
DEIM Forum 2010 E8-2

An Experimental Study on IO Optimization Techniques for Flash-based

Transaction Processing Systems

Yongkun WANG†, Kazuo GODA†, Miyuki NAKANO†, and Masaru KITSUREGAWA†

† Institute of Industrial Science, the University of Tokyo

4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan

E-mail: †{yongkun,kgoda,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract Flash SSDs are being considered and partially starting to be utilized for enterprise storage. In order to

maximize the performance benefit, different IO optimization techniques can be applied to the existing storage sys-

tem. We examined the IO optimization techniques and the distinct features of the flash SSD. The IOs applied with

optimization techniques are analyzed through the IO path with the trace generated from the transaction processing

system which is usually hosted on the enterprise storage platforms.

Key words NAND Flash Memory, SSD, LFS, Transaction Processing

1. Introduction

Flash SSDs (Solid State Drive) are being considered and

partially starting to be utilized for enterprise storage. Many

enterprise storage platforms, such as EMC Symmetrix V-

Max [2], Oracle EXADATA V2 [11], have incorporated flash

SSDs to boost the IO performance of the whole system. How-

ever, the flash SSD is a brand new storage media, with spe-

cial IO characteristics which is far away from the traditional

hard disk, such as the fast read performance, “erase-before-

write”, and wear-leveling. Therefore, the conventional IO

optimization techniques should be reconsidered based on the

characteristics of flash SSD.

IO optimization techniques are important to the overall

performance of the storage system, especially the transac-

tion processing system. The IO optimization techniques are

usually designed by the characteristics of the workload and

storage media. In the case of the transaction processing sys-

tems, the workload is mainly composed of the random writes

to the storage media. For the widely used storage media,

hard disk, the random writes are very slow due to the me-

chanical moving parts. Hence lots of IO optimization tech-

niques are applied to try to convert the random writes to se-

quential writes in order to maximize the overall performance.

For example, at file system level, the log-structured file sys-

tem is proposed to convert the random writes to sequential

writes, with the side-effect that sequential reads may also be

converted into random reads. At the block IO level, the IO

scheduler plays a vital role to group, merge and re-order the

requests to utilize the sequential performance of the storage

media.

For flash SSD, these IO optimization techniques should be

reconsidered. For example, for log-structured file system, al-

though the sequential reads may be converted into random

reads, the performance may not be harmed since the perfor-

mance of sequential read is close to that of random read on

flash SSD since there is no mechanical moving parts.

Therefore, we studied the IO optimization techniques and

the distinct features of the flash SSD. IOs applied with opti-

mization techniques are analyzed through the IO path with

the trace generated from the transaction processing system

which is usually hosted on the enterprise storage platforms.

The rest of this paper will organize as follow: Section 2 will

describe the experiment setup. In Section 3, we will present

the transaction throughput. The trace-based analysis will be

provided in Section 4. Section 5 will summarize the related

work. Finally, our conclusion and the future work will be

provided in Section 6.

2. Experiment Setup

Our experiments focus on the transaction processing sys-

tem, which is one of the most important applications hosted

on enterprise storage platform. We used the popular TPC-

C [15] as the benchmark for the performance of transaction

processing systems. A database server to run the TPC-C

benchmark was built with the Linux operating system. High-

end SLC flash SSDs are connected to the computer system

with SATA 3.0Gbps hard drive controller. These SSDs are

different in random access time or throughput. Fig. 1 gives

the view of our experimental system.

We chose a commercial DBMS, as well as popular open

source DBMS MySQL, as the database system for the TPC-

��������

�������� 		

��� �� ���
 ���

������� ������� ���� �� �� !��� " ��� #$%&'()*#+&&,() -./* 0,/ 1" ���2�"'/ 3���� �2����� ��4" 566,�7��8�� �9 �� �3.:;: 6$+'<=> (��3 ��?@�!�� ������A ? 2>�==�� B�� 4: ��+*#* 5 ��3 #+.��9� � C"++4D, 5++'/ (��3��?@�E���F�
 GHIJ����� "$&$#%

K	��L

���, ��� D4M C5++.1!* 6$5N.:;: 6$+'6"'/

K	��L

���M!O PQ4;QR QR.1!* "$5N.:;: 6$+'#"+'/

.��?��:;:6'<S> ;��7?��� D!Q 2���� #++,<S>K	��L

����� ��R"5�Q. 1!* "$5N.:;: 6$+'&0'/

Fig. 1 System Configuration

C benchmark.

In the commercial database system, the buffer cache was

set to 8MB, redo log buffer was 5MB, and the block size was

4KB. For logging, we set the behavior to immediately do

flushing of the redo log buffer with wait when committing

the transaction. The data file was fixed to a large size in

order to have a better sequential IO performance. All the

IOs were set to be synchronous IO, but not direct IO since

we use file system.

For MySQL, we installed the InnoDB storage engine. The

data buffer pool size was 4MB, log buffer was 2MB, and the

block size was 16KB. The block size of MySQL was differ-

ent from that of the commercial DBMS, because MySQL

does not allow us to configure the block size, although 16KB

might not be optimal. We also fixed the size of data file

instead of “autoextend”. Synchronous IO behavior was cho-

sen. For the flushing method of log, we set it to flush the log

at transaction commit; for the flushing of data, we used the

synchronous IO.

Different file systems have different optimizations on the

IO. We evaluated two file systems on flash SSD, the con-

ventional EXT2 file system and a log-structured file system,

NILFS2 [7].

For EXT2, we set it with the default block size and group

size, that was 4KB blocks and 32K blocks per group.

For NILFS2, we set the block size to 4KB too, with 2KB

blocks per segments. The segment size is influential to the

garbage collection (GC, a.k.a segment cleaning) policy. By

default we disabled it for the simplicity of analysis.

The “Anticipatory” was chosen as the default IO schedul-

ing algorithm. The IO scheduling is important for the tra-

ditional file system. For the log-structured file system, we

think it is not necessary to do IO scheduling since the log-

structured file system has already organized all the writes to

sequential writes, while the read, both sequential and ran-

dom, is fast and minor part of IO.

For the TPC-C benchmark, we started a number of threads

TUTTTVTTTWTTTXTTTYTTTZTTT[TTT\TTT
]̂ _̀ a bâ c d efg]̂ _̀ a bâ c d efgf`hhc _i jk d

 lm]nopq
r stu vwxV ybqzoV

Fig. 2 Transaction Throughput with “Anticipatory” scheduler

with 30 users and 30 warehouses

to simulate virtual users, the number varying from 10 to 30,

with 10 to 30 warehouses accordingly. The “Key and Think-

ing” time was set to zero in order to get a hot workload.

The mix of the transaction types followed the standards

in [15], that is, “New-Order”: 43.48%, “Payment”: 43.48%,

“Order-Status”: 4.35%, “Delivery”: 4.35%, “Stock-Level”:

4.35%. Only the “New-Order” transaction was counted in

the transaction throughput since it is the backbone of the

workload [15].

Some SSDs do not allow us to disable the cache, so the

write-back cache was enabled on each SSD by default.

3. Transaction Throughput

We present the transaction throughput by special IO op-

timization technique. We will examine the following cases:

• Case 1: Data files are hosted on SSD formated with

traditional in-place update file system

• Case 2: Data files are hosted on SSD formated with

log-structured file system

We compare the performance in Case 1 and Case 2. The

transaction throughput is shown in Fig. 2. We find that the

log-structured file system is superior to traditional file sys-

tem on Mtron SSD, but not outstanding on other SSDs. We

think it is due to the different character of each SSD. Section

4. 2 will discuss this point.

4. Performance Analysis

In this section, we will analyze the effect of the IO opti-

mization techniques, combined with the prominent perfor-

mance character of flash SSD.

4. 1 IO Optimizations

We placed trace points at VFS layer, generic block IO

(BIO) layer and IO scheduler layer, as shown in Fig. 3.

Firstly, we examined the difference by the difference IO opti-

mizations at file system level, that is, the different processing

results between the traditional file system and log-structured

VFS

EXT2

File System

NILFS2

File System
Address Mapping Layer

Generic Block Layer

IO Scheduler Layer

Device Driver Device Driver

Hard Disk Flash SSD

Database Application

Trace

Trace

Trace

Fig. 3 IO path in the Linux kernel of our experiment system

file system. The amount of IOs at the VFS layer is almost

identical for the two file system. A comparison between the

VFS layer and generic block IO layer will tell us the changes

after processed by different file systems. Fig. 4 shows the dif-

ference by the number of requests per transaction. Clearly,

the number of read requests decreased a lot, due to the hit

by file system buffer. A close view about the difference of

writes is shown in Fig. 5, which shows that the number of

write requests does not change on EXT2, while the num-

ber of requests reduces at 2x to 3.5x for NILFS2 in the case

of MySQL, but it does not vary in the case of Commercial

database system. We conjecture that it is due to the differ-

ent buffer policy of different storage engine by the database

applications. Fig. 6 shows the changes in bytes, which con-

firms that not only the number of requests, but the total

amount of reads in bytes are absorbed by the buffer. A close

view on writes shown in Fig. 7 tells us that the write amount

in bytes are still not changed on EXT2, but it is increased

on NILFS2, especially in the case of commercial database.

Combined with the number changes of the write requests

shown in Fig. 5, it is clear that each request is enlarged

in bytes for commercial database on NILFS2, although the

number of write requests is not changed. This shows that

more writes are added on NILFS2 compared to the EXT2.

More IOs than EXT2 will put the NILFS2 at a disadvantage.

We also analyzed the changes processed by the IO sched-

uler. As for the changes about the number of requests and

the amount of bytes, Fig. 8 and Fig. 9 show that none of

them has experienced a big change after processed by IO

scheduler, which shows that the requests of transaction pro-

cessing system are dominated by random requests which can-

not be merged significantly.

Another function of the IO scheduling is the re-ordering.

Fig. 10 shows the address distribution after processed by the

IO scheduler. At this time, the sectors are ready for trans-

fer via the device driver. Fig. 10(a) shows that the writes

are organized to approximately sequential write on each run

for commercial DB on EXT2, noticed that the sequential log

0

5

10

15

20

25

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

� ��� �

� ���	
�� Write

Read

Fig. 4 Ratio between the VFS and generic block layer about the

number of requests per transaction

0

0.5

1

1.5

2

2.5

3

3.5

4

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

� ��� �

����� ���� EXT2 NILFS2

Fig. 5 Ratio between the generic block layer and VFS layer about

the number of write request per transaction

0

2

4

6

8

10

12

14

16

18

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

� ���

! "#$% &'() Write

Read

Fig. 6 Ratio between the VFS and generic block layer about the

amount of IOs in bytes per transaction

writes are shown both at the top and bottom as a line. The

reads are in burst between each run of writes. As compari-

son, Fig. 10(b) shows the access pattern of commercial DB

on NILFS2: the writes are completely linear for all the data,

and reads are in burst as well.

The address distribution in Figure 10 shows that the writes

in the conventional file system are well ordered by the IO

0

0.5

1

1.5

2

2.5

3

3.5

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

� ��� � ��

��� �� �	�
��

���� ���� EXT2 NILFS2

Fig. 7 Ratio between the generic block layer and VFS layer about

the amount of writes in bytes per transaction

0

0.5

1

1.5

2

2.5

3

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

� ��� � ��

���� � �� �!��"� "

$%&' ()* �+ �, � - Write

Read

Fig. 8 Ratio between the generic block layer and IO scheduler

layer about the number of requests per transaction

0

0.5

1

1.5

2

2.5

3

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

E
X
T
2

N
IL
F
S
2

Mtron Intel OCZ Mtron Intel OCZ

MySQL Commercial DB

. /01 2 23

45

6 70 8779

:797;1 <

6= 2<>

45 /9?

45

@<A 7? B= 7; Write

Read

Fig. 9 Ratio between the generic block layer and IO scheduler

layer about the amount of IOs in bytes per transaction

scheduler, so that it appears to be approximately linear in

each run. However, the writes are limited in the address

space of the file, rendering frequently going back and writ-

ing from the starting address of the file, causing the erase

operations for each run. As a comparison, writes in log-

structured file system are well organized and distributed to

the whole disk space. We can see that the write addresses

are always linear increasing providing there are enough disk

0

2000000

4000000

6000000

8000000

10000000

12000000

0 2 4 6 8 10

CDD EFGG

H I J

GFKL MEN
OPQR

STU

read write

(a) Commercial DB on EXT2

VWVVVVVVXVVVVVVVXWVVVVVVYVVVVVVVYWVVVVVVZVVVVVVV

V V[Y V[\ V[] V[^ X X[Y X[\
_`` abcc
d e f
cbgh iaj

klmn

opq

rstu vrwxs

(b) Commercial DB on NILFS2

Fig. 10 The sector address of Commercial database IOs trans-

fered to Intel SSD by device driver after processed by

“Anticipatory” scheduling algorithm. The sector address

on other SSDs have similar access patterns and are not

shown here for sake of brevity. Both figures contain equal

number of IOs.

spaces. Consequently, the erase operations would happen

much less than that on EXT2. Therefore, the address distri-

bution shows that the flash SSD would be quite favorable on

the log-structured file system providing the same number of

IOs.

4. 2 Prominent Performance Character of Flash

SSD

We discuss the prominent performance character of flash

SSD which will be favorable for the log-structured file sys-

tem, and disclose the reason of the difference of transaction

throughput on different file systems. Figure 11 show the per-

formance gain of the sequential IO against random IO with

one million requests for each size on “raw” SSD device. The

read-ahead number is set to 256 sectors. Even with read-

���
�������

1 2 4 8 16 32 64 128

���� �

� ��	
 ��� � �� ��

�� ������ � �� ���
�������

����

���

�������

mtron�read

mtron�write

intel�read

intel�write

ocz�read

ocz�write

Fig. 11 Performance ratio of sequential IO to random IO

ahead, the gap between sequential and random reads is close

to 1 for Mtron and OCZ SSD. We got the same results for

these two SSDs even when we disabled the read-ahead. For

Intel SSD, sequential read speedup ratio is round 2x to 3x .

We observed in our test system that the amount of sequential

reads of transaction processing system are small compared

to the random reads, so the suffering from random reads on

NILFS2 is small. We then mainly focus on the gap caused by

the sequential writes to random writes. The “mtron-write”

line shows that the sequential write speedup ratio of Mtron

is more than 100 times for small request. But this speedup

is obtained by the evenly distributed random writes on the

whole disk spaces. Recall the address access pattern shown

in Figure 10(a), the writes on EXT2 is approximately linear

in each run within the file address space. That is why the

overall transaction performance is only around 6x instead of

100/2 = 50 times, where 2 comes from the two times writes

on NILFS2 as many as that on EXT2. On Intel SSD, the

gain of sequential to random is only around 2x to 3x. So

the overall performance on NILFS2 is not better than that

on EXT2 with twofold increase of the sectors to write. It is

medium on OCZ SSD since the sequential speedup ratio is

about 8x to 18x, which ranks between the Mtron SSD and

Intel SSD.

Therefore, the effectiveness of the log-structured IO opti-

mization on SSD can be summarized as follows:

• The advantage of log-structured IO optimization is

still based on the asymmetric performance between sequen-

tial IO and random IO. The performance asymmetry is

caused by the erase operations instead of the disk head mov-

ing. The more time-consuming is the erase operation, the

more speedup is obtained by log-structured IO optimization.

• In order to achieve high performance, the implemen-

tation of the log-structured IO optimization should not in-

troduce extra IOs for special purpose, such as snapshot.

5. Related Work

5. 1 Non-In-Place Update Techniques

Continuous data protection (CDP) [14] [18] is a backup

technology automatically saving a copy of every change made

to that data to a separate storage location in an enterprise

storage system. Another successful example is the Sprite

LFS [12], a log-structured file system. The LFS is designed

to exploit fast sequential write performance of hard disk, by

converting the random writes into sequential writes. How-

ever, the side effect is that the sequential reads may also

be scattered into random reads. Overall, the performance

can be improved to write-intensive applications. The LFS

is also expected to improve the random write performance

of flash memory, since the fast read performance of flash

memory well mitigates the side effect. For the garbage col-

lection of LFS, an adaptive method based on usage patterns

is proposed in [10]. Shadow paging [13] is a copy-on-write

technique for avoiding in-place updates of pages. It needs to

modify indexes and block lists when the shadow pages are

submitted. This procedure may recurse many times, becom-

ing quite costly.

5. 2 Flash-based Technologies

By a systematical “Bottom-Up”view, the research on flash

memory can be categorized as follow:

Hardware Interface This is a layer to bridge the oper-

ating system and flash memory, usually called FTL (Flash

Translation Layer). The main function of FTL is mapping

the logical blocks to the physical flash data units, emulat-

ing flash memory to be a block device like hard disk. Early

FTL using a simple but efficient page-to-page mapping [4]

with a log-structured architecture [12]. However, it requires

a lot of space to store the mapping table. In order to reduce

the space for mapping table, the block mapping scheme is

proposed, using the block mapping table with page offset to

map the logical pages to flash pages [1]. However, the block-

copy may happen frequently. To solve this problem, Kim

improved the block mapping scheme to the hybrid scheme

by using a log block mapping table [6].

File System Most of the file system designs for flash mem-

ory are based on Log-structured file system [12], as a way to

compensate for the write latency associated with erasures.

JFFS, and its successor JFFS2 [3], are journaling file systems

for flash. JFFS2 performs wear-leveling with the cleaner se-

lecting a block with valid data at every 100th cleaning, and

one with most invalid data at other times. YAFFS [17] is a

flash file system for embedded devices.

Database System Previous design for database system

on flash memory mainly focused on the embedded systems or

sensor networks in a log-structured behavior. FlashDB [9] is

a self-tuning database system optimized for sensor networks,

with two modes: disk mode for infrequent write, much like

regular B+–tree; log mode for frequent write, employed a log-

structured approach. LGeDBMS [5], is a relational database

system for mobile phone. For enterprise database design on

flash memory, In-Page Logging [8] is proposed. The key idea

is to co-locate a data page and its log records in the same

physical location.

6. Conclusion and Future Work

Many IO optimization techniques can be applied to the

flash-based transaction processing systems. Different IO op-

timizations with special characteristics of the flash SSD, can

yield different transaction throughput. We provided a trace-

based analysis at different layers of the kernel through the IO

path on SSDs with two different IO optimization techniques

at file system level.

As for the future work, we plan to boost the performance

of the whole system by combining the characteristics of

database system, the IO optimization techniques and the

features of flash SSD.

References

[1] Ban, A.: Flash file system. US Patent No. 5404485 (April

1995)

[2] EMC: Specification Sheet: EMC Symmetrix V-Max Storage

System. http://www.emc.com/products/detail/hardware/

symmetrix-v-max.htm

[3] JFFS2: The Journalling Flash File System, Red Hat Cor-

poration, http://sources.redhat.com/jffs2/jffs2.pdf.

(2001)

[4] Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory

Based File System. In: USENIX Winter. (1995) 155-164

[5] Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.:

LGeDBMS: A Small DBMS for Embedded System with

Flash Memory. In: VLDB. (2006) 1255-1258

[6] Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-

efficient flash translation layer for CompactFlash systems.

IEEE J CE 48(2) (May 2002) 366-375

[7] Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S.,

Moriai, S.: The Linux implementation of a log-structured

file system. Operating Systems Review 40(3)(2006) 102-107

[8] Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-

page logging approach. In: SIGMOD Conference. (2007)

55-66

[9] Nath, S., Kansal, A.: FlashDB: dynamic self-tuning

database for NAND flash. In: IPSN. (2007) 410-419

[10] Neefe, J.M., Roselli, D.S., Costello, A.M., Wang, R.Y., An-

derson, T.E.: Improving the Performance of Log-Structured

File Systems with Adaptive Methods. In: SOSP. (1997) 238-

251

[11] Oracle: ORACLE EXADATA V2: http://www.oracle.

com/us/products/database/exadata/index.htm

[12] Rosenblum, M., Ousterhout, J.K.: The Design and Imple-

mentation of a Log-Structured File System. ACM Trans.

Comput. Syst. 10(1) (1992) 26-52

[13] Shenai, K. In: Introduction to database and knowledge-base

systems. World Scientific (1992) page 223

[14] Strunk, J.D., Goodson, G.R., Scheinholtz, M.L., Soules,

C.A.N., Ganger, G.R.:Self-Securing Storage: Protecting

Data in Compromised Systems. In: OSDI. (2000) 165-180

[15] TPC: Transaction Processing Performance Council: TPC

BENCHMARK C, Standard Specification,Revision 5.10.

(April 2008)

[16] Wang, Y., Goda, K., Kitsuregawa, M.: Evaluating Non-In-

Place Update Techniques for Flash-based Transaction Pro-

cessing Systems. In: DEXA (2009), 777-791

[17] YAFFS: Yet Another Flash File System, http://www.

yaffs.net

[18] Zhu, N., Chiueh, T.: Portable and Efficient Continuous

Data Protection for Network File Servers. In: DSN. (2007)

687-697

