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Abstract. Discovery of evolving regions in large graphs is an impor-
tant issue because it is the basis of many applications such as spam
websites detection in the Web, community lifecycle exploration in social
networks, and so forth. In this paper, we aim to study a new problem,
which explores the evolution process between two historic snapshots of
an evolving graph. A formal definition of this problem is presented. The
evolution process is simulated as a fire propagation scenario based on
the Forest Fire Model (FFM) [17]. We propose two efficient solutions
to tackle the issue which are grounded on the probabilistic guarantee.
The experimental results show that our solutions are efficient with re-
gard to the performance and effective on the well fitness of the major
characteristics of evolving graphs.

1 Introduction

Graphs represent the complex structural relationships among objects in various
domains in the real world. While these structural relationships are not static,
graphs evolve as time goes by. Evolving graphs are usually in the form of a set
of graphs at discontinuous time stamps, where the period between two adjacent
time stamps may be quite long. Take the Web archive for example. Due to its
large size, the Web or a part of it is periodically archived by months or even
by years. Mining evolving graphs is important in many applications including
the detection of spam websites on the Internet [7], exploration of community
lifecycle in social networks [20], and identification of co-evolution relationships
between structure and function in bio-informatics [18].

While many of the existing studies have paid attentions to finding stable
or changing regions in evolving graphs [1, 19, 10], only a few of them are about
how graphs evolve. The researchers have proposed various generative models
to capture the statistical properties of the graph evolution such as Power Law
distribution [5], effective diameter [21], and so forth. In this paper, however,
we study a new problem, which is to model the evolving process between two
historical snapshots of an evolving graph. Fig. 1 briefly shows our idea. G is
an evolving graph which evolves from time t to t′. Suppose we have the graph
snapshots at time t and t′, and the real evolution details between these two
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Fig. 1. Example Graphs (All the figures in this paper are made colorful for clarity)

snapshots are unknown. We would like to generate a series of virtual graph
snapshots, as shown in the dotted parts in Fig. 1. What is important is that the
statistical properties of the evolution must be maintained in these virtual graph
snapshots. By doing this, we decompose the macro graph change of the two real
snapshots into several micro changes. The benefits are twofold.

Firstly, by parsing the graphs into historical snapshots, we can learn the
evolution of the different parts, and thus the future trends of these regions can
be predicted. Fig. 2 shows a concrete example, which is conducted on the DBLP
dataset1. The extracted virtual historical snapshot steps can help us understand
the evolution of co-authorship relations. It seems that Web community evolution
detection [2] can do the same thing, but the work in this paper is different from
that. We aim to detect the changes throughout the whole graph and do not
constrain the work on the boundary subgraph (community) that may be defined
by the users (i.e., with keywords).

Secondly, successfully tackling the issue proposed in this paper can address
the critical issue of the lack of intermediate order-based Web data between two
historical Web graphs. Many existing studies on static/dynamic graph mining
can profit from restoring these historical graphs such as frequent subgraph dis-
covery [9], temporal graph cluster detection [1], micro view on social networks
[13], and so forth. As such, this research work is orthogonal to the existing issues
on graph mining in a complementary manner.

For ease of exposition and without loss of generality, we only consider the
node/edge insertion scenario in this paper. It should be noted that our ap-
proaches can handle the scenario where both the insertion and the deletion of
nodes/edges occur. The difficulty in generating these virtual graph snapshots is
that there are numerous number of possibilities.

Our approach adopts the Forest Fire Model (FFM) [17], which has been
demonstrated as successfully explaining the mechanism of dynamic systems [8].
The new edge linkage action can be thought of as fire propagation, and the nodes
on the new edges are the origins of the fire. The virtual historical graph is then
to be thought of as the snapshot on tracking how the fire propagates on the
whole graph. We will give the formal definition of the problem shortly.

The contributions of our paper are as follows:

1 www.informatik.uni-trier.de/∼ley/db
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(a) Original Graph
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(b) Virtual Graph Snapshot #1
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(c) Virtual Graph Snapshot #2
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(d) Existing Graph

Fig. 2. Expected Graph Evolution Process

• We propose a new problem of how to trace back the virtual snapshots of
evolving graphs. The process can be simulated based on the FFM. The
historical graph is deemed as a snapshot of tracking the fire propagation
situation on the graph.

• We propose two approaches, bottom-up and leap-search. The bottom-up
strategy examines the candidates from scratch in a global view, while the
lead-search method applies a density-oriented candidate selection mecha-
nism. We also explore the heuristics based on the properties of evolving
graphs to improve the efficiency of the two approaches.

• We conduct comprehensive experiments on real large evolving graphs. The
evaluation results demonstrate the effectiveness and efficiency of the pro-
posed solutions.

The remainder of this paper is organized as follows. We introduce the pre-
liminaries in Section 2. The bottom-up and leap-search solutions are presented
in Sections 3 and 4, respectively. Section 5 reports the experimental results and
Section 6 concludes the paper.



Notation Definition

G An evolving graph or a graph adjacent matrix
Gt An evolving graph at time t
Vt The set of vertices in the graph Gt

Et The set of edges in the graph Gt

|Vt| Number of vertices in the graph Gt

|Et| Number of edges in the graph Gt

i, j, k Vertices in a graph
e= (i, j) Edges in a graph
deg(u) Degree of vertex u

vi,j Fire propagation velocity between vertices i and j
ti,j Fire propagation time between vertices i and j
di,j Distance or length between vertices i and j
c Backward burning probability

Table 1. The summary of notation

2 Preliminary

In this paper, we deal with undirected evolving graphs. Let G denote an evolving
graph. A snapshot of the graph G at time t is represented as Gt = (Vt, Et), where
Vt is the set of vertices at time t; and Et ⊆ Vt × Vt is the set of edges at time
t. The notations used in this paper is summarized in Table 2. To trace back
the historical snapshots of an evolving graph, we will introduce novel strategies
based on the FFM [17].

2.1 Forest Fire Model

The FFM was first proposed in ecology [17], where the scholars were interested
in how to control and predict wildfire in the real world environment. Henley [8]
first introduced the FFM in studying the characteristics of self-organized sys-
tems. From then on, the FFM has succeeded in explaining many real dynamical
systems such as Geographic Information Systems (GIS) [6], Affiliation Network
[12], arXiv citation [12], and so forth. Most especially, the FFM fits in many
properties of real Web data we would like to explore in this paper: (1) the rich
get richer, which is called the attachment process (heavy-tailed degrees) [3];
(2) leads to community structure [11]; (3) densification [12]; and (4) shrinking
effective diameter.

Note that the FFM is related to random walk and electric currents [4] with
regard to the issue of evolving graphs. The difference is that the latter two have
not taken all the aforementioned four properties of real Web graph into account.
As far as we know, there is only one work [12] on studying evolving Web graph
based on the FFM. There are three main differences between this work and
[12]: (1) [12] aims to generate synthetic evolving graphs from scratch, while in
this work we trace back the historical snapshots between two real graphs; (2)
[12] randomly selects the initial fired nodes, while in this work we deliberately
choose the initial fired nodes with probabilistic guarantee; and (3) we introduce
the fire propagation velocity into our framework, while [12] does not consider
this property. These distinct issues are due to the different purposes of the two
works; [12] intended to generate synthetic evolving graph from scratch on the
fly, while we aim to study the whole history of how an old graph evolves to a
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Fig. 3. Graph evolving process

newer graph. By parsing the evolving process into virtual historical snapshots,
we can learn the micro evolution of the different regions in a large graph to make
a navigational prediction on the evolving trend of the graph.

2.2 Discovery of the Historical Snapshot Graph Problem

Given two graphs, Gt and Gt+1, at time t and time t + 1, the problem of dis-
covering the historical graph snapshots involves tracing back the virtual graphs
after inserting n new edges2, where 1 ≤ n ≤ (|E(Gt+1)| − |E(Gt)|) = k, into the
old graph Gt. Let n-graph denote the graph snapshot which has n new edges.
Fig. 3 illustrates the evolving process of the graph. Gt and Gt+1 can be mapped
at 0-graph and k-graph, respectively. The issue of discovering the histori-
cal graph snapshots is then equivalent to finding the n-graphs, where
0 < n < k and (|E(Gt+1)| − |E(Gt)|) = k.

For example, Fig. 2 (b)-(c) are the graph snapshots of Fig. 2 (a) by inserting 6
and 14 new edges, denoted as 6-graph and 14-graph, respectively. The new edge
linkage action can be thought of as fire propagation, and the nodes on the new
edges are the origins of the fire. The virtual historical graph is then thought of
as the snapshot on tracking how the fire propagates on the whole graph. In this
paper, we introduce how to set the initial fire energy and how fast fire propagates
on the graph. As far as we know, this work is the first one to study these issues.
The problem of finding the n-graphs is then equivalent to discovering
the burning out n-graphs, which is formally defined in Definition 1.

Definition 1 Burning Out n-Graph (BOG) Problem
Given two undirected graphs Gt = (Vt, Et) and Gt+1 = (Vt+1, Et+1); a cost
function CF (i, j) on edge (i, j) where i ∈ Vt ∪ Vt+1 and j ∈ Vt ∪ Vt+1 ; a user
preferred number n of new edges, find the subgraph H of Gt ∪ Gt+1 such that

• The number of new edges on H is n, and
• ∑

(i,j)∈E(H) CF (i, j) is minimized.

E(H) is the edge set of graph H . The cost function CF can be considered
as the time necessary to construct the subgraph H (or burning out it), as will
be well defined shortly with the help of the FFM [17].

2 New vertices are accompanied with new edges.



2.3 Discovery of the Burning Out n-Graph (BOG) Problem

We aim to address the issue of finding the first burning out n-graphs, which is
equivalent to extracting the historical graph snapshots. In this section, we intro-
duce the basic configuration of the fire model such as the initial fire energy, the
velocity and time for fire propagation, and the update of the fire energy.

Initial fire energy: Consider an FFM, where the fires are caused by those
changing edges (with vertex insertion), and each changing edge introduces one
unit fire energy. The initial fire energy of a vertex is the accumulated energy of
all its adjacent new edges.

Fire propagation: The cost function CF (i, j) introduced in Section 2.2 is de-
fined as the time ti,j of the fire propagation consumed on the edge between the
two adjacent vertices i and j. We have

CF (i, j) = ti,j =
di,j

v̄i,j + v̄j,i
, (1)

where di,j denotes the distance between the two adjacent nodes (i and j), and
v̄i,j and v̄j,i denote the average fire propagation velocity from vertice i to j, and
vice versa, respectively. It is interesting to note that the fire propagation has
direction, which conforms to the common intuition that the effects of changing
edges/vertices spread from the origins to the distant edges/vertices3. The average
velocity v̄i,j is mainly dependent on the initial burning energy4 �i. Hence, simplify
the model without loss of generality, we have v̄i,j = γi∗�i, where γi is a constant.
In this paper, we assume γi=γj=. . .=1, and Eq. (1) can be deduced as

CF (i, j) = ti,j =
di,j

�i + �j
. (2)

Fire energy update: The fire energy � should be updated after each successful
propagation by using the following equation.

�jt′ = �jt +
∑

i∈Neighsuc(j)

(1 − c) �i→j , (3)

where �jt and �jt′ are the fire energy of j at time t and time t′ respectively,
c is a backward burning probability [12], and �i→j is the fire energy transferred
from i to j. Thus we have �i→j = �i/deg(i). Neighsuc(j) denotes the neighbour
nodes of j that successfully transfer their fire energy to j between time t and
time t′. Note that once a node successfully propagates fires to its neighbours, its
own fire energy is reset to zero at the time.
3 This mechanism will help to address the issue on directed graphs, which however, is

out scope of this paper.
4 In a real ecological environment, other effects such as wind, topography slope, and

so forth, should also be taken into account.



———————————————————————————————————————————–
Algorithm 1: Bottom-up algorithm
———————————————————————————————————————————–
Input: The graph Gi−1 and Gi at time ti−1 and ti, a user preferred number n
Output: The fastest burning out n-graph(s)

1 H = Gi−1 ∪Gi;
2 for each vertex vi ∈ H do //initial fire energy
3 fe[vi] =num of adjacent changing edges;
4 can graph list=store vi as a graph;
5 num of new edge=0;
6 while num of new edge < n do
7 for each graph g ∈ can graph list do
8 g′= appending g with new edge e of minimal spreading time;
9 tlocal=fire propagation time on e;
10 if tlocal < tminlocal

do
11 tminlocal

=tlocal;
12 update g’ in can graph list;
13 update fe[vi] if new edge introduces a new vertex vi;
14 num of new edge++;
15 output the n-graphs with minimal fire propagation time;
———————————————————————————————————————————–

In this paper, we propose two approaches to discover the fastest burning
out n-graphs. The bottom-up approach examines the candidates from scratch
in a global view with the dynamic threshold guaranteed, while the leap-search
approach proposes a density-oriented candidate selection strategy.

3 The Bottom-Up Approach

We develop a bottom-up greedy algorithm to extract the burning out n-graphs.
The algorithm follows the candidate generation and verification iteration. To
accelerate the process, the threshold-based technique is proposed to prune the
candidates early.

Candidate generation: In each iteration, a k-graph g is grown up to a can-
didate (k+1)-graph g′ by introducing a new edge enew, where the following
conditions hold: (1) enew is connected to some vertices in g; and (2) the fire
spreading time t from g to vnew is minimized5.
Verification: If the burning out time of the candidate (k+1)-graph g′ is greater
by far than the best one, we turn to the next candidate subgraph. Otherwise,
we update the fire energy of the new vertex, which is introduced by the new
edge based on Eq. 3, and continually grow g′ to a larger candidate graph with
another candiate-generation-and-test iteration.

The basic bottom-up greedy algorithm is shown in Algorithm 1. We will
introduce the pruning techniques in the next section. In the initial phase (line
1-5), the two graphs are joined. The changing edges of each vertex are counted
while joining, stored in an array fe. The vertex is put into the candidate list as
a graph. The candidate generation and test iteration is from line 6 to line 14.
5 Specifically, t is computed based on Eq. 2. By default, di,j is set to 1 for the un-

weighted graph in this paper. For the weighted graph, di,j can be set according to
the weight of the edge.



(a) Example graph data
(b) Sequential inserted edges(red color indicates insertion/removal edges)
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Fig. 4. Example graph

Given a k-graph g, we generate its candidate (k+1)-graph, by finding a nearest
edge to g, which may come from its nearest neighbor vertex or internal unlinked
edge. The fire propagation time is computed based on Eq. 3. If the time is smaller
than the least time of burning out graph time so far, we update the new graph
information (line 12) and also update the fire energy of a new vertex if it exists
(line 13). The iteration will be completed when the burning out n-graph is found.

3.1 Implementation Details

Pruning Techniques. We can prune many candidate graphs early based on
the threshold-based technique. The threshold time tth is dynamically updated
based on the most optimal graph by far. Before a candidate graph g grows up
to a larger candidate one, if we find the construction (burning out) time tg of g
is already greater than tth, this round can be terminated and continued to the
next round. The reason why we jump to the next round instead of the remaining
candidates is that we can rank all the candidate graphs based on their burning
out time in ascending order (by using minimal heap). If tg is greater than tth,
then the time of all the remaining candidates (in the heap) should be greater
than tth; hence, this round can be safely terminated. The early pruning rule is
justified based on the following lemma.

Lemma 1 (Anti-monotone) Let g be a graph with k edges and g’ be a con-
nected supergraph of g with (k+1) edges. The burning out times of g and g’ are
t and t’, respectively. Let tth be a threshold time. If t > tth, then t′ > tth.



———————————————————————————————————————————–
Algorithm 2: Pruning strategy for the bottom-up algorithm
———————————————————————————————————————————–
1 sort fe in descending order;
2 min heap← store vj ∈ fe with maximal value as a subgraph;
3 while min heap is not empty do
4 g=subgraph with minimal value tg in min heap;
5 if #new edge(g) ≥ n do
6 break;
7 g′= appending g with edge of minimal spreading time;
8 tlocal=fires propagation time of the new edge;
9 min heap← store g′ with tlocal max;
10 update fe[vi] if new edge introduces a new vertex vi;
11 vj=unvisited node in fe whose energy is the largest;
12 for each neighbor vk of vj do
13 if t(vk, vj) < tlocal do
14 min heap← store vj as a subgraph;
15 break;
———————————————————————————————————————————–

Proof Sketch. (By contradiction) Suppose we have t′ ≤ tth. We reduce g′ to
g′′ by removing the edge not existing in g. Let t′′ be the burning out time of g′′.
We have t′′ ≤ tth. As t′′ is equal to t, it results in t ≤ tth, which is contradictory
to the assumption; thus the lemma holds. �

Lemma 1 can efficiently prune many candidate subgraphs, as will be demon-
strated in the experimental results. The reason for this is that due to the Den-
sification Power Law [12] property, the threshold of the most optimal subgraph
(a “rich” one) by far will have high probability greater than most of the other
subgraphs (“poor” ones); thus, the latter ones can be pruned earlier without
testing. The optimized algorithm is shown in Algorithm 2, which replaces line
5-14 in Algorithm 1. The algorithm is self-explanatory, and we provide a con-
crete example to illustrate the process.

Example 1. Suppose we want to determine the snapshot with an insertion of
14 new edges. The graph in Fig. 4 (a) is our example graph, where the red lines
indicate the changing edges. We first scan the graph to accumulate the number of
the changing adjacent edges of each vertex and sort them. Therefore, we obtain
a list V1 : 7, V28 : 5, V32 : 4, V33 : 3, . . .. Note that we only record the vertex
which has at least one changing adjacent edge. Next, we push V1 into the heap
(because it has the largest initial fire energy and may propagate the fire faster).
We traverse the adjacent vertices of V1 and compute the time that the fire can
be spread to the nearest neighbor, resulting in 1/8 unit time (w.r.t Eq. 2, where
�V1 = 7 and �V2 = 1). Note that there are multiple nearest neighbors, e.g., V2,
V3, V4, etc. The new subgraph is pushed into the heap, and the fire energy of
each vertex involved is updated (w.r.t Eq. 3). We also push the node V28 into
the heap because its initial energy is the largest among the unvisited nodes.
Recursively, we execute the process until we find that the total number of new
edges is greater than or equal to the threshold (i.e., 14). The results are listed
in Fig. 4 (b). Note that the historical snapshot should be the union of graph G’
of the new edges gn with the old graph Gt, where G’=Gt ∪ gn.



———————————————————————————————————————————–
Algorithm 3: Leap-search algorithm
———————————————————————————————————————————–

Input: The graph Gi−1 and Gi at time ti−1 and ti, a user preferred number n
Output: The fastest burning out n-subgraph(s)

1 H = Gi−1 ∪Gi;
2 for each vertex vi ∈ H do //initial fire energy
3 fe[vi] =num of adjacent changing edges;
4 sort fe in descending order;
5 for each vj ∈ fe do //generate candidate core subgraphs
6 g=store vj with energy value as a subgraph;
7 while #new edge(g) < n do
8 g′= appending g with edge of minimal spreading time;
9 tlocal=fires propagation time of the new edge;
10 tlocal max=maximal value of tlocal;
11 cand graph list=store g′ with tlocal max;
12 for each subgraph g ∈ cand graph list do //test the candidate graph

//update g if possible
13 for each edge e(i, j) ∈ g do
14 update fe[i] and fe[j] by checking neighbors of i and j;
15 update fire propagation time of e(i, j);
16 update least time tleast necessary to fire out g;
17 Output the n-graphs(s) with minimal fire propagation time;
———————————————————————————————————————————–

4 The Leap Search Approach

In this section, we present a leap-search based method for the extraction of
burning out n-graphs. The method is efficient in processing graphs with a large
n, where growing up the candidate subgraphs from scratch by using bottom-up
growth can be time consuming. The approach is based on the density-oriented
candidate selection strategy. The intuitive idea is that fire transfers fast in those
regions where the energy density is high. The extraction process is also composed
of candidate generation and verification iteration.

Candidate generation: Starting from the nodes with the most fire energy,
we grow them by selecting their nearest neighbors (w.r.t. the fire propagation
time) until the number of the new edges in the subgraph graph is equal to n.
In other words, we do not wait for other possible candidates to grow up. During
the growing process, we record the least time necessary to transfer the fire.
Verification: We check the bottleneck nodes of the fire propagation in these
subgraphs (as indicated by the least time), greedily find the neighbors which can
remedy the weak edges on spreading the fire, and then update the least time
value. Through a recursive process, we finally determine the first burning out
regions with the least n new edges.

The leap-search algorithm is shown in Algorithm 3. The initial phase (line 1-
4) is similar to that of Algorithm 1. The candidate core subgraphs are generated
first (line 5-11). Starting from the nodes with most fire energy, we grow them
by linking to their nearest neighbors (w.r.t. the fire propagation time) or their
internal unlinked edges (line 8) until the number of the new edges in the subgraph
graph is equal to or greater than n. Different from the bottom-up algorithm, we
do not wait for other possible candidates to grow up. During the growing process,
we record the least time necessary to transfer the fire among them (line 9). In
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Fig. 5. Update mechanism for weak links (red line indicates the edge has changed and
this figure is best viewed in color)———————————————————————————————————————————–
Algorithm 4: Pruning strategy for the leap-search algorithm
———————————————————————————————————————————–
1 tth=by far min time to burn out a n-candidate graph;
2 max heap=candidate graphs with fire propagation time t;
3 while max heap is not empty do
4 g=subgraph with maximal value in max heap;
5 for all edges of g
6 e(i, j)=g’s unvisited slowest edge on propagating fire;
7 update fe[i] and fe[j] by checking neighbors of i and j;
8 update fire propagation time tei,j

of e(i, j);

9 if(tei,j
> tth)

10 break;
———————————————————————————————————————————–

the candidate test phase (line 12-16), we check the bottleneck nodes of the fire
propagation in these subgraphs (as indicated by the least time), greedily find
the neighbors which can remedy the weak edges on spreading the fire (line 14-
15), and then update the least time value6 (line 16). The detail of the updating
mechanism will be described shortly. Finally, we determine the first burning out
regions with the least n new edges.

4.1 Implementation Details

Weak Link Updating Mechanism. We introduce how to update the fire
propagation time of the weak links. Suppose we have a subgraph as shown in
Fig. 5. Nodes V1 and V2 have been included in the candidate graph g, but nodes
V3 and V4 are outside of g. If we know that edge e(V1, V2) is a weak edge of g
(i.e., the fire propagation time is slow), then we start from nodes V1 and V2, and
check whether their neighbors can transfer fire energy to them. For this example,
node V2 has two neighbors, V3 and V4, with a large fire energy and can propagate
fire to V2. Therefore, we update fe[V2] (line 14 in Algorithm 3) by using Eq. 3.
The fire spreading time of e(V1, V2) is also updated (line 15).

Pruning Strategy. When testing the candidate graphs (line 12-16 in Algorithm
3), we can prune many candidates early by using a time threshold, tth, which is
by far the fastest time to burn out an n-graph. Given a candidate graph, if after
we update it by using the mechanism introduced in the last section the burning
time is still smaller than tth, then we can safely prune this candidate graph. To
further improve the efficiency, the slowest edges on propagating fires in candi-

6 The replacement should guarantee the number of new edge will not decrease.



Data set name
Classifed type old new old new old new
Recorded time 2001 2007 2001-10-1 2001-12-31 2004-5 2005-7

Nodes 1849 5289 6310 10008 2446029 3078826
Edges 4732 16667 30637 67777 57312778 71400464

DBLP Enron Web

Fig. 6. Statistics of the three data sets
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Fig. 7. Efficiency of the proposed solutions

date graphs are tested first. The optimized algorithm is shown in Algorithm 4.

5 Performance Evaluation

To evaluate our strategies, we conducted extensive experiments. We performed
the experiments using a Itanium2 CPU (1.5GHz) server with a 128G memory7,
running Redhat linux. All the algorithms were written in C++. We conducted
experiments on three real life datasets, DBLP , Enron, Web.

The first dataset, DBLP , is extracted from DBLP website8 and focuses
on the bibliography information from database community. It contains the co-
authorship information of major database conferences from 2001 to 2007. The
second dataset, Enron, records the email communication information of each
day from 2001-10-01 to 2001-12-31. For detail of these two datasets refer [15].
The third dataset, Web, records two snapshots of Japanese web pages (in jp do-
main) in May 2004 and July 2005, respectively. Part of this dataset is reported
in [22]. The basic statistics of the datasets are shown in Fig. 6. Refer [23] for
more experimental results.

5.1 Efficiency of our solutions

We compare our two algorithms, bottom-up and leap-search, with a naive method
[23]. The result is shown in Fig. 7. Note that the execution time on the Enron
dataset is in logarithm format. We can see that our solutions are much faster
than the naive one, about one to two orders of magnitude (as shown in Fig. 7
(a)). For the huge Web dataset, the naive algorithm can not finish in reasonable
time. Between our two approaches, the leap-search performs better than the
bottom-up when the number of new edges n becomes larger. The reason is that
for large value of n, growing graphs from scratch by evaluating all the neighbors

7 The actual used memory is smaller than 8G.
8 www.informatik.uni-trier.de/∼ley/db
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is time consuming. However, for a small value of n, the cost for growing graphs
becomes smaller and the cost for updating weak links becomes larger; thus, the
bottom-up algorithm performs better.

5.2 Pruning Efficiency of our solutions

In this section, we evaluate the efficiency of the proposed pruning techniques.
The result is illustrated in Fig. 8. We can see that with pruning techniques,
the bottom-up algorithm can perform much better, as shown in Fig. 8 (a). The
reason is that many of the candidate graphs can be pruned sharply with the anti-
monotone rule and the refinement strategy. For the leap-search approach, the
early pruning technique can remove many candidate graphs from the heap. Thus,
the overall performance is improved. In summary, with the pruning techniques,
both algorithms only need to test and update a small number of candidate
graphs, which lead to good scalability with respect to the cardinality of the
datasets and the value of n.

5.3 Effectiveness of our solutions

We examine whether the discovered virtual historical snapshots restore the real
data with high precision and follow the important properties of evolving graphs.

– Precision. We compare three algorithms, random, bottom-up and leap-
search on the precision metric9. The random method is implemented by
randomly selecting n new edges combined with the old graph as the virtual
snapshot. The quantitative metric is defined as

precision =
|ΔER ∩ ΔEV |

|ΔER| , (4)

where ΔER denotes the set of actual new edges and ΔEV represents the set
of virtual generated new edges. Our methods can get rather high precision as
illustrated in the figure. The reason why the precision decreases on restoring
the older snapshots (i.e., 10/15), is due to the small number of the new edges,
which leads to difficulty in locating the new edges. For our two algorithms,
there is a trade-off between efficiency and effectiveness.

9 Due to its prohibitive cost on execution compared with others, the naive algorithm
has not been considered here.



(a) Precision on Enron dataset

Date= 10/15 11/1 11/15 12/1 12/15
random 0.180 0.545 0.699 0.767 0.816

bottom-up 0.620 0.743 0.858 0.911 0.935
leap-search 0.517 0.654 0.779 0.863 0.907

(b) Precision on DBLP dataset

Year= 2002 2003 2004 2005 2006
random 0.129 0.271 0.415 0.622 0.731

bottom-up 0.546 0.644 0.700 0.773 0.902
leap-search 0.414 0.526 0.611 0.725 0.846

Table 2. Precision evaluation
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Fig. 9. Effective diameter
– Effective Diameter. Fig. 9 shows the values of effective diameters [21]

for the historical snapshots. We can see that the virtual snapshots mainly
express the transition characteristic between the two real graphs. In Fig. 9
(b), the effective diameter drops after inserting a few edges. We argue that
the reason is due to the relative small community of the DB scholars. The
first few new edges may link to many others because these insertion edges
may be caused by those influential people (with more initial fire energy).

– Degree Distribution. We also evaluate the degree distributions of the
virtual historical snapshots. The temporal degree distribution follows the
power law distribution and the changing edge degree distribution obeys the
densification power law distribution. Refer [23] for detail.

6 Conclusion

In this paper we have studied a new problem of tracing back the virtual his-
torical snapshots. Two solutions have been proposed, the bottom-up and the
leap-search. We have conducted extensive experiments and the results show
that our approaches can restore the historical graph snapshots efficiently while
maintaining the evolution properties. In the future, we will evaluate some other
predictors such as those proposed in [14, 16].
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