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Abstract: Structural deterioration of database is caused by updates of the 
database and can degrade performance seriously. Database reorganisation, 
which removes structural deterioration by relocating data in the secondary 
storage, is an administrator’s headache; it is difficult to schedule reorganisation 
efficiently to keep acceptable performance because conventional database 
systems lack crucial monitoring facility of structural deterioration, with  
high resolution, high accuracy and low overhead. In order to make database 
reorganisation be easy for administrators and be autonomic in the future,  
the paper proposes an online database structure deterioration monitor, which 
can visualise structural deterioration distribution, with a novel structural 
deterioration model, a storage performance model and an incremental update 
technique. The experimental results with our prototype show that our scheme 
can monitor structural deterioration with an error of within 12% and with an 
overhead of 3% at most. 
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1 Introduction 

The data storage structure of database is likely to deteriorate as records are inserted, 
updated or deleted many times. Such a phenomenon is called structural deterioration, 
which usually degrades performance of transaction and query processing. Database 
reorganisation, a unique solution to structural deterioration, moves records in the storage 
space to remove structural deterioration. Reorganisation is recognised as an essential 
function for database systems. In fact, all of the major database systems have 
incorporated reorganisation tools in their software suites. 

Database administrators are responsible of carefully scheduling a reorganisation task 
in order to manage the system performance; specifically, the administrator should 
determine the portion of the database to be reorganised and the time point to trigger 
reorganisation. Database reorganisation is generally time consuming, issuing a  
massive number of disk accesses, thus it is likely to impact on online workloads. The 
administrator must consider current deterioration degree and also possible performance 
degradation caused by database reorganisation. 

However, so far such elegant management of structural deterioration does not look 
feasible in practices. In general, database systems usually abstract data storage structures. 
This is beneficial to the users; they do not have to consider physical data storage and they 
can process and manage data by the use of higher-level representation such as SQL.  
At the same time, the database storage engine is also a black box to the administrator. 
Structural deterioration is also invisible in many cases although the information of 
structural deterioration is crucial to optimise database reorganisation. To date, many 
database administrators do not care about structural deterioration and then experience 
unexpected performance degradation that are really caused by structural deterioration. 
Even educated administrators of the high-end system may tend to make reorganisation 
plans based on rules of thumb by using rough performance statistics of the database. This 
kind of naive solutions leads to inefficient and expensive database administration. To 
solve this issue is a big challenge for autonomic database management. 

The paper proposes an online monitoring facility of database structural deterioration, 
which we developed for open-source database systems. The monitor has the capability of 
keeping track of structural deterioration at any time. The monitor is comprised of three 
components, sniffer, estimator, and visualiser. The sniffer, which can be plugged into the 
storage engine of database system, is able to trace update events of the database physical 
structure and inform the estimator of them. The estimator, which is a dedicated 
management process, is able to calculate structural deterioration degree of the database 
on the basis of the noticed events. The visualiser, which is a GUI tool, is able to visualise 
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the measured structural deterioration in the real-time fashion. All the components can 
work together so that structural deterioration can be observed precisely with little 
interference with transaction and query processing. Our contribution can make it easier 
for the administrator to understand the deteriorated portion of the database and the  
degree of performance impact. Much faster diagnosis of structural deterioration and  
more efficient reorganisation scheduling can be greatly supported. To the best of our 
knowledge, similar works have not been published or presented. 

The rest of the paper is organised as follows. Section 2 describes structural 
deterioration more carefully and our autonomic management framework of structural 
deterioration. Section 3 presents a design of our online monitoring facility and its 
monitoring techniques. Section 4 shows our prototype implementation for open-source 
database systems and Section 5 evaluates our proposal. Related works are briefly 
presented in Section 6 and the paper is concluded in Section 7. 

2 Structural deterioration 

2.1 Definition of structural deterioration 

Database structural deterioration is a phenomenon where data storage structure of the 
database deteriorates due to many records updates. Let us suppose B+tree (Bayer and 
McCreight, 1972; Bayer and Schkolniek, 1977; Comer, 1979; Lehman and Yao, 1981), a 
typical data structure that is used in many database systems. B+tree is mainly used for 
clustering records based on their key values. That is, in the most preferable cases, records 
are placed in key order in leaf pages as illustrated in Figure 1(a), so that those records  
can be scanned quickly in key order. This is beneficial, for example, for range scan 
operations that are often seen in many adhoc queries. However, the database is usually 
updatable. Records can be inserted, updated and deleted. Due to a number of such record 
manipulations, the stored records get gradually disordered. In a deteriorated case, for the 
same key-ordered record scan, pages are accessed in back and forth manner as shown in 
Figure 1(b), resulting in poor access performance. 

Figure 1 Example of structural deterioration, (a) best-organised structure (b) deteriorated 
structure 
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In this paper, we formalise the degree of structural deterioration based on the 
performance degradation caused by the structural deterioration. Please assume a data set 
D is stored in the database and a query set Q is issued for D on the database. The degree 
of structural deterioration can be calculated in the following formula. 

( )
( )

,
,min

C D Q
SD

C D Q
=  

Here, C(D, Q) denotes query processing cost of Q if Q is executed for D in the current 
database, whereas Cmin(D, Q) denotes possible minimum cost if Q were executed for D in 
the best-organised database. That is, SD means the increase ratio of query processing cost 
caused by structural deterioration. 

2.2 Difficulty of structural deterioration management 

Database systems are actually used in many places for supporting our digitised business 
and social life. Since performance is a prime concern on top-end IT systems, structural 
deterioration is widely recognised as one of the most serious issues for database 
administration. The administrator is responsible of managing such deteriorating 
phenomena appropriately by the use of database reorganisation (Sockut and Goldberg, 
1979). Specifically speaking, the administrator has to reorganise the database in order to 
recover originally expected performance only when the performance has degraded or is 
likely to degrade soon. However, the method of directly observing database structural 
deterioration was not established so far. It is very difficult for the administrator to 
identify structural deterioration when he/she observes performance degradation. Worse, 
database reorganisation is much data intensive, issuing a number of disk accesses to 
move many pages in the database. While the database is being reorganised, query and 
transaction processing may stall or its performance may degrade. The database 
administrator must also consider such temporal negative impact for scheduling 
reorganisation (Sockut et al., 1997). 

The problem looks too hard, so many administrators do not consider such structural 
deterioration much carefully; database reorganisation is not triggered at all, or can be 
kicked on manually by the administrator based on rule of thumbs or rough performance 
statistics. Along such naïve solutions, the administrators may experience unexpected 
serious performance degradation caused by structural deterioration, and may degrade 
service availability due to unnecessary reorganisation. 

2.3 A framework for autonomic structural deterioration management 

If structural deterioration could be managed in autonomic fashion, the benefit would be 
significant. That is, structural deterioration could be precisely measured at runtime, 
possible performance degradation could be estimated. Reorganisation could be more 
efficiently triggered. Reorganisation could be executed appropriately when structural 
deterioration is likely to degrade the database performance. In addition, deteriorated 
portion of the database could be identified, so that partial solution of reorganising only 
the deteriorated portion could decrease reorganisation cost. 
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Studying the feasibility and the potential benefit of such an autonomic solution is a 
big research challenge. Autonomic computing technologies will be strongly required by 
almost IT systems in the world over the future, considering that Kephart and Chess 
(2003) have said. This thought is especially true for database systems and storage 
systems, accordingly, various approaches are under investigation. Lightstone et al. (2002, 
2003) has described their plans and activities toward autonomic database systems  
with their commercial product of database management software. The details have been 
discussed by Zilio et al. (2003, 2004), Telford et al. (2003) and Markl et al. (2003). In 
terms of storage systems, Ganger et al. (2003) and Uttamchandani et al. (2004) etc. are 
working on autonomic storage. 

Figure 2 shows a framework of enabling autonomic management of structural 
deterioration. The framework is comprised of three key components, monitor, planner 
and reorganiser. The monitor keeps track of structural deterioration of the database 
online, and informs the planner of monitored information. The planner schedules 
reorganisation task; the target database section to be reorganised and the point in time to 
trigger reorganisation is determined based on the monitored information. The reorganiser 
reorganises the database based on the scheduled plan. Autonomic management of 
database structural deterioration is achieved by running this cycle continuously, not 
depending on any human administrator. The administrator might not have to consider 
reorganisation at all, or his/her administration burden of reorganisation could be 
significantly relived. 

Figure 2 A framework for autonomic structural deterioration management 
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Planner

Reorganizer

Database
 

In this paper, we discuss a monitoring facility of structural deterioration as a first step 
toward autonomic management of structural deterioration. To the best our knowledge,  
no works attempted to directly monitor structural deterioration online. Our contribution 
opens a gate for new management paradigm of database structural deterioration. 

3 Proposal 

3.1 Design overview 

In this section, we show an overview of proposed online database structural deterioration 
monitor, called SD-Mon. The design architecture is illustrated in Figure 3. 
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Figure 3 Design architecture of SD-Mon 
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The monitor consists of a sniffer, an estimator, and visualiser. The sniffer, implemented 
in low level storage engine of database systems, captures events that modifies data 
storage structures in the database selectively and sends the events to the estimator.  
The estimator keeps track of the up-to-date database structure based on the received 
information and estimates the degree of structural deterioration using our proposed 
structural deterioration metrics, and our proposed storage performance model. The 
visualiser makes panoramic views of structural deterioration for easy understanding and 
fast diagnosis of structural deterioration by administrators. 

The monitoring facility has three technical advantages: 

• Fine-grained: Modifications of data storage structures, which are hereafter referred 
by structural changing events, can be captured for each concerned page and the 
structural deterioration can be estimated in the unit of page. That is, fine-grained 
monitoring of the structural deterioration is realised, facilitating administrators’ 
identification of the deteriorated portion of the database. 

• Performance-oriented: The structural deterioration metrics considers physical 
performance characteristics of the storage device such as hard disk drive. Thus, 
highly accurate estimation of the structural deterioration is expected. 

• Low overhead: The sniffer needs to capture a small number of events and the 
estimator can update the measured structural deterioration in an incremental fashion. 
Online monitoring of structural deterioration can be realised without fully scanning 
the database. 

The following subsections describe the details of the monitor. First, an estimation method 
of IO access cost using monitored structure and a calculation method of the degree  
of structural deterioration are described in §3.2. Next, the exploitation of storage 
performance characteristics is discussed in §3.3. Finally, an incremental technique for 
updating the degree of structural deterioration, is described in §3.4. The details of 
visualiser are described in §4. 

3.2 Structural deterioration model 

In this section, we introduce a novel model of database structural deterioration. Due to 
the page limitation, we give discussion with a focus on B+tree, a typical data structure 
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deployed in many database systems. Mathematical symbols used in the paper are 
summarised in Table 1. 
Table 1 Variables, constants and functions 

d Depth of B+tree 
R Cluster key range: [kbegin, kend] 
CR IO response time of range scan of R 
CRv CR’s element for vertical access 
CRh CR’s element for horizontal access 
NRh Number of traversed pages for horizontal access in range R scan 
pi ith leaf page on B+tree (0 ≤ i < N) 
ki The smallest cluster key in pi ki−1 ≤ ki ≤ ki+1 
ai Address of pi on the storage 
ci Expected IO response time of pi during range scan 
cseq Average IO response time of pages in sequential scan 
crnd Average IO response time of pages in random scan 
cl() Conventional storage performance map 
st() Proposed storage performance map 

3.2.1 Target structure 

Figure 4 illustrates an example of B+tree, which consists of fixed-sized pages and  
inter-page vertical/horizontal pointers. 

Figure 4 B+tree structure of clustered table 

Root Page
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Each leaf page is denoted by pi, where i is a non-negative integer indicating a logical 
order of the page; a leaf page holding the smallest clustering key is denoted by p0, a 
neighbouring page is p1, and a largest-key page is pN–1. The physical address of each leaf 
page is denoted by ai, which is not necessarily equivalent to the logical order i. 
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3.2.2 Target access pattern 

A typical scan operation within the key range R = [kbegin, kend], is conducted in the 
following two steps. 

• Top-down traverse: The tree is vertically traversed from the root page to a leaf page 

0ip  satisfying 
0 0 1.i begin ik k k +≤ <  The IO cost (response time) of this step is denoted 

by CRv. 

• Left-to-right traverse: From the page 
0

1,ip +  leaf pages are scanned until a page 
1ip  

satisfying 
1end ik k<  is encountered. The IO cost of this step is denoted by CRh. The 

number of pages read in this step is indicated by NRh(= i1 − i0). 

IO cost for the range scan (CR) is represented as CR = CRv + CRh. 
In the top-down traverse, the number of IO is expected to be the depth of B+tree d. d 

is O(logN). Pages in upper level are on the database buffer cache more frequently then 
pages in lower level. In the left-to-right traverse, if R is specified, target leaf pages are 
determined and NRh IOs are expected to issued. During a range scan, each leaf page is 
read only once, so the page is rarely expected to be on the buffer cache if another query 
accessed the page accidentally in the near past. In fact, for large width of range, CRv is 
very small compared with CRh. From these considerations, the model need not calculate 
the impact of database buffer cache on performance while we deal with not so narrow 
range scan. 

3.2.3 IO cost estimation 
For simplicity, CRv can be approximated to .rndcd  Next, we discuss the prediction of CRh 
in details. Range scan operation can be decoupled into a series of leaf page retrievals. We 
can predict CRh in the following formula: 

0

0

1

1

i N

i
i i

C c
+ −

= +

= ∑
Rh

Rh  

where ci indicates IO response time of a leaf page pi. 
The issue is how to derive ci. Let us consider the performance characteristics of 

typical disk drives. When a single read request is issued to a disk drive, the drive actuates 
its head arm, waits until the target block rotates to the head, retrieves data from the block 
and transfers the read data. In the above steps, usually the actuation and wait time is 
dominant for non-sequential access. Interestingly, the actuation time relates to the seek 
distance, and the wait time is statistically constant. Thus, we assume that the following 
formula can be used to approximate ci. (For simplicity, we suppose c0 = 0.) 

( )1i i ic st a a −= −  

The map st() is described in the next section. 
While the distribution {ci} for 0 ≤ i < N is being kept, CRh for any range R can be 

estimated. 
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3.2.4 Structural deterioration degree 

On the current data structure and its placement on the secondary storage, IO access cost 
of range R scan is estimated as CR. Then, how much is the cost on the best-organised 
structure? The answer is that relocating leaf pages so that left-to-right traverse is 
sequential scan on the secondary storage actually. Since, sequential scan is generally the 
fastest access on the storage consisted of disk drives. That is, such a structure satisfies the 
condition ai = ai−1+1 for i > 0. 

There is no way that top-down traverse is executed sequentially on the secondary 
storage for arbitrary range R even on any data placement because of branching nature of 
B+tree structure. Therefore, top-down traverse does not mostly affect the performance 
due to structural deterioration, except for that the depth of B+tree d increases more than 
necessary. Additionally, the effect can be ignorable compared to that of left-to-right 
traverse when NRh is large enough. 

Consequently, IO access cost of range R scan on the best-organised structure, CRh,ideal 
can be described as follows: 

0

0 1

,
1

i N

ideal seq
i i

C c
+ + −

= +

= ∑
Rh

Rh  

CRv,ideal is the same as .
rndcC d=Rv  

Structural deterioration degree SD is calculated as follows: 

( )

( )

0

0

0

0

0

0

, ,

1

1
1

1

1

1

    

    1
1

1 1

ideal ideal

i N

rnd i
i i

i N

rnd seq
i i

i N

i seq
i i

C C
SD

C C

dc c

dc c

c c

N
N

N

+ −

= +
+ −

= +

+ −

= +

+
=

+

+

=

+

⎧
⎪
⎪

≈ ⎨
−⎪

⎪
⎩

∑

∑

∑

Rh

Rh

Rh

Rv Rh

Rv Rh

Rh
Rh

Rh

 

Here, ci/cseq is the fine-grained unit of the degree of structural deterioration. We call 
{ci/cseq} for (0 < i < N) structural deterioration distribution. 

3.3 Storage performance model 

This section describes conventional storage performance model, and our proposed 
storage performance model. Each model is implemented as a mapping table which 
converts logical seek size lseek to expected IO response time. ci can be derived with the 
map by input lssek as ai − ai − 1. The internal values of this mapping table are set by 
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issuing indeed several typical access patterns to the secondary storage where database 
system stores the data. 

First, we show a conventional method using cluster ratio s (Gassner et al., 1993) to 
estimate IO access cost. s is the ratio of IOs assumed as sequential access in all IOs. The 
method approximates access cost of each IO as cseq if it is assumed as sequential access, 
and crnd if not. The map cl() is described as follows: 

( )
1

1
seq

rnd

c lseek
cl lseek

c lseek

=⎧⎪= ⎨
=⎪⎩

 

Naively, cseq can be obtained by a sequential scan access, and crnd can be obtained by a 
random scan access on the storage. 

Next, the details of our proposed storage performance model are described. Typical 
database systems and file systems have a page allocation strategy that attempts to keep 
spacial locality as high as possible. For example, page split occurs on leaf pages of a 
B+tree, newly allocated page is selected on the next address to the old page, or the 
addresses near the old page prior to other addresses if the space is not be used. On  
file systems, the pages belonging to a file is tried to be placed nearby physically. 
Consequently, range scan on B+tree or file traverse has the following characteristics: the 
number of IOs with smaller lseek tend to be larger than the number of IOs with larger 
lseek, after data modification is repeated and structural deterioration makes progress. The 
conventional method assumes the cost for non-sequential accesses can be approximated 
as the cost for random accesses, however, the above fact indicates that the assumption is 
not true. The actual access cost can be less than the cost estimated by the conventional 
method. 

Considering the strategy, we propose a novel storage performance model; making a 
detailed map for smaller lseek, and a rough map for larger lseek. This scheme enables a 
storage performance map with small footprint, which has the estimation capability with 
enough accuracy for calculation of the degree of structural deterioration. 

Figures 5 and 6 show a relationship between lseek size and response time we 
measured in executing 16 KB random accesses on a hard disk drive. Figure 5 focuses on 
the range of small lseek sizes where measured points have been plotted and Figure 6 
presents the entire range where we have employed linear approximation. In general, disk 
access time can be decomposed into seek time, rotational wait time and data transfer 
time. Here the seek time is time duration necessary for the disk head to move onto the 
target track, the rotational time is for the target sector to rotate to the disk head, and the 
data transfer time for the disk controller to transfer the requested data. For example, if the 
disk is accessed in a sequential manner, the response time is determined only the transfer 
time because the seek time and the rotational wait time can be hidden due to the 
prefetching. If the access is fully random over the disk space, the access time is mainly 
subject to the seek size, and the data transfer time is rather negligible. In addition, if the 
disk access is not fully sequential or random, we should carefully observe the disk 
behaviour. Based on the observation, we modelled the performance properties of disk 
drives. 
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Figure 5 Logical seek size vs. IO response time by random read access on a hard disk drive 
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Figure 6 Logical seek size vs. IO response time by random read access on a hard disk drive 
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The model classifies IO behaviours into three types by lseek as follows: 

• Sequential access: lseek = 1. Sequential access on the storage is expected and  
also large IO is likely to be issued by database system. In this case, head seek time 
and rotation time inside disk drive are both 0. Consequently, st(1) is determined  
by executing sequential scan with expected large IO. st(1) is calculated as (page 
size)/(measured throughput). In this paper we deal with cseq as st(1). 

• Semi-sequential access: 1 < lseek ≤ lseeksemi. Whereas large IO is not issued by 
database system, sequential prefetch inside disk drive impacts on the IO response 
time. lseeksemi depends on the storage characteristics, it is at most the size of a few 
tracks of the disk drive. In the case of cache-hit, the cost is the same as that on 
sequential scan. In other case, head seek time is almost 0 because the lseek size is  
not so large, but rotation time can not be ignored. The internal values of st(lseek)  
is determined by executing interval scan where the scan skips lseek −1 pages. We 
assume the ratio of cache-hit to cache-miss can be approximated as that on the 
interval scan. Average IO response time of each skipped scan is set to the returned 
value of st(lseek). 

• Non-sequential access: lseeksemi < lseek, lseek < 0. Sequential prefetch does not 
expected anymore, IO response time of this region depends on head seek time and 
rotation time in disk drive. Rotation time depends on lseek approximately as seen in 
Figure 5. Consequently, st() are determined by executing random scan on the storage 
and average IO response time for each lseek access is set to the returned value 
st(lseek). To make the table size be small, lseek is enough large (|lseek| > lseeklinear), 
we assume the distribution of lseek is uniform in target scan of IO sequence, so the 
rotation time is assumed to be the time taken by half turn of the disk, the internal 
values are determined by doing linear approximation of IO response time plot for 
lseek like Figure 6 and the linear function’s internal values are set to st(lseek). 

lseek = 0 means that the same page are read in a row, the page must be on the database 
buffer cache at second read, so such IOs are not supposed. 

The map function st() was derived based on the above classification. Let us present a 
brief example of our experiment described in §5, where we used a disk drive Cheetah  
10 K 18 GB (Seagete, 1999). Here, we assumed that the access block size was set to  
16 KB. When the disk was accessed in a sequential fashion (that is, lseek = 1),  
we measured the average response time of each IO and then we could derive  
st(1) = 0.584 ms. In contrast, when the disk was accessed in a semi-sequential fashion 
(that is, 2 ≤ lseek ≤ 10), we also measured the average response time of each IO for 
respective stride sizes. We could then derive st(2) = 2.21 ms, st(3) = 3.15 ms,  
st(4) = 2.32 ms, st(5) = 2.91 ms, st(6) = 3.49 ms, st(7) = 4.07 ms, st(8) = 2.72 ms,  
st(9) = 5.24 ms and st(10) = 5.82 ms. Finally, we divided the case where the disk was 
accessed in a non-sequential fashion (that is, lseek > 10 or lseek < 0) into two cases. In 
the first case (│lseek│ ≤ 128), we directly employed the relationship between lseek and 
response time shown in Figure 5, whereas in the second case (│lseek│ > 128), we 
employed the approximated relationship between lseek and response time shown in 
Figure 6. This simple performance model can give reasonable accuracy, which will be 
studied later in §5. 
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In order to estimate the impact of target structural deterioration on performance 
accurately with a simple model, the following assumptions are taken: First, IO sequence 
is given. Second, the sequence is in units of pages are issued synchronously. Finally, it is 
ignorable that there is LRU cache in the storage, operating system, and database system, 
but linear prefetch and coalescence of continuous IOs are allowed in the storage level. 
We regard such IO sequences as a continuous leaf pages { }01 1,...,i i Np p+ + −Rh  of B+tree in 
the previous section, then left-to-right traverse of range scan in B+tree satisfies above 
assumptions. 

3.4 Incremental maintenance 

This section describes incremental update scheme to monitor target structural 
deterioration with low overhead. Updates of structure are classified into page split and 
page merge. Other types of updates are not assumed. 

Figure 7 shows changes in page addition by split. When a page q is added between  
pi − 1 and pi, difference of CRh where R covers these leaf pages is sum of only differences 
of IO response time in q and pi. Figure 8 shows changes in page deletion by merge. When 
a page pi is deleted, difference of CRh is sum of only differences of IO response time in pi 
and pi + 1. 

Figure 7 Addition of leaf page to B+tree 
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Figure 8 Deletion of leaf page from B+tree 

p p

p

p

p

deleted

added

Before p is deleted

After p is deleted

deleted

i-1

i-1 i+1

i+1

i

i

i

 

To calculate these differences by using st(), information of added (or deleted) page, and 
also previous and next pages of the page are required; cluster key k and page address a of 
three pages. Table 2 shows the differences of CRh when a page is added or deleted in the 
position 

0ip  and also in the case that they occur at edges of leaf pages. 
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Structural deterioration monitor keeps cluster key ki and expected IO response time ci 
of each leaf page pi in order to estimate performance of any range in up-to-date state of 
database structure. 
Table 2 Difference of CRh by addition or deletion of a page 

 Add q (address: b) next to pi0 Delete pi0 

Leftmost +st(a0 − b) −st(a1 − a0) 
Rightmost +st(b − aN−1) −st(aN−1 − aN−2) 

Other −st(
0 0 -1i ia a− ) −st(

0 0 -1i ia a− ) 

+st(
0 1ib a −− ) −st(

0 0+1i ia a− ) Position i0 

+st(
0ia b− ) +st(

0 0+1 -1i ia a− ) 

4 Implementation 

We implemented a prototype of online structural deterioration monitor. The prototype 
supports open-source database software MySQL (MySQL AB, 2007) 5.0 InnoDB and it 
can monitor and visualise the distribution of target structure deterioration of cluster tables 
or secondary indices constructed by B+tree in almost real time. 

The composition of the prototype is shown in Figure 9. The prototype has internal 
data for structural deterioration and the mapping table st() inside. Routines of the 
prototype consist of mainly three parts: an initialising routine, B+tree update applying 
thread, and structural deterioration distribution drawing thread. 

Figure 9 Design of SD-Mon prototype 
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The monitor requires updates of database structure, therefore we implemented the sniffer 
of B+tree update as a small code in MySQL InnoDB engine. The sniffer logs split/merge 
events of B+tree. The estimator receives the logs via file or pipe and applies it in almost 
real time. 

The estimator and visualiser are implemented collectively as a GUI tool. When the 
prototype starts up, the initialising routine reads dictionary of the database to obtain 
schemas of tables and indexes, then it scans B+tree structures of those and create internal 
data structure for structural deterioration distribution. After initialisation, B+tree update 
applying thread and structural deterioration distribution drawing thread start. The 
applying thread is always waiting updates of B+tree structures from the sniffer. The 
drawing thread draw the structural deterioration distribution when the update events 
occur or periodically. 

The structural deterioration distribution is drawn for two types of x axis; logical axis i 
(the order of cluster key ki) and physical axis ai. Y axis is represented as structural 
deterioration distribution ci/cseq. The monitor has colouring function for key range so that 
administrator can easily understand where the deteriorated data are distributed physically. 
For these features, the monitor has ki, ci, and ai for each page pi as internal data. If you do 
not need physical view, ai need not be kept. 

By using updates of the database structure, the monitor can work on another server 
from the database software. Consequently, the monitor can analyse structural 
deterioration with enough accuracy and resolution, despite minimal effects on online 
workload. The monitor applies the updates very fast, so an even large database needs 
only a cheep server and a cheep storage for the monitor. 

5 Evaluation 

In this section, the proposed online structural deterioration monitor is evaluated. First, 
visualisation image of structural deterioration distribution using GUI tool is shown. Next, 
capability of the monitor is evaluated in terms of accuracy, resolution, and overhead. 
TPC-H benchmark (TPC, 2007) and a synthetic workload are used for evaluation. 

5.1 Experimental setup 

The experimental environment is shown in Figure 10. We used PC running RedHat 
Linux. The PC connects to a JBOD disk array that contains hard disk drives via 1 Gbps 
Fibre Channel. The JBOD contains Cheetah 10K 18 GB (Seagate, 1999) hard disk drives, 
where maximum throughput in the most outside zone with sequential read is 28 MB/s 
measured experimentally. We used two storages for the database; single disk drive and 
multiple disk drives constructing software RAID0. The software RAID0 storage contains 
four disk drives and chunk size is 64 KB. The parameters of the storage model for the 
storages are shown in Table 3. We used each storage as a raw device and allocate 4 GB 
for database in it. We used MySQL 5.0 InnoDB database engine for whole experiments. 
Page size was the default 16 KB. 
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Figure 10 Experimental environment 
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Table 3 Parameters for storage models 

Parameter For single disk For multiple disks 

cseq 0.584 ms 0.146 ms 
crnd 7.231 ms 6.489 ms 
lseeksemi 10 pages 16 pages 
lseeklinear 128 pages 128 pages 

5.2 A case study with GUI tool 

Here we show a case study with TPC-H benchmark and prototype GUI tool, which 
visualises structural deterioration distribution in almost real time. 

TPC-H is the standard database benchmark for decision support. We let TPC-H scale 
factor be SF = 1. We created TPC-H schema using cluster tables. Approximately 1.5 GB 
of space was used for tables and indexes just after the data was loaded. Space for lineitem 
table was about 830 MB, and space for orders table was about 190MB. The depth d of 
B+trees of both cluster tables was 3, and did not change during experiment. 

We repeated the following update operations 200 times. In the update operation, 
refresh query RF1 (bulk insertion of orders table and lineitem table) and RF2 (bulk  
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deletion of orders table and lineitem table) defined by TPC-H benchmark are issued one 
each. When this update operation is repeated 100 times, all records of orders tables and 
lineitem tables are updated. 400 times updates makes the data be the same data logically 
but structural data organisation becomes deteriorated. The update operations change little 
the amount of records and the distribution of cluster keys in both tables. 

Figure 11 Structural deterioration view of lineitem table with SD-Mon prototype. (a) after data 
load (b) after 50 refreshes (c) after 100 refreshes (d) after 200 refreshes 
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Figure 11 Structural deterioration view of lineitem table with SD-Mon prototype (a) after data 
load (b) after 50 refreshes (c) after 100 refreshes (d) after 200 refreshes (continued) 

 
(c) 

 
(d) 

First, the changes of structural deterioration distribution of lineitem table of TPC-H 
drawn by the prototype are shown in Figure 11. The top view is drawn in logical axis, 
and the bottom view is in physical axis described in §4. At initial state (a), no structural 
deterioration exists. After 50 refreshes (b), 50% fraction of data are deteriorated by 
refresh queries. After that, 100% data is deteriorated in (c), and the refresh queries are 
issued more one cycle for all data in (d). The similar images were made for orders table. 
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5.3 Model accuracy 

Next, we evaluated the accuracy of proposed storage performance model. The database 
setting and update operations are the same as the previous section. In each interval 
between update operations, we issued the range scan operations, which scan orders  
table and lineitem table with full range of cluster key. The response time of them was 
measured. 

Query response time obtained by each scan constructs IO access time to read pages 
and processing time of the pages. Processing time per each page access is about 0.149 ms 
in the experimental environment. Thus, measured response time of the range scan was 
compared with sum of IO response time estimated by the storage model and the time-lag 
estimated as ((d + NRh) × 0.149 ms) to evaluate the accuracy of our model. 

While updates of database are repeated, the response time increases. Figures 12 and 
13 show the error of estimation. The error is calculated as estimated response time 
derived by cluster ratio storage model (CL) or our proposed storage model (ST) divided 
by measured response time. The error of proposed method (ST) is at most 6%, whereas 
that with cluster ratio is at most 58% for the single disk storage. The result for the 
multiple disk storage is shown in Figure 13. Comparing with the single disk storage 
model, the accuracy is a bit less with the multiple disk storage model, it still estimated the 
response time of range scan in an error of within 8% in most cases, 12% at worst. These 
results show our new method estimates the performance degradation accurately derived 
from structural deterioration. 

Figure 12 Estimation error of full range scan 
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Figure 13 Estimation error of full range scan 
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5.4 Monitoring resolution 

Next, we evaluated the resolution of the proposed structural deterioration monitor. 
Varying key range (scan size), we measured response time of trials of range scan and 
estimated the IO cost of them with the estimator, as we did in the previous section, on the 
single disk environment. 

Figure 14 Error of estimation in narrow range scan 
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Figure 14 shows estimation errors. As scan size grows, estimation error decreases. For 
the initial state (refresh 0), larger errors are obtained relatively compared to the other 
states. In other states, 57% of trials are estimated in an error of within 15% for over  
0.1 MB range scan, and 85% of trials are estimated in an error of within 15% for over  
1 MB range scan. Comparing two different estimation methods, CL and ST, in almost 
area, ST estimated with less error than CL. 

For smaller range, the assumptions of our proposed method that IO response time can 
be estimated by average response time for each lseek value and that rotation time inside 
disk drives for large lseek value can be approximated as half rotation time are not true. In 
addition, for the initial state, database system has prefetched too many pages by large IO 
that includes unnecessary pages for the scan (overprefetch), eventually, the response time 
has increased. This overhead is within 0.1 sec but not small compared to the total 
response time for smaller scan size. Top-down traverse did not affect the whole response 
time because it takes only about 22 msec by almost three IOs and included in the error. 

Consequently, when we assume the accuracy of over 1 MB range is enough to 
believe, the monitor can analyse structural deterioration at 1/1,000,000 resolution for  
1 TB database. This show the proposed monitor realises find-grained monitoring of 
structural deterioration. 

5.5 Monitoring overhead 

Finally, we evaluated the overhead of the sniffer of B+tree update with a foundational 
experiment using two workload; data load and data refresh. Refresh queries of TPCH has 
few parallelism and they are not so heavy with our implementation, thus we made a 
synthetic but heavy workload to a simple cluster table. This table has 600,000 records 
with distinct cluster keys. Each page can hold about 50 records. After the data was loaded 
into the table-space, about 1.8 GB was used. Each refresh query consists of three parts; 
choosing bulk (within 3,000) continuous records from first 40% range of database, delete 
them from the table, and reinsert them. We issued the refresh query in 70 parallelism, and 
totally 7,000 times. We believe this workload is so heavy for the monitor because each 
transaction derive page split or merge almost every time on B+tree structure of the 
database, totally many structural changes must occur. The execution time of whole 
updates was measured using MySQL with and without the sniffer, and compared them. 
We evaluated the overhead varying the size of database buffer cache. 

Normalised execution time of data load and data refresh are shown in Figure 15. The 
base line is the execution time of them without the sniffer. Overheads of the sniffer with 
1 GB database buffer cache are about 0.5% for data load, about 3.2% for data refresh. 
Those with 128 MB database buffer cache are about 0.7% for data load, about 1.2% for 
data refresh. The hotspot size during data refresh is 40% of 1.8 GB; about 740 MB. With 
1 GB buffer cache, whole hot records must be in the cache, thus 3.2% is the upper bound 
of the overheads of the sniffer in this setting. For large database, the size of database in 
the secondary storage is much larger than the size of buffer cache in memory, so the case 
with 128 MB buffer cache of this result is expected in typical situations. Consequently, 
the proposed scheme can monitor target structural deterioration with low overhead. 
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Figure 15 Overheads of the sniffer inside DBMS 
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6 Related work 

6.1 Database reorganisation method 

Many researches have been investigated on reorganisation method from a long time ago, 
and some of them are applied to existing commercial products. There are many published 
papers but we could not describe all of them due to the page limitation. 

At the dawn of database system research era, basic reorganisation methods on several 
data structures and their speeding up techniques were discussed. Sockut and Goldberg 
(1979) described principles and practices of database reorganisation. Szymanski (1985) 
proposed a linear algorithm of hash table without additional storage. Omiecinski (1985) 
and Scheuermann et al. (1989) said record placement problem for the best clustered state 
is NP hard, and proposed a reorganisation method with several heuristics, then, evaluated 
the method in subsequent study (Omiecinski et al., 1994) with simulations. On the 
simulations, they considered relationship between several parameters and recovered 
performance by reorganisation. 

Afterward, many techniques for online reorganisation that reorganisation method and 
online workload are simultaneously executed, have been mainly researched. Special issue 
on online reorganisation (Lomet, 1996) bundled several papers regarding online 
reorganisation. Zou and Salzberg (1996) proposed an online reorganisation method for 
B+tree structure, where OLTP transactions and small-scale reorganisation are executed 
simultaneously. Ghandeharizadeh and Kim (1996) proposed two reorganisation methods 
which relocate data blocks on multiple disk drives in lazy and eager manner. Sockut et al. 
(1997) combined a fuzzy reorganisation method with a mapping table technique to realise 
online reorganisation. In this paper, Sockut suggested that the point of time to reorganise 
should be when: 
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1 data modification rate is low 

2 the applications that require short response time to finish transactions are not 
working 

3 the applications that issues long term transactions are not working. 

These suggestions mean that reorganisation workload should be executed in the above 
conditions, so as not to affect primary workload. Wietrzyk and Orgun (1999) and 
Wietrzyk et al. (2000) proposed an incremental online reorganisation method for graph 
data structure. Watanabe and Miura (2002) proposed a reorganisation method which 
repeats interchanging two physically distant pages. 

Several recent researches have considered reorganisation method from a wide view 
point. Guinepain and Gruenwald (2005) have surveyed data clustering methods, which 
are a part of data reorganisation methods. They also have described still unsolved 
research problems; there is not feasible methodology to detect deteriorated portion  
of database and almost methods substitute some statistics or measured performance; 
besides, collecting much statistics leads to unacceptable overhead. Ghandeharizadeh et al. 
(2006) have proposed a reorganisation method, which relocates ‘hot’ blocks to another 
disk drive. This method cycles three steps; monitoring access patterns, scheduling block 
migration, and executing the scheduled migration plan. Whereas this cycle is the same as 
that we assume, the interval of their cycle is not adaptive. 

As described above, many reorganisation methods have been devised. In order to 
execute these reorganisation method efficiently satisfying SLO policies together, 
monitoring structural deterioration and scheduling reorganisation by deciding portions 
and timings are the essential functions. 

6.2 Database reorganisation schedule 

In terms of database reorganisation schedule, almost studies have focused on the problem 
that solves the optimal reorganisation interval in order to achieve high cost-efficiency. 

Shneiderman (1973, 1974) proposed an analytical method to determine the optimal 
interval to minimise total cost of reorganisation cost and data access cost, assuming  
the access cost to data increases as time goes. Das et al. (1975) and Yao et al. (1976) 
extended the method for the situation where data access cost increases non-linearly. 
William and Tuel (1978) additionally extend the method for linearly growing files. 
Lohman and Muckstadt (1977) focused on the amount of data updates and proposed a 
method to decide batch operation intervals, including reorganisation interval, with  
an analytical model. Ramírez et al. (1982) boiled down the problem of deciding 
reorganisation interval to shortest path problem of graph structure, and proposed an 
algorithm with dynamic programming method. Fung (1984) used instead maximum 
entropy method. 

For specific data structures, analytical methods to determine the point of time of 
reorganisation have been discussed by Maruyama and Smith (1976), Batory (1982), etc., 
Chen et al. (1995), Chen and Hassan (1995) and Chen and Banawan (1999) proposed the 
method that determine optimal reorganisation timing for Bllink-tree structure, assuming 
uniformly distributed workload. Park and Sridhar (1997) investigated that the optimal 
timing of reorganisation for VSAM KSDS structure is when region splits start to occur, 
and proposed an analytical method which estimates when the splits occur. 
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Many studies focused on predicting the database state in the future with some several 
assumptions, such as uniformly distributed workload, linearly growing data, constant 
update rate, etc. Unfortunately, almost such techniques seem to be used for neither 
commercial database system products nor database administrator practically. This is 
probably because we could not assume that the workload is uniformly distributed  
and does not change over time in real database systems. We expect that the detailed 
information of structural deterioration obtained from our proposed monitor will enhance 
reorganisation schedule techniques described above and real database systems will use 
them practically. 

6.3 Database monitoring 

Studies on database monitoring are described below. Gerlhof et al. (1996) proposed  
a monitoring scheme which collects detailed statistics of the database system, and  
a reorganisation method by clustering data utilising the statistics. The overhead of 
collection method was not so small, at most 34%. Chee et al. (1997) proposed a 
combination method with reorganisation and prefetch techniques. This study described a 
monitoring scheme and tried to detect access sequence from data access statistics; it can 
detect sequential access, interleaved access, and reverse access to each file. Schmidt and 
Böhlen (2004) proposed a sampling method on B-tree structure to obtain detailed 
distribution of data. Chaudhuri et al. (2004a) proposed SQLCM: a continuous monitoring 
framework for relational database engine, which has the capability of low overhead 
monitoring with an aggregation technique of statistics. Aboulnaga et al. (2004) proposed 
an autonomic method of understanding distribution of data for query optimiser on a 
commercial database system product. Chaudhuri et al. (2004b) proposed another method 
with block-level sampling for the same purpose. Narayanan et al. (2005) proposed a 
monitoring method to capture various events inside database systems, and predict 
performance with the obtained information. 

Whereas we share the basic concepts with these studies, our purpose and method are 
different from them. Our purpose is monitoring of database structural deterioration, and 
we focus on grasping of data structure and estimating IO access cost. Consequently, we 
succeeded to capture one of most difficult kind of structural deterioration which changes 
physical IO behaviour from sequential accesses to non-sequential accesses and degrades 
performance seriously on modern storage devices consisting of hard disk drives. In 
particular, we achieved it with fine-grained, accurate, and low overhead monitoring 
technique. 

7 Conclusions 

The paper proposes a real-time online structural deterioration monitor, an essential 
function for autonomic database reorganisation. The monitor facilitates structural 
deterioration analysis and enables efficient reorganisation planning, accordingly relieving 
the burden of database administrators. We evaluated the monitor can keep track of 
structural deterioration of changing databases with high accuracy, high resolution, and 
low overhead. We also developed GUI tool to visualise structural deterioration 
distribution for database administrators to figure out easily and quickly. We would like to 
develop a reorganisation scheduling mechanism in future work. We would also like to 
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extend our idea to solid-sate disks (SSDs). Structural deterioration cannot be avoided 
even in such emerging non-mechanical storage devices. The basic framework of the 
presented online monitor could be directly applied to SSDs, but we need to modify the 
model function such that it can efficiently employ the specific performance properties of 
SSDs. 
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