to answer the

Fig. 6 The work flow of ParCube constructing

general dominant relationship queries based on ParCube.
In the following section, we introduce our methods of con-
structing ParCube.

5.1 Constructing ParCube

As described in Section 3, the dominant relationship can be
encoded in partial order representation (DAGs). In this sec-
tion, we explain how to construct the partial order data cube
(ParCube) with a spatial dataset input. As far as we know,
there is no work on this problem. In this paper, we propose
to apply strategies from another research context, sequen-
tial pattern mining [1], to get the partial order representa-
tion from a spatial dataset. The whole work flow is shown
in Fig. 6. We propose a simple method of converting the
spatial dataset to the corresponding sequence dataset in the
first process and then, apply existing strategies such as that
used in [4] with little modification in the second and third
processes to generate DAGs from the transformed sequence
dataset. Note that we mainly illustrate how to compute the
cube for a dominating set since computation of a dominated
set can be done in a similar fashion.

The first process in Fig. 6 is to convert the original spa-
tial dataset to the sequence dataset. With a k-dimensional
dataset, we simply get a k-customer sequence dataset, by
sorting the objects in each customer (dimension) according
to their value in ascending order. For example, Fig. 7 (b)
shows the converted sequence dataset of the example spatial
dataset in Fig. 7 (a).

Theorem 1. The converted sequence dataset records all the
dominant relationship of the points in the spatial dataset.

Proof. Trivial because the small-large pair (dominant) re-
lationship in the spatial dataset is equivalent to the early-
late pair (dominant) relationship in the converted sequence
dataset.

The second and the third processes in Fig. 6 aim to
determine a partial order that describes the point set in the
subspace S ′ of data space S in D′. The related problem is
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Fig. 7 Process 1 of constructing ParCube

addressed in [19] and more recently in [4]. In this paper, we
simply apply the approach in [4] with a minor modification
that, instead of mining closed sequential patterns [30], we
mine general sequential patterns [1]. In process 2 as shown
in Fig. 6, we discover the sequential patterns from the trans-
formed sequence dataset by applying PrefixSpan algorithm
[22] †, which is the state-of-the-art one.

Specifically, given a n-sequence dataset, we partition it
into several k-sequence datasets, where 2 ≤ k < n, and ap-
ply PrefixSpan to them, respectively, with minimum support
equal to 100%. For example, given the sequence dataset as
shown in Fig. 8 (a), we partition it into k-sequence datasets
where k=2, i.e., {D1, D2}, {D1, D3}, and {D2, D3}. Pre-
fixSpan is then applied on them. Note that for k-sequence
datasets where k=1, i.e., {D1}, {D2}, and {D3}, we do
not need use PrefixSpan because the maximal sequential
patterns are straightforward (i.e., the sequence itself). For
k-sequence datasets where k=n, i.e., k=3 for the dataset
shown in Fig. 8 (a), we do not need to partition it because
the number of the possible partitioned dataset is one, i.e.,
{D1, D2, D3}.

In fact, the process is the same as building common
data cube, that we traverse every possible subspace (a k-
sequence dataset, i.e., {D1, D2}), and apply PrefixSpan on
it with minimum support equal to 100%.

To save space and convenient the query processing,
we merge these sequential patterns as local maximal
sequential sequences [1], which are not the subsequence
of other sequential patterns in the same subspace. For ex-
ample, in subspace {D1, D2}, although there are many se-
quential patterns, i.e., 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉, 〈ab〉, 〈ad〉,
〈ae〉, 〈af〉, and so forth. We only record the maximal se-
quential patterns, i.e., 〈afde〉, 〈abde〉 and 〈cbde〉, because
all the other sequential patterns are subsequences of these
three maximal sequential patterns.

The maximal sequential patterns of a subspace S
record the dominant relationship between items in S (as be
verified by Theorem 1, Theorem 2). For example, the pat-
tern 〈afde〉 indicates that a dominates f , dominates d, and
dominates e in subspace {D1, D2}.

The result data cube (SeqCube) got from process 2 for
the example dataset is shown in Fig. 8 (b).

Theorem 2. SeqCube records all the dominant relationship
of the points in the sequence dataset D.

Proof. (Proof by Contradiction.) For simplicity, we only
prove for a specific subspace of SeqCube. Assume to the
contrary that there is a dominant relationship between two

†Due to limited space, we skip the detail of PrefixSpan here.
Interested users can refer [22].
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Fig. 8 Process 2 of constructing ParCube

points, a dominates b in a subspace S ′, is not represented in
the cuboid S ′ of SeqCube. This means that the sequential
pattern 〈ab〉 is not listed in S ′ of SeqCube, which contra-
dicts our assumption that the sequential pattern mining pro-
cess can find all the sequential patterns.

In process 3, the combinations of the local maximal
sequential sequences are enumerated to generate partial
orders with DAGs representation, by applying the method
proposed in [4]. The result data cube (ParCube) got from
process 3 for the example dataset is shown in Fig. 9 (b).

(c) The data cube (lattice) whose cuboid

     consists of the local maximal common 

     sequential patterns
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(d) DAG representation of partial order in data cube ParCube
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Fig. 9 Process 3 of constructing ParCube

Theorem 3. ParCube records all the dominant relationship
of the points in the spatial dataset D.

Proof. Proof can be deduced based on Theorem 1, Theorem
2 in this paper and [4].

5.2 Querying ParCube Data Cube

The semantic meaning kept in the ParCube data cube is
the key used to extract the general dominant relationship ef-
ficiently.

5.2.1 General Dominant Relationship Query (GDRQ)

Given a dataset D, a query point Pquery and a subspace S ′,
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Fig. 10 DAG representation of the example dataset in 2-dimensional
space {D1, D2}
the GDRQ is to compute the points dominate or dominated
by Pquery , where Pquery ∈ D.

An important observation in this case is that, if Pquery

is in D, all the general dominant relationship related to
Pquery can be easily discovered by traversing the DAG in
a specific subspace.

As an example, Fig. 10 shows the DAG representation
in subspace {D1, D2}. To facilitate the counting process, the
numbers of points dominating/dominated by current node
(point) are inserted into each node. This process is executed
in the precomputed-mode. Suppose the query point is b,
we can get the points dominated by b immediately, which is
2. Upon users are interested in whom these two points are,
it goes downward following the out-link of b, and gets the
dominating set of b as {d, e}.

In DADA [17] framework, however, it needs to tra-
verse the D*-tree to get the corresponding class. For
example, assume the query point is b, the order of the
traversed nodes in D*-tree, as shown in Fig. 4 (c), is
{〈1, 1〉,〈2, 1〉,〈2, 2〉,〈3, 4〉}. Then it finds the dominating set
of b by checking the class of {〈3, 4〉}. Obviously, DADA
consumes more time compared with our strategy.

6. Experimental Evaluation and Performance Study

To evaluate the efficiency and effectiveness of our strate-
gies, we conducted extensive experiments. We performed
the experiments using a Intel(R) Core(TM) 2 Dual CPU PC
(3GHz) with a 3G memory, running Microsoft Windows XP.
All the algorithms were written in C++, and compiled in an
MS Visual C++ environment. We conducted experiments on
both synthetic and real life datasets.

Detailed implementation of the algorithms used to
compare is described as follows:

1. SUBSKY. SUBSKY was tested with the algorithm de-
veloped in [26], which is the state-of-the-art algorithm
for subspace skyline query.

2. Naive. Naive was tested with the extension of DADA
[17], by storing the dominated/dominating points in the
corresponding class, as explained in Section 4.

3. ParCube. ParCube was implemented as described in
this paper.

6.1 Datasets

We employ the synthetic data generator [3] to create our syn-
thetic datasets. They have independent distribution, with

Fig. 11 Execution time comparison between SUBSKY and ParCube
on skyline query

dimensionality d in the range [3, 6] and data size in the
range [10k, 50k]. The default values of dimensionality were
5. The default value of cardinality for each dimension was
50k.

6.2 Skyline Query Performance

Because the skyline query is important and can be seen as
a special case of the general dominant relationship query, in
this section, we first evaluated the skyline query answering
performance of ParCube compared with the state-of-the-
art algorithm, SUBSKY [26].

Fig. 11(a) and 11 (b) show the skyline query time
against number of points in the datasets and dimensionality,
respectively. We can see that the ParCube algorithm out-
performs the SUBSKY in both cases by up to an order of
magnitude. This is because the SUBSKY algorithm needs
to traverse the tree data structure (i.e., B-tree) to extract the
skyline on the fly. On contrary, ParCube pre-computes
and stores the skyline points into partial order data structure,
which can be easily extracted out because they exist in the
first layer of DAG graph (no other points dominate them).
Moreover, from the figures we can know that dimensional-
ity has more effect on query performance compared with the
number of points in the datasets.

6.3 Dominant Relationship Query Performance

To test the effect of the General Dominant Relationship
query (GDRQ), we randomly selected 10 different points
based on the synthetic dataset. Fig. 12 (a) and (b) show the
query time against number of points in the datasets and di-
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Fig. 12 Execution time comparison between Naive and ParCube on
general dominant relationship query

mensionality, respectively. We can see that the ParCube
approach is better than the Naive strategy. The perfor-
mance of Naive becomes worse as number of points or di-
mensionality is larger, while ParCube remains almost the
same. The reason is similar to that explained in Section 6.2.
Naive needs to traverse the index data structure (i.e., D∗-
tree) to compare and extract all the required points. In con-
trast, ParCube only traverse the DAG graph to direct ex-
tract every node it passed and no comparison is necessary.

6.4 Index Data Structure Construction Performance

The efficiency of ParCube is rooted in the compressed data
structure it discoveries, partial order data cube (ParCube).
In this section, we show the construction time for ParCube
compared with cost of building other index data structure
(i.e., D∗-tree) in the Naive algorithm. Fig. 13 (a) and (b)
show the execution time for index building against number
of points in the datasets and dimensionality, respectively.
We can see that the ParCube is sensitive to the number of
points in the datasets, that when the number gets larger, the
performance of ParCube construction is worse than that of
D∗-tree building. However, as illustrated in Fig. 13 (b), D∗-
tree construction becomes worse as dimensionality grows,
which means that D∗-tree index building is more sensitive to
the dimensionality compared with ParCube index building.
The reason why the performance of ParCube construction
is good, because in high dimensional space, the probability
of one point dominates another one, is very low. Hence, the
sequential pattern is very few in high dimensional space and
the mining process can terminate quickly.
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Fig. 13 Execution time comparison on index building between Naive
and ParCube

6.5 Effectiveness of Compression

In this experiment, we explored the compression benefits of
ParCube compared with Naive method.

Fig. 14 (a) and (b) show the compression effect
on building the data cube by partial order representation
(ParCube), compared with D∗-tree. They illustrate that us-
ing the compressed data format, DAG, is very efficient on
space usage. Similar to query performance, dimensionality
has more effect on the compression factor compared with
the number of points in the datasets.

7. Conclusions

In this paper, we have introduced General Dominant Re-
lationship Analysis, which could not be easily solved by
existing strategies. Due to the interrelated connection be-
tween the partial order and the dominant relationship, we
have proposed a new data structure called ParCube, which
concisely represents the complete information of the gen-
eral dominant relationship based on the partial order anal-
ysis. We have introduced efficient strategies to construct
ParCube. The experimental results and performance study
confirmed the efficiency and effectiveness of our strategies.
In the future, we will investigate how to further improve the
efficiency while querying the general dominant relationship.
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