

 Int. J. Autonomic Computing, Vol. 1, No. 3, 2010 297

 Copyright © 2010 Inderscience Enterprises Ltd.

Online monitoring and visualisation of database
structural deterioration

Takashi Hoshino*, Kazuo Goda and
Masaru Kitsuregawa
Institute of Industrial Science,
The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
E-mail: hoshino@tkl.iis.u-tokyo.ac.jp
E-mail: kgoda@tkl.iis.u-tokyo.ac.jp
E-mail: kitsure@tkl.iis.u-tokyo.ac.jp
*Corresponding author

Abstract: Structural deterioration of database is caused by updates of the
database and can degrade performance seriously. Database reorganisation,
which removes structural deterioration by relocating data in the secondary
storage, is an administrator’s headache; it is difficult to schedule reorganisation
efficiently to keep acceptable performance because conventional database
systems lack crucial monitoring facility of structural deterioration, with
high resolution, high accuracy and low overhead. In order to make database
reorganisation be easy for administrators and be autonomic in the future,
the paper proposes an online database structure deterioration monitor, which
can visualise structural deterioration distribution, with a novel structural
deterioration model, a storage performance model and an incremental update
technique. The experimental results with our prototype show that our scheme
can monitor structural deterioration with an error of within 12% and with an
overhead of 3% at most.

Keywords: visualisation; structural deterioration; database reorganisation;
IO cost estimation; storage performance model; database system; online
monitoring.

Reference to this paper should be made as follows: Hoshino, T., Goda, K. and
Kitsuregawa, M. (2010) ‘Online monitoring and visualisation of database
structural deterioration’, Int. J. Autonomic Computing, Vol. 1, No. 3,
pp.297–323.

Biographical notes: Takashi Hoshino received his ME in Information and
Communication Engineering from the Graduate School of Information Science
and Technology of the University of Tokyo. He is currently a member of
Generic Solution Corporation (hoshino.takashi@u-gs21.com). He was a JSPS
Research Fellow (DC) in 2006 and 2007. His research interests are database
and storage systems. He is a member of Information Processing Society of
Japan and the Database Society of Japan.

Kazuo Goda received his BE, ME and PhD from the University of Tokyo
in 2000, 2002 and 2005 respectively. He is currently a Project Research
Associate at the Institute of Industrial Science, the University of Tokyo. His
research interests include high performance database systems and highly
functional storage systems. He is a member of ACM, IEEE Computer Society,
USENIX, Information Processing Society of Japan and the Database Society of
Japan.

 298 T. Hoshino et al.

Masaru Kitsuregawa received his PhD from the University of Tokyo in 1983.
He is currently a Professor and the Director of the Center for Information
Fusion at the Institute of Industrial Science of the University of Tokyo. His
current research interests include database engineering, web mining and high
performance database engine. He had been a VLDB Trustee and served as the
Co-General Chair of IEEE ICDE 2005 at Tokyo. He is currently a Secretary of
the IEEE Technical Committee on Data Engineering. He serves as a Science
Advisor of Ministry of Education. He obtained the ACM SIGMOD E.F.Codd
Innovation Award in 2009.

1 Introduction

The data storage structure of database is likely to deteriorate as records are inserted,
updated or deleted many times. Such a phenomenon is called structural deterioration,
which usually degrades performance of transaction and query processing. Database
reorganisation, a unique solution to structural deterioration, moves records in the storage
space to remove structural deterioration. Reorganisation is recognised as an essential
function for database systems. In fact, all of the major database systems have
incorporated reorganisation tools in their software suites.

Database administrators are responsible of carefully scheduling a reorganisation task
in order to manage the system performance; specifically, the administrator should
determine the portion of the database to be reorganised and the time point to trigger
reorganisation. Database reorganisation is generally time consuming, issuing a
massive number of disk accesses, thus it is likely to impact on online workloads. The
administrator must consider current deterioration degree and also possible performance
degradation caused by database reorganisation.

However, so far such elegant management of structural deterioration does not look
feasible in practices. In general, database systems usually abstract data storage structures.
This is beneficial to the users; they do not have to consider physical data storage and they
can process and manage data by the use of higher-level representation such as SQL.
At the same time, the database storage engine is also a black box to the administrator.
Structural deterioration is also invisible in many cases although the information of
structural deterioration is crucial to optimise database reorganisation. To date, many
database administrators do not care about structural deterioration and then experience
unexpected performance degradation that are really caused by structural deterioration.
Even educated administrators of the high-end system may tend to make reorganisation
plans based on rules of thumb by using rough performance statistics of the database. This
kind of naive solutions leads to inefficient and expensive database administration. To
solve this issue is a big challenge for autonomic database management.

The paper proposes an online monitoring facility of database structural deterioration,
which we developed for open-source database systems. The monitor has the capability of
keeping track of structural deterioration at any time. The monitor is comprised of three
components, sniffer, estimator, and visualiser. The sniffer, which can be plugged into the
storage engine of database system, is able to trace update events of the database physical
structure and inform the estimator of them. The estimator, which is a dedicated
management process, is able to calculate structural deterioration degree of the database
on the basis of the noticed events. The visualiser, which is a GUI tool, is able to visualise

 Online monitoring and visualisation of database structural deterioration 299

the measured structural deterioration in the real-time fashion. All the components can
work together so that structural deterioration can be observed precisely with little
interference with transaction and query processing. Our contribution can make it easier
for the administrator to understand the deteriorated portion of the database and the
degree of performance impact. Much faster diagnosis of structural deterioration and
more efficient reorganisation scheduling can be greatly supported. To the best of our
knowledge, similar works have not been published or presented.

The rest of the paper is organised as follows. Section 2 describes structural
deterioration more carefully and our autonomic management framework of structural
deterioration. Section 3 presents a design of our online monitoring facility and its
monitoring techniques. Section 4 shows our prototype implementation for open-source
database systems and Section 5 evaluates our proposal. Related works are briefly
presented in Section 6 and the paper is concluded in Section 7.

2 Structural deterioration

2.1 Definition of structural deterioration

Database structural deterioration is a phenomenon where data storage structure of the
database deteriorates due to many records updates. Let us suppose B+tree (Bayer and
McCreight, 1972; Bayer and Schkolniek, 1977; Comer, 1979; Lehman and Yao, 1981), a
typical data structure that is used in many database systems. B+tree is mainly used for
clustering records based on their key values. That is, in the most preferable cases, records
are placed in key order in leaf pages as illustrated in Figure 1(a), so that those records
can be scanned quickly in key order. This is beneficial, for example, for range scan
operations that are often seen in many adhoc queries. However, the database is usually
updatable. Records can be inserted, updated and deleted. Due to a number of such record
manipulations, the stored records get gradually disordered. In a deteriorated case, for the
same key-ordered record scan, pages are accessed in back and forth manner as shown in
Figure 1(b), resulting in poor access performance.

Figure 1 Example of structural deterioration, (a) best-organised structure (b) deteriorated
structure

Structure layer

Storage layer

1 2 3

1 2 3

2 5 4 1 3

2 3 4 51

(IO sequence)

(Page placement)

4 5

4 5

 (a) (b)

 300 T. Hoshino et al.

In this paper, we formalise the degree of structural deterioration based on the
performance degradation caused by the structural deterioration. Please assume a data set
D is stored in the database and a query set Q is issued for D on the database. The degree
of structural deterioration can be calculated in the following formula.

()
()

,
,min

C D Q
SD

C D Q
=

Here, C(D, Q) denotes query processing cost of Q if Q is executed for D in the current
database, whereas Cmin(D, Q) denotes possible minimum cost if Q were executed for D in
the best-organised database. That is, SD means the increase ratio of query processing cost
caused by structural deterioration.

2.2 Difficulty of structural deterioration management

Database systems are actually used in many places for supporting our digitised business
and social life. Since performance is a prime concern on top-end IT systems, structural
deterioration is widely recognised as one of the most serious issues for database
administration. The administrator is responsible of managing such deteriorating
phenomena appropriately by the use of database reorganisation (Sockut and Goldberg,
1979). Specifically speaking, the administrator has to reorganise the database in order to
recover originally expected performance only when the performance has degraded or is
likely to degrade soon. However, the method of directly observing database structural
deterioration was not established so far. It is very difficult for the administrator to
identify structural deterioration when he/she observes performance degradation. Worse,
database reorganisation is much data intensive, issuing a number of disk accesses to
move many pages in the database. While the database is being reorganised, query and
transaction processing may stall or its performance may degrade. The database
administrator must also consider such temporal negative impact for scheduling
reorganisation (Sockut et al., 1997).

The problem looks too hard, so many administrators do not consider such structural
deterioration much carefully; database reorganisation is not triggered at all, or can be
kicked on manually by the administrator based on rule of thumbs or rough performance
statistics. Along such naïve solutions, the administrators may experience unexpected
serious performance degradation caused by structural deterioration, and may degrade
service availability due to unnecessary reorganisation.

2.3 A framework for autonomic structural deterioration management

If structural deterioration could be managed in autonomic fashion, the benefit would be
significant. That is, structural deterioration could be precisely measured at runtime,
possible performance degradation could be estimated. Reorganisation could be more
efficiently triggered. Reorganisation could be executed appropriately when structural
deterioration is likely to degrade the database performance. In addition, deteriorated
portion of the database could be identified, so that partial solution of reorganising only
the deteriorated portion could decrease reorganisation cost.

 Online monitoring and visualisation of database structural deterioration 301

Studying the feasibility and the potential benefit of such an autonomic solution is a
big research challenge. Autonomic computing technologies will be strongly required by
almost IT systems in the world over the future, considering that Kephart and Chess
(2003) have said. This thought is especially true for database systems and storage
systems, accordingly, various approaches are under investigation. Lightstone et al. (2002,
2003) has described their plans and activities toward autonomic database systems
with their commercial product of database management software. The details have been
discussed by Zilio et al. (2003, 2004), Telford et al. (2003) and Markl et al. (2003). In
terms of storage systems, Ganger et al. (2003) and Uttamchandani et al. (2004) etc. are
working on autonomic storage.

Figure 2 shows a framework of enabling autonomic management of structural
deterioration. The framework is comprised of three key components, monitor, planner
and reorganiser. The monitor keeps track of structural deterioration of the database
online, and informs the planner of monitored information. The planner schedules
reorganisation task; the target database section to be reorganised and the point in time to
trigger reorganisation is determined based on the monitored information. The reorganiser
reorganises the database based on the scheduled plan. Autonomic management of
database structural deterioration is achieved by running this cycle continuously, not
depending on any human administrator. The administrator might not have to consider
reorganisation at all, or his/her administration burden of reorganisation could be
significantly relived.

Figure 2 A framework for autonomic structural deterioration management

Monitor

Planner

Reorganizer

Database

In this paper, we discuss a monitoring facility of structural deterioration as a first step
toward autonomic management of structural deterioration. To the best our knowledge,
no works attempted to directly monitor structural deterioration online. Our contribution
opens a gate for new management paradigm of database structural deterioration.

3 Proposal

3.1 Design overview

In this section, we show an overview of proposed online database structural deterioration
monitor, called SD-Mon. The design architecture is illustrated in Figure 3.

 302 T. Hoshino et al.

Figure 3 Design architecture of SD-Mon

Application

Storage

DBMS
Sniffer Structural

changes

Storage
Performance

Estimator

Storage
performance
map

Up-to-date
structure map

Structural
deterioration
distribution

Query

IO

Visualizer

Visualized
structural
deterioration

The monitor consists of a sniffer, an estimator, and visualiser. The sniffer, implemented
in low level storage engine of database systems, captures events that modifies data
storage structures in the database selectively and sends the events to the estimator.
The estimator keeps track of the up-to-date database structure based on the received
information and estimates the degree of structural deterioration using our proposed
structural deterioration metrics, and our proposed storage performance model. The
visualiser makes panoramic views of structural deterioration for easy understanding and
fast diagnosis of structural deterioration by administrators.

The monitoring facility has three technical advantages:

• Fine-grained: Modifications of data storage structures, which are hereafter referred
by structural changing events, can be captured for each concerned page and the
structural deterioration can be estimated in the unit of page. That is, fine-grained
monitoring of the structural deterioration is realised, facilitating administrators’
identification of the deteriorated portion of the database.

• Performance-oriented: The structural deterioration metrics considers physical
performance characteristics of the storage device such as hard disk drive. Thus,
highly accurate estimation of the structural deterioration is expected.

• Low overhead: The sniffer needs to capture a small number of events and the
estimator can update the measured structural deterioration in an incremental fashion.
Online monitoring of structural deterioration can be realised without fully scanning
the database.

The following subsections describe the details of the monitor. First, an estimation method
of IO access cost using monitored structure and a calculation method of the degree
of structural deterioration are described in §3.2. Next, the exploitation of storage
performance characteristics is discussed in §3.3. Finally, an incremental technique for
updating the degree of structural deterioration, is described in §3.4. The details of
visualiser are described in §4.

3.2 Structural deterioration model

In this section, we introduce a novel model of database structural deterioration. Due to
the page limitation, we give discussion with a focus on B+tree, a typical data structure

 Online monitoring and visualisation of database structural deterioration 303

deployed in many database systems. Mathematical symbols used in the paper are
summarised in Table 1.
Table 1 Variables, constants and functions

d Depth of B+tree
R Cluster key range: [kbegin, kend]
CR IO response time of range scan of R
CRv CR’s element for vertical access
CRh CR’s element for horizontal access
NRh Number of traversed pages for horizontal access in range R scan
pi ith leaf page on B+tree (0 ≤ i < N)
ki The smallest cluster key in pi ki−1 ≤ ki ≤ ki+1
ai Address of pi on the storage
ci Expected IO response time of pi during range scan
cseq Average IO response time of pages in sequential scan
crnd Average IO response time of pages in random scan
cl() Conventional storage performance map
st() Proposed storage performance map

3.2.1 Target structure

Figure 4 illustrates an example of B+tree, which consists of fixed-sized pages and
inter-page vertical/horizontal pointers.

Figure 4 B+tree structure of clustered table

Root Page

Branch Pages

Leaf Pages

Range R [k2,k6)

k0 k3 k5

k0 k1 k2 k3 k4 k5 k6

k0 k1 k2 k3 k4 k5 k6 Clustered Key

Each leaf page is denoted by pi, where i is a non-negative integer indicating a logical
order of the page; a leaf page holding the smallest clustering key is denoted by p0, a
neighbouring page is p1, and a largest-key page is pN–1. The physical address of each leaf
page is denoted by ai, which is not necessarily equivalent to the logical order i.

 304 T. Hoshino et al.

3.2.2 Target access pattern

A typical scan operation within the key range R = [kbegin, kend], is conducted in the
following two steps.

• Top-down traverse: The tree is vertically traversed from the root page to a leaf page

0ip satisfying
0 0 1.i begin ik k k +≤ < The IO cost (response time) of this step is denoted

by CRv.

• Left-to-right traverse: From the page
0

1,ip + leaf pages are scanned until a page
1ip

satisfying
1end ik k< is encountered. The IO cost of this step is denoted by CRh. The

number of pages read in this step is indicated by NRh(= i1 − i0).

IO cost for the range scan (CR) is represented as CR = CRv + CRh.
In the top-down traverse, the number of IO is expected to be the depth of B+tree d. d

is O(logN). Pages in upper level are on the database buffer cache more frequently then
pages in lower level. In the left-to-right traverse, if R is specified, target leaf pages are
determined and NRh IOs are expected to issued. During a range scan, each leaf page is
read only once, so the page is rarely expected to be on the buffer cache if another query
accessed the page accidentally in the near past. In fact, for large width of range, CRv is
very small compared with CRh. From these considerations, the model need not calculate
the impact of database buffer cache on performance while we deal with not so narrow
range scan.

3.2.3 IO cost estimation
For simplicity, CRv can be approximated to .rndcd Next, we discuss the prediction of CRh
in details. Range scan operation can be decoupled into a series of leaf page retrievals. We
can predict CRh in the following formula:

0

0

1

1

i N

i
i i

C c
+ −

= +

= ∑
Rh

Rh

where ci indicates IO response time of a leaf page pi.
The issue is how to derive ci. Let us consider the performance characteristics of

typical disk drives. When a single read request is issued to a disk drive, the drive actuates
its head arm, waits until the target block rotates to the head, retrieves data from the block
and transfers the read data. In the above steps, usually the actuation and wait time is
dominant for non-sequential access. Interestingly, the actuation time relates to the seek
distance, and the wait time is statistically constant. Thus, we assume that the following
formula can be used to approximate ci. (For simplicity, we suppose c0 = 0.)

()1i i ic st a a −= −

The map st() is described in the next section.
While the distribution {ci} for 0 ≤ i < N is being kept, CRh for any range R can be

estimated.

 Online monitoring and visualisation of database structural deterioration 305

3.2.4 Structural deterioration degree

On the current data structure and its placement on the secondary storage, IO access cost
of range R scan is estimated as CR. Then, how much is the cost on the best-organised
structure? The answer is that relocating leaf pages so that left-to-right traverse is
sequential scan on the secondary storage actually. Since, sequential scan is generally the
fastest access on the storage consisted of disk drives. That is, such a structure satisfies the
condition ai = ai−1+1 for i > 0.

There is no way that top-down traverse is executed sequentially on the secondary
storage for arbitrary range R even on any data placement because of branching nature of
B+tree structure. Therefore, top-down traverse does not mostly affect the performance
due to structural deterioration, except for that the depth of B+tree d increases more than
necessary. Additionally, the effect can be ignorable compared to that of left-to-right
traverse when NRh is large enough.

Consequently, IO access cost of range R scan on the best-organised structure, CRh,ideal
can be described as follows:

0

0 1

,
1

i N

ideal seq
i i

C c
+ + −

= +

= ∑
Rh

Rh

CRv,ideal is the same as .
rndcC d=Rv

Structural deterioration degree SD is calculated as follows:

()

()

0

0

0

0

0

0

, ,

1

1
1

1

1

1

 1
1

1 1

ideal ideal

i N

rnd i
i i

i N

rnd seq
i i

i N

i seq
i i

C C
SD

C C

dc c

dc c

c c

N
N

N

+ −

= +
+ −

= +

+ −

= +

+
=

+

+

=

+

⎧
⎪
⎪

≈ ⎨
−⎪

⎪
⎩

∑

∑

∑

Rh

Rh

Rh

Rv Rh

Rv Rh

Rh
Rh

Rh

Here, ci/cseq is the fine-grained unit of the degree of structural deterioration. We call
{ci/cseq} for (0 < i < N) structural deterioration distribution.

3.3 Storage performance model

This section describes conventional storage performance model, and our proposed
storage performance model. Each model is implemented as a mapping table which
converts logical seek size lseek to expected IO response time. ci can be derived with the
map by input lssek as ai − ai − 1. The internal values of this mapping table are set by

 306 T. Hoshino et al.

issuing indeed several typical access patterns to the secondary storage where database
system stores the data.

First, we show a conventional method using cluster ratio s (Gassner et al., 1993) to
estimate IO access cost. s is the ratio of IOs assumed as sequential access in all IOs. The
method approximates access cost of each IO as cseq if it is assumed as sequential access,
and crnd if not. The map cl() is described as follows:

()
1

1
seq

rnd

c lseek
cl lseek

c lseek

=⎧⎪= ⎨
=⎪⎩

Naively, cseq can be obtained by a sequential scan access, and crnd can be obtained by a
random scan access on the storage.

Next, the details of our proposed storage performance model are described. Typical
database systems and file systems have a page allocation strategy that attempts to keep
spacial locality as high as possible. For example, page split occurs on leaf pages of a
B+tree, newly allocated page is selected on the next address to the old page, or the
addresses near the old page prior to other addresses if the space is not be used. On
file systems, the pages belonging to a file is tried to be placed nearby physically.
Consequently, range scan on B+tree or file traverse has the following characteristics: the
number of IOs with smaller lseek tend to be larger than the number of IOs with larger
lseek, after data modification is repeated and structural deterioration makes progress. The
conventional method assumes the cost for non-sequential accesses can be approximated
as the cost for random accesses, however, the above fact indicates that the assumption is
not true. The actual access cost can be less than the cost estimated by the conventional
method.

Considering the strategy, we propose a novel storage performance model; making a
detailed map for smaller lseek, and a rough map for larger lseek. This scheme enables a
storage performance map with small footprint, which has the estimation capability with
enough accuracy for calculation of the degree of structural deterioration.

Figures 5 and 6 show a relationship between lseek size and response time we
measured in executing 16 KB random accesses on a hard disk drive. Figure 5 focuses on
the range of small lseek sizes where measured points have been plotted and Figure 6
presents the entire range where we have employed linear approximation. In general, disk
access time can be decomposed into seek time, rotational wait time and data transfer
time. Here the seek time is time duration necessary for the disk head to move onto the
target track, the rotational time is for the target sector to rotate to the disk head, and the
data transfer time for the disk controller to transfer the requested data. For example, if the
disk is accessed in a sequential manner, the response time is determined only the transfer
time because the seek time and the rotational wait time can be hidden due to the
prefetching. If the access is fully random over the disk space, the access time is mainly
subject to the seek size, and the data transfer time is rather negligible. In addition, if the
disk access is not fully sequential or random, we should carefully observe the disk
behaviour. Based on the observation, we modelled the performance properties of disk
drives.

 Online monitoring and visualisation of database structural deterioration 307

Figure 5 Logical seek size vs. IO response time by random read access on a hard disk drive

 0

 2

 4

 6

 8

 10

-100 -50 0 50 100

R
es

po
ns

e
tim

e
[m

s]

Logical seek size [page(16KB)]

Note: Close up to small logical seek area

Figure 6 Logical seek size vs. IO response time by random read access on a hard disk drive

 0

 2

 4

 6

 8

 10

-150000 -100000 -50000 0 50000 100000 150000

R
es

po
ns

e
tim

e
[m

s]

Logical seek size [page(16KB)]

Note: Large logical seek area, linear approximation

 308 T. Hoshino et al.

The model classifies IO behaviours into three types by lseek as follows:

• Sequential access: lseek = 1. Sequential access on the storage is expected and
also large IO is likely to be issued by database system. In this case, head seek time
and rotation time inside disk drive are both 0. Consequently, st(1) is determined
by executing sequential scan with expected large IO. st(1) is calculated as (page
size)/(measured throughput). In this paper we deal with cseq as st(1).

• Semi-sequential access: 1 < lseek ≤ lseeksemi. Whereas large IO is not issued by
database system, sequential prefetch inside disk drive impacts on the IO response
time. lseeksemi depends on the storage characteristics, it is at most the size of a few
tracks of the disk drive. In the case of cache-hit, the cost is the same as that on
sequential scan. In other case, head seek time is almost 0 because the lseek size is
not so large, but rotation time can not be ignored. The internal values of st(lseek)
is determined by executing interval scan where the scan skips lseek −1 pages. We
assume the ratio of cache-hit to cache-miss can be approximated as that on the
interval scan. Average IO response time of each skipped scan is set to the returned
value of st(lseek).

• Non-sequential access: lseeksemi < lseek, lseek < 0. Sequential prefetch does not
expected anymore, IO response time of this region depends on head seek time and
rotation time in disk drive. Rotation time depends on lseek approximately as seen in
Figure 5. Consequently, st() are determined by executing random scan on the storage
and average IO response time for each lseek access is set to the returned value
st(lseek). To make the table size be small, lseek is enough large (|lseek| > lseeklinear),
we assume the distribution of lseek is uniform in target scan of IO sequence, so the
rotation time is assumed to be the time taken by half turn of the disk, the internal
values are determined by doing linear approximation of IO response time plot for
lseek like Figure 6 and the linear function’s internal values are set to st(lseek).

lseek = 0 means that the same page are read in a row, the page must be on the database
buffer cache at second read, so such IOs are not supposed.

The map function st() was derived based on the above classification. Let us present a
brief example of our experiment described in §5, where we used a disk drive Cheetah
10 K 18 GB (Seagete, 1999). Here, we assumed that the access block size was set to
16 KB. When the disk was accessed in a sequential fashion (that is, lseek = 1),
we measured the average response time of each IO and then we could derive
st(1) = 0.584 ms. In contrast, when the disk was accessed in a semi-sequential fashion
(that is, 2 ≤ lseek ≤ 10), we also measured the average response time of each IO for
respective stride sizes. We could then derive st(2) = 2.21 ms, st(3) = 3.15 ms,
st(4) = 2.32 ms, st(5) = 2.91 ms, st(6) = 3.49 ms, st(7) = 4.07 ms, st(8) = 2.72 ms,
st(9) = 5.24 ms and st(10) = 5.82 ms. Finally, we divided the case where the disk was
accessed in a non-sequential fashion (that is, lseek > 10 or lseek < 0) into two cases. In
the first case (│lseek│ ≤ 128), we directly employed the relationship between lseek and
response time shown in Figure 5, whereas in the second case (│lseek│ > 128), we
employed the approximated relationship between lseek and response time shown in
Figure 6. This simple performance model can give reasonable accuracy, which will be
studied later in §5.

 Online monitoring and visualisation of database structural deterioration 309

In order to estimate the impact of target structural deterioration on performance
accurately with a simple model, the following assumptions are taken: First, IO sequence
is given. Second, the sequence is in units of pages are issued synchronously. Finally, it is
ignorable that there is LRU cache in the storage, operating system, and database system,
but linear prefetch and coalescence of continuous IOs are allowed in the storage level.
We regard such IO sequences as a continuous leaf pages { }01 1,...,i i Np p+ + −Rh of B+tree in
the previous section, then left-to-right traverse of range scan in B+tree satisfies above
assumptions.

3.4 Incremental maintenance

This section describes incremental update scheme to monitor target structural
deterioration with low overhead. Updates of structure are classified into page split and
page merge. Other types of updates are not assumed.

Figure 7 shows changes in page addition by split. When a page q is added between
pi − 1 and pi, difference of CRh where R covers these leaf pages is sum of only differences
of IO response time in q and pi. Figure 8 shows changes in page deletion by merge. When
a page pi is deleted, difference of CRh is sum of only differences of IO response time in pi
and pi + 1.

Figure 7 Addition of leaf page to B+tree

p q

p

p

p
deleted

added added

Before q is added

After q is added

ii-1

ii-1

Figure 8 Deletion of leaf page from B+tree

p p

p

p

p

deleted

added

Before p is deleted

After p is deleted

deleted

i-1

i-1 i+1

i+1

i

i

i

To calculate these differences by using st(), information of added (or deleted) page, and
also previous and next pages of the page are required; cluster key k and page address a of
three pages. Table 2 shows the differences of CRh when a page is added or deleted in the
position

0ip and also in the case that they occur at edges of leaf pages.

 310 T. Hoshino et al.

Structural deterioration monitor keeps cluster key ki and expected IO response time ci
of each leaf page pi in order to estimate performance of any range in up-to-date state of
database structure.
Table 2 Difference of CRh by addition or deletion of a page

 Add q (address: b) next to pi0 Delete pi0

Leftmost +st(a0 − b) −st(a1 − a0)
Rightmost +st(b − aN−1) −st(aN−1 − aN−2)

Other −st(
0 0 -1i ia a−) −st(

0 0 -1i ia a−)

+st(
0 1ib a −−) −st(

0 0+1i ia a−) Position i0

+st(
0ia b−) +st(

0 0+1 -1i ia a−)

4 Implementation

We implemented a prototype of online structural deterioration monitor. The prototype
supports open-source database software MySQL (MySQL AB, 2007) 5.0 InnoDB and it
can monitor and visualise the distribution of target structure deterioration of cluster tables
or secondary indices constructed by B+tree in almost real time.

The composition of the prototype is shown in Figure 9. The prototype has internal
data for structural deterioration and the mapping table st() inside. Routines of the
prototype consist of mainly three parts: an initialising routine, B+tree update applying
thread, and structural deterioration distribution drawing thread.

Figure 9 Design of SD-Mon prototype

Sniffer
(inside MySQL InnoDB)

B+tree updates
applying thread

SD drawing thread

SD distribution
Key distribution

Addresses of pages

Update internal
structure

B+tree
updates

Refer internal
structure

B+tree strucuture
extractor

Storage performance
characteristics analyzer

Internal structure for SD

Initial state of
database structure

Storage
performance map

Initializer

Storage

Storage performance characteristics
B+tree strucutre of Tables/indices

Estimator&Visualizer

 Online monitoring and visualisation of database structural deterioration 311

The monitor requires updates of database structure, therefore we implemented the sniffer
of B+tree update as a small code in MySQL InnoDB engine. The sniffer logs split/merge
events of B+tree. The estimator receives the logs via file or pipe and applies it in almost
real time.

The estimator and visualiser are implemented collectively as a GUI tool. When the
prototype starts up, the initialising routine reads dictionary of the database to obtain
schemas of tables and indexes, then it scans B+tree structures of those and create internal
data structure for structural deterioration distribution. After initialisation, B+tree update
applying thread and structural deterioration distribution drawing thread start. The
applying thread is always waiting updates of B+tree structures from the sniffer. The
drawing thread draw the structural deterioration distribution when the update events
occur or periodically.

The structural deterioration distribution is drawn for two types of x axis; logical axis i
(the order of cluster key ki) and physical axis ai. Y axis is represented as structural
deterioration distribution ci/cseq. The monitor has colouring function for key range so that
administrator can easily understand where the deteriorated data are distributed physically.
For these features, the monitor has ki, ci, and ai for each page pi as internal data. If you do
not need physical view, ai need not be kept.

By using updates of the database structure, the monitor can work on another server
from the database software. Consequently, the monitor can analyse structural
deterioration with enough accuracy and resolution, despite minimal effects on online
workload. The monitor applies the updates very fast, so an even large database needs
only a cheep server and a cheep storage for the monitor.

5 Evaluation

In this section, the proposed online structural deterioration monitor is evaluated. First,
visualisation image of structural deterioration distribution using GUI tool is shown. Next,
capability of the monitor is evaluated in terms of accuracy, resolution, and overhead.
TPC-H benchmark (TPC, 2007) and a synthetic workload are used for evaluation.

5.1 Experimental setup

The experimental environment is shown in Figure 10. We used PC running RedHat
Linux. The PC connects to a JBOD disk array that contains hard disk drives via 1 Gbps
Fibre Channel. The JBOD contains Cheetah 10K 18 GB (Seagate, 1999) hard disk drives,
where maximum throughput in the most outside zone with sequential read is 28 MB/s
measured experimentally. We used two storages for the database; single disk drive and
multiple disk drives constructing software RAID0. The software RAID0 storage contains
four disk drives and chunk size is 64 KB. The parameters of the storage model for the
storages are shown in Table 3. We used each storage as a raw device and allocate 4 GB
for database in it. We used MySQL 5.0 InnoDB database engine for whole experiments.
Page size was the default 16 KB.

 312 T. Hoshino et al.

Figure 10 Experimental environment

Xeon 3.2GHz*2
2GB Memory
Emulex LP8000*2
Linux-2.4.21
MySQL-5.0

Disk Array
(JBOD)

Cheetah FC Disk 18GB
(Max 28MB/sec)

1Gbit FC Switch

Table 3 Parameters for storage models

Parameter For single disk For multiple disks

cseq 0.584 ms 0.146 ms
crnd 7.231 ms 6.489 ms
lseeksemi 10 pages 16 pages
lseeklinear 128 pages 128 pages

5.2 A case study with GUI tool

Here we show a case study with TPC-H benchmark and prototype GUI tool, which
visualises structural deterioration distribution in almost real time.

TPC-H is the standard database benchmark for decision support. We let TPC-H scale
factor be SF = 1. We created TPC-H schema using cluster tables. Approximately 1.5 GB
of space was used for tables and indexes just after the data was loaded. Space for lineitem
table was about 830 MB, and space for orders table was about 190MB. The depth d of
B+trees of both cluster tables was 3, and did not change during experiment.

We repeated the following update operations 200 times. In the update operation,
refresh query RF1 (bulk insertion of orders table and lineitem table) and RF2 (bulk

 Online monitoring and visualisation of database structural deterioration 313

deletion of orders table and lineitem table) defined by TPC-H benchmark are issued one
each. When this update operation is repeated 100 times, all records of orders tables and
lineitem tables are updated. 400 times updates makes the data be the same data logically
but structural data organisation becomes deteriorated. The update operations change little
the amount of records and the distribution of cluster keys in both tables.

Figure 11 Structural deterioration view of lineitem table with SD-Mon prototype. (a) after data
load (b) after 50 refreshes (c) after 100 refreshes (d) after 200 refreshes

(a)

(b)

 314 T. Hoshino et al.

Figure 11 Structural deterioration view of lineitem table with SD-Mon prototype (a) after data
load (b) after 50 refreshes (c) after 100 refreshes (d) after 200 refreshes (continued)

(c)

(d)

First, the changes of structural deterioration distribution of lineitem table of TPC-H
drawn by the prototype are shown in Figure 11. The top view is drawn in logical axis,
and the bottom view is in physical axis described in §4. At initial state (a), no structural
deterioration exists. After 50 refreshes (b), 50% fraction of data are deteriorated by
refresh queries. After that, 100% data is deteriorated in (c), and the refresh queries are
issued more one cycle for all data in (d). The similar images were made for orders table.

 Online monitoring and visualisation of database structural deterioration 315

5.3 Model accuracy

Next, we evaluated the accuracy of proposed storage performance model. The database
setting and update operations are the same as the previous section. In each interval
between update operations, we issued the range scan operations, which scan orders
table and lineitem table with full range of cluster key. The response time of them was
measured.

Query response time obtained by each scan constructs IO access time to read pages
and processing time of the pages. Processing time per each page access is about 0.149 ms
in the experimental environment. Thus, measured response time of the range scan was
compared with sum of IO response time estimated by the storage model and the time-lag
estimated as ((d + NRh) × 0.149 ms) to evaluate the accuracy of our model.

While updates of database are repeated, the response time increases. Figures 12 and
13 show the error of estimation. The error is calculated as estimated response time
derived by cluster ratio storage model (CL) or our proposed storage model (ST) divided
by measured response time. The error of proposed method (ST) is at most 6%, whereas
that with cluster ratio is at most 58% for the single disk storage. The result for the
multiple disk storage is shown in Figure 13. Comparing with the single disk storage
model, the accuracy is a bit less with the multiple disk storage model, it still estimated the
response time of range scan in an error of within 8% in most cases, 12% at worst. These
results show our new method estimates the performance degradation accurately derived
from structural deterioration.

Figure 12 Estimation error of full range scan

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

er
ro

r
of

 e
st

im
at

io
n

number of refreshes

CL: orders
CL: lineitem

ST: orders
ST: lineitem

Note: Single disk

 316 T. Hoshino et al.

Figure 13 Estimation error of full range scan

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200

er
ro

r
of

 e
st

im
at

io
n

number of refreshes

CL: orders
CL: lineitem

ST: orders
ST: lineitem

Note: Multiple disks

5.4 Monitoring resolution

Next, we evaluated the resolution of the proposed structural deterioration monitor.
Varying key range (scan size), we measured response time of trials of range scan and
estimated the IO cost of them with the estimator, as we did in the previous section, on the
single disk environment.

Figure 14 Error of estimation in narrow range scan

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

<0.1MB <1MB <10MB <100MB

E
st

im
at

io
n

er
ro

r

Scan size

CL (refresh 0)
CL (refresh 100)
CL (refresh 200)

ST (refresh 0)
ST (refresh 100)
ST (refresh 200)

 Online monitoring and visualisation of database structural deterioration 317

Figure 14 shows estimation errors. As scan size grows, estimation error decreases. For
the initial state (refresh 0), larger errors are obtained relatively compared to the other
states. In other states, 57% of trials are estimated in an error of within 15% for over
0.1 MB range scan, and 85% of trials are estimated in an error of within 15% for over
1 MB range scan. Comparing two different estimation methods, CL and ST, in almost
area, ST estimated with less error than CL.

For smaller range, the assumptions of our proposed method that IO response time can
be estimated by average response time for each lseek value and that rotation time inside
disk drives for large lseek value can be approximated as half rotation time are not true. In
addition, for the initial state, database system has prefetched too many pages by large IO
that includes unnecessary pages for the scan (overprefetch), eventually, the response time
has increased. This overhead is within 0.1 sec but not small compared to the total
response time for smaller scan size. Top-down traverse did not affect the whole response
time because it takes only about 22 msec by almost three IOs and included in the error.

Consequently, when we assume the accuracy of over 1 MB range is enough to
believe, the monitor can analyse structural deterioration at 1/1,000,000 resolution for
1 TB database. This show the proposed monitor realises find-grained monitoring of
structural deterioration.

5.5 Monitoring overhead

Finally, we evaluated the overhead of the sniffer of B+tree update with a foundational
experiment using two workload; data load and data refresh. Refresh queries of TPCH has
few parallelism and they are not so heavy with our implementation, thus we made a
synthetic but heavy workload to a simple cluster table. This table has 600,000 records
with distinct cluster keys. Each page can hold about 50 records. After the data was loaded
into the table-space, about 1.8 GB was used. Each refresh query consists of three parts;
choosing bulk (within 3,000) continuous records from first 40% range of database, delete
them from the table, and reinsert them. We issued the refresh query in 70 parallelism, and
totally 7,000 times. We believe this workload is so heavy for the monitor because each
transaction derive page split or merge almost every time on B+tree structure of the
database, totally many structural changes must occur. The execution time of whole
updates was measured using MySQL with and without the sniffer, and compared them.
We evaluated the overhead varying the size of database buffer cache.

Normalised execution time of data load and data refresh are shown in Figure 15. The
base line is the execution time of them without the sniffer. Overheads of the sniffer with
1 GB database buffer cache are about 0.5% for data load, about 3.2% for data refresh.
Those with 128 MB database buffer cache are about 0.7% for data load, about 1.2% for
data refresh. The hotspot size during data refresh is 40% of 1.8 GB; about 740 MB. With
1 GB buffer cache, whole hot records must be in the cache, thus 3.2% is the upper bound
of the overheads of the sniffer in this setting. For large database, the size of database in
the secondary storage is much larger than the size of buffer cache in memory, so the case
with 128 MB buffer cache of this result is expected in typical situations. Consequently,
the proposed scheme can monitor target structural deterioration with low overhead.

 318 T. Hoshino et al.

Figure 15 Overheads of the sniffer inside DBMS

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

Data Refresh
(128MB cache)

Data Load
(128MB cache)

Data Refresh
(1GB cache)

Data Load
(1GB cache)

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
without sniffer

with sniffer

6 Related work

6.1 Database reorganisation method

Many researches have been investigated on reorganisation method from a long time ago,
and some of them are applied to existing commercial products. There are many published
papers but we could not describe all of them due to the page limitation.

At the dawn of database system research era, basic reorganisation methods on several
data structures and their speeding up techniques were discussed. Sockut and Goldberg
(1979) described principles and practices of database reorganisation. Szymanski (1985)
proposed a linear algorithm of hash table without additional storage. Omiecinski (1985)
and Scheuermann et al. (1989) said record placement problem for the best clustered state
is NP hard, and proposed a reorganisation method with several heuristics, then, evaluated
the method in subsequent study (Omiecinski et al., 1994) with simulations. On the
simulations, they considered relationship between several parameters and recovered
performance by reorganisation.

Afterward, many techniques for online reorganisation that reorganisation method and
online workload are simultaneously executed, have been mainly researched. Special issue
on online reorganisation (Lomet, 1996) bundled several papers regarding online
reorganisation. Zou and Salzberg (1996) proposed an online reorganisation method for
B+tree structure, where OLTP transactions and small-scale reorganisation are executed
simultaneously. Ghandeharizadeh and Kim (1996) proposed two reorganisation methods
which relocate data blocks on multiple disk drives in lazy and eager manner. Sockut et al.
(1997) combined a fuzzy reorganisation method with a mapping table technique to realise
online reorganisation. In this paper, Sockut suggested that the point of time to reorganise
should be when:

 Online monitoring and visualisation of database structural deterioration 319

1 data modification rate is low

2 the applications that require short response time to finish transactions are not
working

3 the applications that issues long term transactions are not working.

These suggestions mean that reorganisation workload should be executed in the above
conditions, so as not to affect primary workload. Wietrzyk and Orgun (1999) and
Wietrzyk et al. (2000) proposed an incremental online reorganisation method for graph
data structure. Watanabe and Miura (2002) proposed a reorganisation method which
repeats interchanging two physically distant pages.

Several recent researches have considered reorganisation method from a wide view
point. Guinepain and Gruenwald (2005) have surveyed data clustering methods, which
are a part of data reorganisation methods. They also have described still unsolved
research problems; there is not feasible methodology to detect deteriorated portion
of database and almost methods substitute some statistics or measured performance;
besides, collecting much statistics leads to unacceptable overhead. Ghandeharizadeh et al.
(2006) have proposed a reorganisation method, which relocates ‘hot’ blocks to another
disk drive. This method cycles three steps; monitoring access patterns, scheduling block
migration, and executing the scheduled migration plan. Whereas this cycle is the same as
that we assume, the interval of their cycle is not adaptive.

As described above, many reorganisation methods have been devised. In order to
execute these reorganisation method efficiently satisfying SLO policies together,
monitoring structural deterioration and scheduling reorganisation by deciding portions
and timings are the essential functions.

6.2 Database reorganisation schedule

In terms of database reorganisation schedule, almost studies have focused on the problem
that solves the optimal reorganisation interval in order to achieve high cost-efficiency.

Shneiderman (1973, 1974) proposed an analytical method to determine the optimal
interval to minimise total cost of reorganisation cost and data access cost, assuming
the access cost to data increases as time goes. Das et al. (1975) and Yao et al. (1976)
extended the method for the situation where data access cost increases non-linearly.
William and Tuel (1978) additionally extend the method for linearly growing files.
Lohman and Muckstadt (1977) focused on the amount of data updates and proposed a
method to decide batch operation intervals, including reorganisation interval, with
an analytical model. Ramírez et al. (1982) boiled down the problem of deciding
reorganisation interval to shortest path problem of graph structure, and proposed an
algorithm with dynamic programming method. Fung (1984) used instead maximum
entropy method.

For specific data structures, analytical methods to determine the point of time of
reorganisation have been discussed by Maruyama and Smith (1976), Batory (1982), etc.,
Chen et al. (1995), Chen and Hassan (1995) and Chen and Banawan (1999) proposed the
method that determine optimal reorganisation timing for Bllink-tree structure, assuming
uniformly distributed workload. Park and Sridhar (1997) investigated that the optimal
timing of reorganisation for VSAM KSDS structure is when region splits start to occur,
and proposed an analytical method which estimates when the splits occur.

 320 T. Hoshino et al.

Many studies focused on predicting the database state in the future with some several
assumptions, such as uniformly distributed workload, linearly growing data, constant
update rate, etc. Unfortunately, almost such techniques seem to be used for neither
commercial database system products nor database administrator practically. This is
probably because we could not assume that the workload is uniformly distributed
and does not change over time in real database systems. We expect that the detailed
information of structural deterioration obtained from our proposed monitor will enhance
reorganisation schedule techniques described above and real database systems will use
them practically.

6.3 Database monitoring

Studies on database monitoring are described below. Gerlhof et al. (1996) proposed
a monitoring scheme which collects detailed statistics of the database system, and
a reorganisation method by clustering data utilising the statistics. The overhead of
collection method was not so small, at most 34%. Chee et al. (1997) proposed a
combination method with reorganisation and prefetch techniques. This study described a
monitoring scheme and tried to detect access sequence from data access statistics; it can
detect sequential access, interleaved access, and reverse access to each file. Schmidt and
Böhlen (2004) proposed a sampling method on B-tree structure to obtain detailed
distribution of data. Chaudhuri et al. (2004a) proposed SQLCM: a continuous monitoring
framework for relational database engine, which has the capability of low overhead
monitoring with an aggregation technique of statistics. Aboulnaga et al. (2004) proposed
an autonomic method of understanding distribution of data for query optimiser on a
commercial database system product. Chaudhuri et al. (2004b) proposed another method
with block-level sampling for the same purpose. Narayanan et al. (2005) proposed a
monitoring method to capture various events inside database systems, and predict
performance with the obtained information.

Whereas we share the basic concepts with these studies, our purpose and method are
different from them. Our purpose is monitoring of database structural deterioration, and
we focus on grasping of data structure and estimating IO access cost. Consequently, we
succeeded to capture one of most difficult kind of structural deterioration which changes
physical IO behaviour from sequential accesses to non-sequential accesses and degrades
performance seriously on modern storage devices consisting of hard disk drives. In
particular, we achieved it with fine-grained, accurate, and low overhead monitoring
technique.

7 Conclusions

The paper proposes a real-time online structural deterioration monitor, an essential
function for autonomic database reorganisation. The monitor facilitates structural
deterioration analysis and enables efficient reorganisation planning, accordingly relieving
the burden of database administrators. We evaluated the monitor can keep track of
structural deterioration of changing databases with high accuracy, high resolution, and
low overhead. We also developed GUI tool to visualise structural deterioration
distribution for database administrators to figure out easily and quickly. We would like to
develop a reorganisation scheduling mechanism in future work. We would also like to

 Online monitoring and visualisation of database structural deterioration 321

extend our idea to solid-sate disks (SSDs). Structural deterioration cannot be avoided
even in such emerging non-mechanical storage devices. The basic framework of the
presented online monitor could be directly applied to SSDs, but we need to modify the
model function such that it can efficiently employ the specific performance properties of
SSDs.

Acknowledgements

This work has been supported in part by Leading Project ‘e-Society’ Advance Storage
and Next-generation IT Program Development of Out-of-Order Database Engine, which
both are joint research projects between the University of Tokyo and Hitachi Ltd. under
the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.
T. Hoshino was partially supported by JSPS fellowship.

References
Aboulnaga, A., Haas, P.J., Lightstone, S., Lohman, G.M, Markl, V., Popivanov I. and Raman, V.

(2004) ‘Automated statistics collection in db2 udb’, VLDB Conference, pp.1146–1157.
Batory, D.S. (1982) ‘Optimal file designs and reorganization points’, ACM Transactions on

Database Systems, Vol. 7, No. 1, pp.60–81.
Bayer, R. and McCreight, E. (1972) ‘Organization and maintenance of large ordered indexes’, Acta

Informatica, Vol. 1, pp.173–189.
Bayer, R. and Schkolnick, M. (1977) ‘Concurrency of operations on b-trees’, Acta Informatica,

Vol. 9, pp.1–21.
Chaudhuri, S., Köning, A.C. and Narasayya, V. (2004a) ‘SQLCM: a continuous monitoring

framework for relational database engines’, IEEE ICDE Conference, pp.473–484.
Chaudhuri, S., Das, G. and Srivastava, U. (2004b) ‘Effective use of block-level sampling in

statistics estimation’, ACM SIGMOD Conference, pp.287–298.
Chee, C.L., Lu, H., Tang, H. and Ramamoorthy, C.V. (1997) ‘Improving I/O response times via

prefetching and storage system reorganization’, IEEE COMPSAC Conference, pp.143–148.
Chen, I.R. (1995a) ‘A degradable blink-tree with periodic data reorganization’, Computer Journal,

Vol. 38, pp.245–252.
Chen, I.R. and Hassan, S. (1995b) ‘Performance analysis of a periodic data reorganization

algorithm for concurrent b link-trees in database systems’, ACM Symposium on Applied
computing, pp.40–45.

Chen, I.R. and Banawan, S.A. (1999) ‘Performance and stability analysis of multilevel data
structures with deferred reorganization’, IEEE Transactions on Software Engineering, Vol. 25,
pp.690–700.

Comer, D. (1979) ‘Ubiquitous b-tree’, ACM Computer Survey, Vol. 11, pp.121–137.
Das, K.S., Teorey, T.J. and Yao, S.B. (1975) ‘Reorganization points for file designs with nonlinear

processing costs’, VLDB Conference, pp.516–518.
Fung, K.T. (1984) ‘A reorganization model based on the database entropy concept’, Computer

Journal, Vol. 27, No. 1, pp.67–71.
Ganger, G.R., Strunk, J.D. and Klosterman, A.J. (2003) Self-* Storage: Brick-based Storage with

Automated Administration, Technical Report CMU-CS-03-178, Carnegie Mellon University.
Gassner, P., Lohman, G.M., Schiefer, K.B. and Wang, Y. (1993) ‘Query optimization in the IBM

db2 family’, IEEE Data Engineering Bulletin, Vol. 16, No. 4, pp.4–18.

 322 T. Hoshino et al.

Gerlhof, C.A., Kemper, A. and Moerkotte, G. (1996) ‘On the cost of monitoring and reorganization
of object bases for clustering’, ACM SIGMOD Record, Vol. 25, pp.22–27.

Ghandeharizadeh, S., Gao, S., Gahagan, C. and Krauss, R. (2006) ‘An on-line reorganization
framework for san file systems’, ADBIS Conference.

Ghandeharizadeh, S. and Kim, D. (1996) ‘On-line reorganization of data in scalable continuous
media servers’, DEXA Conference, pp.751–768.

Guinepain, S. and Gruenwald, L. (2005) ‘Research issues in automatic database clustering’, ACM
SIGMOD Record, Vol. 34, No. 1, pp.33–38.

Kephart, J.O. and Chess, D.M. (2003) ‘The vision of autonomic computing’, IEEE Computer,
Vol. 36, No. 1, pp.41–50.

Lehman, P.L. and Yao, S.B. (1981) ‘Efficient locking for concurrent operations on b-trees’, ACM
Transactions on Database Systems, Vol. 6, pp.650–670.

Lightstone, S., Schiefer, B., Zillo, D. and Kleewein, J. (2003) ‘Autonomic computing for relational
databases: the ten year vision’, AUCOPA Workshop.

Lightstone, S., Lohman, G.M. and Zilio, D. (2002) ‘Toward autonomic computing with db2
universal database’, ACM SIGMOD Record, Vol. 31, No. 3, pp.55–61.

Lohman, G.M. and Muckstadt, J.A. (1977) ‘Optimal policy for batch operations: backup,
checkpointing, reorganization, and updating’, ACM Transactions on Database Systems,
Vol. 2, No. 3, pp.209–222.

Lomet, D. (Ed.) (1996) ‘Special issue on online reorganization’, IEEE Data Engineering Bulletin,
Vol. 19, No. 2.

Mackert, L.F. and Lohman, G.M. (1989) ‘Index scans using a finite LRU buffer: a validated I/O
model’, ACM Transactions on Database Systems, Vol. 14, No. 3, pp.401–424.

Markl, V., Lohman, G.M. and Raman, V. (2003) ‘LEO: an autonomic query optimizer for db2’,
IBM Systems Journal, Vol. 42, No. 1, pp.98–106.

Maruyama, K. and Smith, S.E. (1976) ‘Optimal reorganization of distributed space disk files’,
Communications of the ACM, Vol. 19, No. 11, pp.634–642.

MySQL: The World’s Most Popular Open Source Database, available at http://www.mysql.com/.
Narayanan, D., Thereska, E. and Ailamaki, A. (2005) ‘Continuous resource monitoring for

self-predicting dbms’, IEEE MASCOTS Conference, pp.239–248.
Omiecinski, E., Lee, L. and Scheuermann, P. (1994) ‘Performance analysis of a concurrent file

reorganization algorithm for record clustering’, IEEE Transactions on Knowledge and Data
Engineering, Vol. 6, No. 2, pp.248–257.

Omiecinski, E. (1985) ‘Incremental file reorganization schemes’, VLDB Conference, pp.346–357.
Park, J.S. and Sridhar, V. (1997) ‘Probabilistic model and optimal reorganization of b+-tree with

physical clustering’, IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 5,
pp.826–832.

Ramírez, R.J., Tompa, F.W. and Munro, J.I. (1982) ‘Optimum reorganization points for arbitrary
database costs’, Acta Informatica, Vol. 18, pp.17–30.

Scheuermann, P., Park, Y.C. and Omiecinski, E. (1989) ‘Heuristic reorganization of clustered
files’, FODO Conference, pp.16–30.

Schmidt, A. and Böhlen, M.H. (2004) ‘Parameter estimation using b-trees’, IEEE IDEAS
Conference, pp.325–333.

Seagate (1999) Cheetah 18LP FC Disk Drive Product Manual Volume 1.
Shneiderman, B. (1973) ‘Optimum data base reorganization points’, Communication of the ACM,

Vol. 16, No. 6, pp.362–365.
Shneiderman, B. (1974) ‘Opportunities for data base reorganization’, ACM SIGMOD Record,

Vol. 6, pp.1–8.
Sockut, G.H., Beavin, T.A. and Chang, C.C. (1997) ‘A method for on-line reorganization of a

database’, IBM Systems Journal, Vol. 36, pp.411–436.

 Online monitoring and visualisation of database structural deterioration 323

Sockut, G.H. and Goldberg, R.P. (1979) ‘Database reorganization – principles and practice’, ACM
Computer Survey, Vol. 11, No. 4, pp.371–395.

Swami, A.N. and Schiefer, K.B. (1995) ‘Estimating page fetches for index scans with finite LRU
buffers’, VLDB Journal, Vol. 4, No. 4, pp.675–701.

Szymanski, T.G. (1985) ‘Hash table reorganization’, Journal of Algorithms, Vol. 6, No. 3,
pp.322–335.

Telford, R., Horman, R., Lightstone, S., Markov, N., O’Connell, S. and Lohman, G.M. (2003)
‘Usability and design considerations for an autonomic relational database management
system’, IBM Systems Journal, Vol. 42, No. 4, pp.568–581.

TPC: Transaction Processing Performance Council, available at http://www.tpc.org/.
Uttamchandani, S., Voruganti, K., Srinivasan, S., Palmer, J. and Pease, D. (2004) ‘Polus: growing

storage QoS management beyond a ‘four-year old kid’’, USENIX FAST Conference,
pp.31–44.

Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C. and Ganger, G.R. (2004) ‘Storage
device performance prediction with cart models’, ACM SIGMETRICS Conference,
pp.412–413.

Watanabe, S. and Miura, T. (2002) ‘Reordering B-tree files’, ACM SAC Symposium, pp.681–686.
Wietrzyk, V.S. and Orgun, M.A. (1999) ‘Dynamic reorganization of object databases’, IEEE

IDEAS Conference, pp.110–118.
Wietrzyk, V.S., Orgun, M.A. and Varadharajan, V. (2000) ‘On the analysis of on-line database

reorganization’, ADBIS Conference, pp.293–306.
William, J. and Tuel, G. (1978) ‘Optimum reorganization points for linearly growing files’, ACM

Transactions on Database Systems, Vol. 3, pp.32–40.
Yao, S.B., Das, K.S. and Teorey, T.J. (1976) ‘A dynamic database reorganization algorithm’, ACM

Transactions on Database Systems, Vol. 1, No. 2, pp.159–174.
Zilio, D.C., Lightstone, S. and Lohman, G.M. (2003) ‘Trends in automating physical db design’,

IEEE INDIN Conference, pp.441–445.
Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C. and Fadden, S.

(2004) ‘DB2 design advisor: Integrated automatic physical database design’, VLDB
Conference, pp.1087–1097.

Zou, C. and Salzberg, B. (1996) ‘On-line reorganization of sparsely-populated B+-trees’, ACM
SIGMOD Conference, pp.115–124.

