
Jumbo: a data intensive distributed computation platform - design

overview and preliminary experiment -

Sven Groot Kazuo Goda Masaru Kitsuregawa

University of Tokyo University of Tokyo University of Tokyo

Abstract

In recent years, the volume of data processed by

companies and research institutions has grown

enormously, with terabytes and petabytes now being

normal. This has led to the development of

frameworks for distributed processing of such large

quantities of data on large clusters of commodity PCs,

such as Google’s MapReduce. However, many of

these frameworks sacrifice baseline performance for

reliability and scalability. In this paper, we introduce

Jumbo, a system designed for experimentation with

different approaches on large scale data processing,

and outline some of the problems it is intended to

solve.

Introduction

Traditional relational database systems do not scale

well when processing very large amounts of data on

very large clusters. In addition, when dealing with

large clusters of commodity PCs, failures are common,

and traditional solutions often do not have the required

levels of fault tolerance. This means that a failure on a

single node during a long-running processing

operation would lead to the failure of the job.

To deal with the increasing data processing

demands, frameworks have been developed to ease the

development of customized distributed data

processing solutions.

The most widely known of such frameworks is

Google’s MapReduce [1], which provides a

programming model based on the map and reduce

primitive operations found in many functional

programming languages, as well as a fault-tolerant

processing environment using Google File System [2]

for storage. Hadoop [3] is a well-known open-source

implementation of GFS and Map-Reduce.

However, MapReduce is a very strict model and not

all processing tasks fit this model, leading to

complicated implementations and loss of efficiency.

MapReduce also sacrifices efficiency for fault

tolerance.

More flexible frameworks have been developed,

such as Microsoft Dryad [4], which models jobs as a

directed acyclic graph of vertices. While much more

flexible, this also makes it more difficult to scale

Dryad applications.

We have developed Jumbo, an experimental system

designed to evaluate different approaches in data

processing, and to investigate alternative design

options. The following sections give an overview of

Jumbo’s design, and the results of some preliminary

experiments.

Design overview

Jumbo consists of two main parts, the Jumbo

Distributed File System, and Jumbo Jet, the processing

environment. Jumbo DFS is based largely on the

design of GFS and Hadoop’s HDFS. A single name

server stores file system namespace information, and

data servers store file data, divided into blocks of

typically 64 or 128MB. Each block is replicated.

Jumbo Jet is the data processing environment for

Jumbo, providing a programming model as well as an

execution environment.

The programming model divides each data

processing job into stages. A stage reads data either

from the DFS or from one or more input stages, and

writes data either to another stage or to the DFS,

forming a directed acyclic graph.

Each stage is divided up into tasks. A task takes part

of the input data and performs a processing operation

on it. Every task in a stage performs the same

operations, just on different parts of the data.

To divide a stage’s input over multiple tasks, it must

be split. DFS input is simply split linearly, typically

giving each task in the stage a single DFS block as

input.

When a stage reads input from another stage, the

data from that input stage is partitioned by using a

partitioning function. Each task in the stage will

receive the same partition from each task in the input

stage. This data is not automatically sorted or grouped;

the method by which the data of all input tasks is

combined can be specified by each stage individually.

A stage can choose to have its input data sorted, or

simply process it linearly if this is not required, or
specify a custom method of combining the data. This

offers larger flexibility and significant performance

Jumbo: a data intensive distributed computation platform -

design overview and preliminary experiment -

Sven Groot – University of Tokyo

Kazuo Goda – University of Tokyo

Masaru Kitsuregawa – University of Tokyo

benefits when sorting is not required.

Tasks are the basic building blocks of Jumbo Jet

jobs. Developers using Jumbo create tasks by writing

a function that processes input records and writes

output records.

This design offers much greater flexibility than

MapReduce. Jumbo can easily simulate MapReduce,

but can also use different structures. For example, jobs

that would require more than one MapReduce pass

can be represented in Jumbo as a single job with

multiple stages, eliminating the overhead of creating

multiple jobs and storing intermediate data on the DFS.

Jumbo’s job structure is more rigid than what Dryad

allows, which makes it easier to scale and easier for

developers to understand the structure of the jobs and

debug them.

Jobs are executed in Jumbo using a mechanism

similar to Hadoop. A single job server is responsible

for scheduling, while task servers, located on the same

nodes as the DFS data servers, execute tasks.

Intermediate data is stored on disk, so that task or

node failures do not fail the entire job.

Experimental results

In order to validate the design of Jumbo, several

experiments have been done, comparing performance

to Hadoop in multiple instances. Currently, these are

still relatively small scale experiments with simple

jobs.

One basic job that we have tested is sorting. Hadoop

includes a sample implementation for the TeraSort

benchmark (now called GraySort). We have created

an implementation for the same benchmark in Jumbo.

No comparison with Dryad is available because the

environment used cannot run Dryad.

To test the performance and scalability, we

increased the number of nodes and simultaneously

increased the amount of data, keeping the data per

node the same, 4GB. Ideally, the processing time for

each experiment should be identical.

The results are shown in Figure 1. Jumbo is

considerably quicker than Hadoop, over 60% faster on

average, despite using a similar sorting methodology.

Hadoop’s implementation wastes resources by

serializing records in-memory and sorting the

serialized version, and wastes disk I/O due to the file

format used for intermediate files, the merge strategy

used, and in some cases also due to speculative

execution. Because of the slow disks of the nodes in

the cluster used, this waste of disk I/O in particular

causes Hadoop to fall short in performance.

Neither quite achieves linear scalability, especially

with less than 20 nodes, because merging the data can

be done in a single pass in those cases. At 20 nodes,
multiple passes are required, and from that point on

the scalability improves. We are continuing to reduce

communication and other overheads to improve this

result.

When using jobs that are not suited to the

MapReduce model, even larger differences can be

seen. For example, using the word count example

from Google’s MapReduce paper, Jumbo was up to

five times faster than Hadoop.

Conclusion

We have introduced Jumbo, our experimental

system for data processing, and shown that it can offer

significant performance benefits over Hadoop while

maintaining similar levels of scalability and fault

tolerance.

There remain many challenges in this field. Our

experiments have shown that it is very difficult to tune

these systems. With default settings, Hadoop

performed considerably worse on the cluster used, and

much effort was needed to optimize its performance.

We have also seen that these systems are not always

able to adequately respond to certain nodes being

slower than others, especially in heterogeneous

environments.

Our future work is aimed at addressing these issues

with Jumbo, as well as using more complicated

applications.

Bibliography

1. MapReduce: Simplified Data Processing on

Large Clusters. Dean, Jeffrey and Ghemawat,

Sanjay. Berkeley, CA, USA : USENIX Association,

2004. OSDI'04: Proceedings of the 6th conference on

Symposium on Operating Systems Design &

Implementation.

2. The Google file system. Ghemawat, Sanjay,

Gobioff, Howard and Leung, Shun-Tak. New York,

NY, USA : ACM Press, 2003. SOSP '03: Proceedings

of the nineteenth ACM symposium on Operating

systems principles. pp. 29-43.

3. Hadoop Core. Hadoop. [Online] Apache.

http://hadoop.apache.org/core.

4. Dryad: distributed data-parallel programs from

sequential building blocks. Isard, Michael, et al., et

al. New York, NY, USA : ACM, 2007, SIGOPS Oper.

Syst. Rev., Vol. 41.

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

Se
co

n
d

s

Nodes

Jumbo GraySort Hadoop TeraSort

Figure 1 Sorting performance

	Abstract
	Introduction
	Design overview
	Experimental results
	Conclusion
	Bibliography

