
Evaluating Non-In-Place Update Techniques for

Flash-Based Transaction Processing Systems

Yongkun Wang, Kazuo Goda, and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo,
4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan
{yongkun,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

http://www.tkl.iis.u-tokyo.ac.jp

Abstract. Recently, flash memory is emerging as the storage device.
With price sliding fast, the cost per capacity is approaching to that
of SATA disk drives. So far flash memory has been widely deployed in
consumer electronics even partly in mobile computing environments. For
enterprise systems, the deployment has been studied by many researchers
and developers. In terms of the access performance characteristics, flash
memory is quite different from disk drives. Without the mechanical com-
ponents, flash memory has very high random read performance, whereas
it has a limited random write performance because of the erase-before-
write design. The random write performance of flash memory is compara-
ble with or even worse than that of disk drives. Due to such a performance
asymmetry, naive deployment to enterprise systems may not exploit the
potential performance of flash memory at full blast. This paper studies
the effectiveness of using non-in-place-update (NIPU) techniques through
the IO path of flash-based transaction processing systems. Our deliber-
ate experiments using both open-source DBMS and commercial DBMS
validated the potential benefits; x3.0 to x6.6 performance improvement
was confirmed by incorporating non-in-place-update techniques into file
system without any modification of applications or storage devices.

Keywords: NAND Flash Memory, SSD, LFS, Transaction Processing.

1 Introduction

Flash memory is a recently emerging storage device. With price sliding fast, the
cost per capacity of flash memory is approaching to that of low-end SATA disk
drives. So far flash memory has been widely deployed in consumer electronics
even partly in mobile computing environments. Extending the deployment of
flash memory to enterprise systems looks a natural attempt. Actually many
researchers and developers have been studying the idea of utilizing flash memory
for enterprise systems. EMC is trying to incorporate flash-based SSDs into their
enterprise-level storage products [3].

One big issue arising for deploying the flash memory to the enterprise sys-
tems is that flash memory is quite different from disk drives in terms of the

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 777–791, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.tkl.iis.u-tokyo.ac.jp

778 Y. Wang, K. Goda, and M. Kitsuregawa

access performance characteristics. Disk drives are mainly comprised of mechan-
ical components, thus random access performance is poor due to the seek and
rotational overheads. By contrast, flash memory is a solid-state device, without
the mechanical components, yielding high random read performance. However,
the flash memory cannot be written in place. When updating the data, the entire
erase-block containing the data must be erased before the updated data is writ-
ten there. Since such erase operations are often very time consuming compared
with read/write operations, the random write performance of flash memory is
relatively poor. Table 1 summarizes necessary time for each operation in Sam-
sung 4GB flash memory chip [19]. In recent major products, the typical latency
of random writes is several milliseconds, being comparable with or sometimes
even worse than that of the latest high-end disk drives.

Table 1. Operational flash parameters of Samsung 4GB flash memory chip

Page Read to Register (4KB) 25µs
Page Write from Register (4KB) 200µs
Block Erase (256KB) 1500µs

0

500

1000

1500

2000

2500

10 20 30 40 50

tp
m

of warehouses and users

Flash memory
Hard disk

Fig. 1. Performance comparison between disk drive and flash memory (The details are
described in Section 4.2)

Due to such a significant performance asymmetry, naive deployment of flash
memory into enterprise systems may not exploit the potential performance of
flash memory at full blast. Software components of existing enterprise systems
are often designed and optimized for disk drives. Fig. 1 shows a typical example:
we measured the obtainable throughput by the TPC-C benchmark on a commer-
cial DBMS with the disk drive and flash memory. Contrary to our expectation,
we could gain little or sometimes even lose by simply replacing the conventional
disk drive with the flash-based SSD in this case study. That is, it may not be
easy for existing enterprise system to directly enjoy the potential performance
of recent flash memory.

Evaluating NIPU for Flash-Based Transaction Processing Systems 779

Disk Drive

TPS

Flash
Memory

TPS

NIPU

TPS

Flash
Memory

(a) Disk based TPS (b) Flash based TPS (c) Flash based TPS with NIPU

Fig. 2. Comparison of transaction processing system designs

One solution is to redesign the system so that the system can be fully op-
timized for flash memory. For instance, if we were able to rewrite all the code
of database engines and operating systems specially for flash memory, the sys-
tem could derive the maximum performance. Such a solution may be possible
for limited systems. But when it comes to enterprise systems that have a va-
riety of customers, the huge cost of development may not be well accepted by
many CIOs. In addition, a variety of succeeding solid-state technologies such as
PCRAM [17] are about to emerge. Therefore, it may not be a good choice to
invest huge cost on special development only based on flash memory.

Rather, if we could derive reasonable performance improvement of a flash-
based enterprise system by simply incorporating optimization techniques into
the IO path without modifying other components of the system, as shown in
Fig. 2, it could be a good news for many CIOs even though it may not exploit
the potential performance of flash memory at 100 percent. This paper studies the
effectiveness of non-in-place update (NIPU) techniques through the IO path of
transaction processing systems. NIPU techniques can convert a stream of in-place
write operations into a stream of non-in-place write operations. Implementation
of such techniques between DBMS and flash memory can significantly reduce the
number of in-place writes, thus considerably improving the IO throughput of the
flash memory. We built an experimental system using both open-source DBMS
and commercial DBMS with a conventional hard disk drive and a flash-based
SSD and then evaluated the effectiveness of deploying the NIPU techniques into
transaction processing systems.

Our measurement-based analysis shows that x3.0 to x6.6 performance im-
provement can be expected by incorporating NIPU techniques into file systems
without any modification of applications or storage devices. To the best of our
knowledge, this finding has not yet been reported.

The rest of this paper will be organized as follows: Section 2 will briefly sum-
marize the issue of flash memory for transaction processing system. In Section 3,
we will discuss the deployment of the NIPU techniques on flash-based transac-
tion processing system. Our deliberate experiments will be described in Section
4. Section 5 will summarize the related work. Finally, our conclusion and future
work will be provided in Section 6.

780 Y. Wang, K. Goda, and M. Kitsuregawa

2 Issue of Flash Memory for Transaction Processing

Unlike the traditional hard disk, which has an approximately symmetric read and
write speed, flash memory, on the contrary, has substantial difference between
the speeds of read and write, as shown in Table 2. The average response time of
read, whatever in sequential or random mode, as well as that of the sequential
write, is about two orders of magnitude faster than that of the hard disk. By
contrast, the average response time of write in random mode, is comparable or
even worse than that of the hard disk. This is primarily because the flash memory
cannot be updated in place; a time-consuming block-erase operation has to be
performed before the write operation, as disclosed in Table 1 [19]. For the sake of
better performance, the size of erase block is usually large, about several hundred
KB, leading to an expensive time cost of erase operation compared to that of
flash read.

Table 2. Average response time of the flash memory and hard disk with the transfer
request size of 4KB. Experiment setup is the same as that in Section 4.1 except here
the hard disk and flash memory is bound as the raw device. Benchmark is Iometer
2006.07.27 [6].

Hard Disk Flash Memory
Read Write Read Write

Sequential 127µs 183µs 94µs 75µs

Random 13146µs 6738µs 106µs 8143µs

The poor random write performance of flash memory could be painful for
some transaction processing systems. In these systems, the intensive random
write is often the main stream of disk IO. Though the operating system has
an efficient buffer policy to cache the individual write operations into a bulk
update, the performance characteristics of flash memory has been hardly con-
sidered here. Therefore, it would be problematic for the existing transaction
processing systems to run on the flash memory directly, as reported in [2]. Our
experiment also illustrates this points in Section 4.2 that the performance was
not improved, even worse than that of the hard disk sometime by directly using
the flash memory as the main storage media of data, though the flash memory
has fine performance on read and sequential write. A better solution, such as
NIPU techniques, is required to fully exploit the benefit of flash memory, as
discussed in next section.

3 NIPU Techniques on Flash-Based Transaction
Processing System

To utilize the flash memory efficiently, a tactful way is to introduce the NIPU
techniques for enterprise system to improve the overall performance. Briefly, the

Evaluating NIPU for Flash-Based Transaction Processing Systems 781

NIPU techniques convert the logical in-place updates into physical non-in-place
updates, using special address table to manage the translation between logical
address and physical address. An additional process called garbage collection is
required to claw back the obsolete data blocks. A good example of the NIPU
technique is the log-structured file system described in [18], with an implemen-
tation called Sprite LFS. Instead of seeking and updating in-place for each file
and Inode, the LFS will collect all write operations and write them into a new
address space continuously, as illustrated in Fig. 3. For such a NIPU-based file
system, the principal feature is that a large number of data blocks are gath-
ered in a cache before writing to disk in order to maximize the throughput of
collocated write operations, thereby minimizing seek time and accelerating the
performance of writes to small files. Though the write performance is optimized
by some detriment of scan performance [4], this feature is greatly helpful on
flash memory to make up for the inefficient random write performance since the
random read performance is about two orders of magnitude higher than that of
erase operations. The overall write performance is hereby improved.

A B C B' A' B" C' B'" D Disk

Apply changes and write to new address

Fig. 3. Non-In-Place Update techniques

Using such techniques for transaction processing systems on flash memory
looks a good solution. In this case the flash memory is usually written sequen-
tially through all the way, with a background process reclaiming the obsolete
data blocks into the pool of available data block. On the basis of non-in-place
update, all the update operations are performed by writing the data pages into
the new flash pages, and the erase operations are not required right beforehand
as long as the free flash pages are available. Thus, the overall throughput of
transactions can be improved.

From a macro view of system, there are several possible places to implement
the NIPU techniques through the IO path between DBMS and Flash memory.
That is, the NIPU techniques can be incorporated into many places such as Flash
Translation Layer (FTL), RAID controller, logical volume manager, file system,
and database storage engine. Here arises a problem regarding which place we
should implement the NIPU techniques. We are studying on this problem and
would like to report it in another paper. In this paper, we focus on the potential
benefits of file system. It would be a good choice to load a NIPU-based file
system module to OS kernel without any changes to a variety of disk drivers,
controllers and database applications.

It is to be noted here that a concern on the NIPU techniques is the design
and settings of GC (Garbage Collection). Since the NIPU techniques consume

782 Y. Wang, K. Goda, and M. Kitsuregawa

free flash pages faster than other methods, the obsolete data pages (garbage)
should be reclaimed by fine timing policy to the pool of available data blocks to
ensure there are free pages available anytime when there are write requests. We
will discuss the influence of the GC settings in Section 4.6.

4 Experimental Evaluation

We now describe a set of experiments that validate the effectiveness of the NIPU
techniques and compare them against the traditional alternative. We use the
popular TPC-C [22] as the benchmark, though it may not exactly emulate the
real production workload [5], it discloses the general business process and work-
load, supported by the main hardware and software database system providers
in the industry.

4.1 Experiment Setup

We build a database server on the Linux system. The flash memory is connected
to the server with SATA 3.0Gbps hard drive controller as well as the hard disk
driver. Fig. 4(a) gives the view of our experimental system.

Database Server
Dell Precision™ 390 Workstation
Dual core Intel Core 2 Duo 1.86GHz,
1066MHz FSB, 4MB L2 cache
2GB dual channel DDR2 533
Memory
Integrated SATA 3.0Gbps Hard Drive
Controller with support for RAID 0,
1, 5 and 10
Seagate 7200RPM 500GB Hard
Drive
CentOS 5.2
Kernel 2.6.18

Flash Memory
MTRON MSP7535
SLC, 3.5”
SATA 3.0G
32GB

Hard Drive
Hitachi HDS72107,
3.5”, SATA 3.0G,
7200RPM,
32M Cache, 750GB

Serial ATA 3Gb/s

Serial ATA 3Gb/s

Terminal PCEthernet 100Mb/s

(a) System Configuration

Physical Database Files

Database

Flash SSD

File System (EXT2 or NILFS2)

Data File

Log File 1

Data Space

Log File 3

Log File 2

Log Space

(b) System Storage Hierarchy
on Flash Memory

Fig. 4. Experiment Setup

We choose a commercial DBMS, as well as popular open source DBMS MySQL
[13], as the database system for the TPC-C benchmark. In the commercial
database system, the buffer cache is 8MB and log buffer is 5MB, with the block
size of 4KB. This block size is set by our previous empirical experiment, in which
we performed a low-level disk IO test, with a raw device test program written
by us. We find that the optimal IO request size is 4KB for our flash memory.
For MySQL, we use InnoDB storage engine, buffer cache is 4MB and log buffer

Evaluating NIPU for Flash-Based Transaction Processing Systems 783

is 2MB, with the block size of 16KB. The block size of MySQL is different from
that of the commercial DBMS, because MySQL does not allow us to configure
the block size, although 16KB might not be optimal.

As for the incorporation of the NIPU techniques into the IO path between the
databases and devices, we choose a traditional log-structured file system, NILFS2
[16][11], a loadable kernel module without recompilation of the OS kernel, as an
intermediate layer between the DBMS and flash memory. As a comparison, we
choose the EXT2 file system as the representative of a conventional file system.

The storage hierarchy is simplified and shown in Fig. 4(b). We format the
flash memory with EXT2 file system, on which we build the database instance,
with all the related files together, such as the data files and log files, as well as
the temporary files and system files. Thus, the main IO activities of this instance
are confined within the flash memory. We refer this system as “Flash-EXT2”.
Similarly, we format the flash memory with NILFS2, on which we build the same
instance as EXT2 system. We refer this system as “Flash-NILFS2”hereafter. As
a comparison, we also build the same system on hard disk, denoted as “HDD-
EXT2” and “HDD-NILFS2” respectively.

Unlike the EXT2 file system, NILFS2 file sytem has several settings of garbage
collection. We set the interval of garbage collection to a very large value to disable
this function firstly, so as to simplify the IO pattern. The influence of garbage
collection will be discussed in Section 4.6.

4.2 Transaction Throughput

In this test, we create many threads to simulate the virtual users. Each virtual
user will have a dedicated warehouse during the execution of transactions. Unlike
the real users, virtual users in our test do not have the time for “Key and Think”,
for the purpose of getting intensive transaction workload. We gradually increase

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50

sp
ee
du

p

Number of warehouses and virtual users

HDD NILFS2 Flash EXT2 Flash NILFS2

(a) MySQL

0

1

2

3

4

5

6

7

10 20 30 40 50

sp
ee
du

p

Number of warehouses and virtual users

HDD NILFS2 Flash EXT2 Flash NILFS2

(b) Commercial Database

Fig. 5. Speedup of the transaction throughput on different systems based on “HDD-
EXT2”

784 Y. Wang, K. Goda, and M. Kitsuregawa

the number of warehouses as well as the number of virtual users to match. The
speedup of transaction throughput based on “HDD-EXT2” is shown in Fig. 5.

In Fig. 5(a) we find that speedup of “Flash-EXT2” to “HDD-EXT2” is 1.8–2.1,
which means that the naive replacement of flash memory to hard disk could have
twofold transaction throughput on MySQL. The speedup of “Flash-NILFS2”
shows that the NIPU-based flash memory system can have further improvement,
1.7–1.9 times to “Flash-EXT2”, and about 3.0–3.9 times to the “HDD-EXT2”.
As for the commercial database system shown in Fig. 5(b), it is quite exciting.1

We can find that the speedup of “Flash-EXT2” to “HDD-EXT2” is around 1.0,
showing that the transaction throughput of “Flash-EXT2” is comparable with
or sometimes even worse than that of “HDD-EXT2”, which verifies our perspec-
tive that it is not beneficial for small-size transaction-intensive applications by
directly utilizing the flash memory. Remarkably, a significant improvement can
be found for “Flash-NILFS2”; the speedup is 5.2–6.6 times to “Flash-EXT2”,
which manifests that NIPU-based transaction processing system can undergo
dramatic improvements on flash memory.

4.3 IO Performance

In our experiments regarding the IOPS, we examine the total number of transfers
per second that were issued to the specific physical device. Here a transfer is an
IO request to a physical device, and multiple logical requests can be combined
into a single IO request to the device. So a transfer is of indeterminate size.
Our trace result is shown in Fig. 6. As disclosed in Fig. 6(a) for MySQL, the IO
request per second on “Flash-” side is much higher than that of “HDD-” side,
which shows that flash memory can improve the IOPS. Meanwhile, the average
response time of IO request, as shown in Fig. 6(b), is reduced significantly.
Combined with the speedup of transaction throughput in Fig. 5(a), it implies
that the NILF2 could coalesce more blocks into a single IO on MySQL, resulting
in the higher performance. This can be confirmed in Fig. 6(c), which illustrates
IO transfer rate. We can find that the total sector per second on “Flash-NILFS2”
is about 6.2–8.4 times as many as that on “HDD-EXT2”. On the commercial
database system shown in Fig. 6(d), the total IO request per second of “HDD-
EXT2” and “Flash-EXT2” is comparable. In sharp contrast, the total IO request
per second of “Flash-NILFS2” is outstanding, and the average response time in
Fig. 6(e) is also cut down greatly. It implies that the NIPU-based system can
handle more requests at a time with shorter service time. Here the average
response time includes the time spent by the requests in queue and the time
spent servicing them. Since the response time is cut down greatly by NIPU
techniques, the OLTP applications, which is required to respond immediately
to user requests, could be benefited a lot. The number of sector per second of
commercial DBMS shown in Fig. 6(f) follows the same trend as that of the IO
request per second, except that on “Flash-NILFS2” it is about 18.6–22.2 times as

1 We need further investigation regarding the difference between MySQL and the
commercial DBMS.

Evaluating NIPU for Flash-Based Transaction Processing Systems 785

0

100

200

300

400

500

600

700

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

IO
re
qu

es
t/
s

Number of warehouses and virtual users

write request/s read request/s

(a) MySQL: Number of IO request per
second

0

20

40

60

80

100

120

10 20 30 40 50

Av
er
ag
e
Re

sp
on

se
tim

e
(m

s)

Number of warehouses and virtual users

HDD EXT2
HDD NILFS2
Flash EXT2
Flash NILFS2

(b) MySQL: Average Response Time of
IO Request

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

se
ct
or
/s

Number of warehouses and virtual users

write sector/s read sector/s

(c) MySQL: Number of sector per sec-
ond

0

500

1000

1500

2000

2500

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

IO
re
qu

es
t/
s

Number of warehouses and virtual users

write request/s read request/s

(d) Commercial DBMS: Number of IO
request per second

0

10

20

30

40

50

60

70

80

10 20 30 40 50

Av
er
ag
e
Re

sp
on

se
tim

e
(m

s)

Number of warehouses and virtual users

HDD EXT2
HDD NILFS2
Flash EXT2
Flash NILFS2

(e) Commercial DBMS: Average Re-
sponse Time of IO Request

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

se
ct
or
/s

Number of warehouses virtual users

write sector/s read sector/s

(f) Commercial DBMS: Number of sec-
tor per second

Fig. 6. IOPS and Average Response Time

786 Y. Wang, K. Goda, and M. Kitsuregawa

many as that on “HDD-EXT2”. Considered together with Fig. 6(d), the NIPU
techniques tends to use relatively large IO request with the increasing of the
number of sectors.

4.4 CPU Utilization

In this section we discuss the CPU Utilization in order to analysis the bottleneck
of our experimental system. The CPU Utilization is traced when the transactions
running in the steady state. The startup and terminate effect is eliminated.
Trace result is shown in Fig. 7, in which the CPU Utilization is divided into four
portions: %user, %system, %iowait and %idle. The main portion of CPU time
on “HDD-EXT2”, “HDD-NILFS2”, and “Flash-NILFS2”, is spent on waiting
for the completion of IO, which implies that the system is possibly “IO-Bound”.
However, the CPU Utilization of “Flash-NILFS2” contrasts strongly in the ratio
of four portions with the other cases: a uniform distribution of CPU time is
observed, caused by the cutback of the CPU time spent on IO wait, and balanced
by more CPU time moved to running the user applications, showing that “Flash-
NILFS2” can utilize CPU time more efficiently.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

CP
U
U
til
iz
at
io
n

Number of warehouses and virtual users

%idle %iowait %system %user

(a) MySQL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

H
D
D
EX
T2

H
D
D
N
IL
FS
2

Fl
as
h
EX
T2

Fl
as
h
N
IL
FS
2

10 20 30 40 50

CP
U
U
til
iz
at
io
n

Number of warehouses and virtual users

%idle %iowait %system %user

(b) Commercial Database

Fig. 7. CPU Utilization

4.5 Disk Buffer Cache

Although we have limited the buffer cache of the database system to a very small
size, there is still some influence from the disk buffer cache, as long as we use
the file system to manage the data blocks written to the storage device. At this
moment, we cannot eliminate the influence of system buffer cache. A passive
but efficient approach is to test the system with bound physical memory. Fig. 8

Evaluating NIPU for Flash-Based Transaction Processing Systems 787

shows the result with 1GB and 512MB physical memory in the same experiment
system described in Section 4.1. The speedup is the ratio of “Flash-NILFS2”
to “Flash-EXT2”, i.e. the improvement of NIPU techniques on flash memory.
For MySQL shown in Fig 8(a), since it is memory efficient, the decreasing is not
significant. As for the commercial database shown in the Fig. 8(b), the significant
speedup is falling quickly with the very small memory size (512MB). However,
with reasonable memory size (1GB), the “Flash-NILFS2” system can gain above
fourfold.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50

sp
ee
du

p

Number of warehouses and virtual users

2GB Memory 1GB Memory 512MBMemory

(a) MySQL

0

1

2

3

4

5

6

7

10 20 30 40 50

sp
ee
du

p

Number of warehouses and virtual users

2GB Memory
1GB Memory
512MB Memory

(b) Commercial Database

Fig. 8. Performance speedup with different amount of physical memory

4.6 Influence of Garbage Collection

We now discuss the influence introduced by the different settings of GC on
NILFS2. In Section 4.2 to Section 4.5, no cleaning occurs during the execu-
tion, so the measurements represent the best-care performance. In fact, the GC
function should be turned on to ensure the free data space. Therefore, the back-
ground cleaning processes of GC will consume the CPU time and IO bandwidth,
producing some effect to the overall performance of system. A better GC strat-
egy can emulate to the upper level system that the free data blocks are always
available, with minimum cost of CPU time.

As indicated in [18], four issues must be addressed regarding the GC: (1)
Cleaning Interval (CI), (2) Number of Segments Per Clean (NSPC), (3) Which
segments to be clean, and (4) How to group the live blocks. Rosenblum and
Ousterhout [18] analyzed and addressed the issue (3) and (4). In this paper, we
will focus on analyzing the influence by (1) CI and (2) NSPC.

We can set the protection period (PP) to tell the daemon process how long
the segments can be preserved for recovery. The NSPC can also be set when
the device is mounted. With these settings, the experiment result in microscopic
view is shown in Table 3. we use tuple (PP, NSPC, CI) to denote the detailed
settings. With the GC settings shown in Table 3, there is no appreciable change in
the tpm (transactions-per-minute) and IOPS (either reads or writes) compared

788 Y. Wang, K. Goda, and M. Kitsuregawa

Table 3. Performance Metrics of NILFS2-based transaction throughput of the com-
mercial database on flash memory with GC

10 warehouses, 10 virtual users

tpm IOPS
Average

Response Time (ms)
of I/O Request

No GC 9983
reads: 406

1.02writes: 1792
total: 2198

GC(1, 2, 5) 9933
reads: 384

1.82writes: 1856
total: 2240

Fig. 9. Transaction throughput with (0, NSPC, CI) on commercial DBMS with 10
warehouses and 10 virtual users

with that without GC. The IOPS includes the IOs issued for GC, so the average
response time increases due to the additional IO added by the GC.

We set the protection period to 0, then the obsolete data blocks can be cleaned
immediately when the cleaning process is invoked. The transaction throughput
with (0, NSPC, CI) is disclosed in Fig. 9. It shows that a greedy cleaning strat-
egy (large NSPC and short CI) will have a detrimental effect to the transaction
throughput, although the cleaning is very efficient. The maximum additional IO
for GC can be roughly calculated by NSPC×SegmentSize

CI . For example, in Fig. 9,
when NSPC = 4, the CI should ≥ 30s to keep the transaction throughput
from falling heavily. We use 8MB segment size,2 thus the additional IO is about
2 We use 4KB block size for the NILFS2 file system, and number of blocks per segment

is 2048, so the segment size is 8MB.

Evaluating NIPU for Flash-Based Transaction Processing Systems 789

4×8MB
30s ≈ 1.07MB/s. We should keep the additional IO less than 1.07MB/s,

then the performance will not be degraded. Therefore, carefully choosing the
value of (NSPC, CI) and Segment Size with heuristic method would ensure the
high transaction throughput as well as the high utilization of the disk cleaned
by GC.

5 Related Work

5.1 Non-In-Place Update Techniques

Continuous data protection (CDP) [21][24] is a backup technology automatically
saving a copy of every change made to that data to a separate storage location
in an enterprise storage system. Another successful example is the Sprite LFS
[18], a log-structured file system. The LFS is designed to exploit fast sequential
write performance of hard disk, by converting the random writes into sequential
writes. However, the side effect is that the sequential reads may also be scattered
into random reads. Overall, the performance can be improved to write-intensive
applications. The LFS is also expected to improve the random write performance
of flash memory, since the fast read performance of flash memory well mitigates
the side effect. For the garbage collection of LFS, an adaptive method based
on usage patterns is proposed in [15]. Shadow paging [20] is a copy-on-write
technique for avoiding in-place updates of pages. It needs to modify indexes and
block lists when the shadow pages are submitted. This procedure may recurse
many times, becoming quite costly.

5.2 Flash-Based Technologies

By a systematical “Bottom-Up”view, the research on flash memory can be cat-
egorized as follow:

Hardware Interface. This is a layer to bridge the operating system and flash
memory, usually called FTL (Flash Translation Layer). The main function of
FTL is mapping the logical blocks to the physical flash data units, emulating
flash memory to be a block device like hard disk. Early FTL using a simple
but efficient page-to-page mapping [8] with a log-structured architecture [18].
However, it requires a lot of space to store the mapping table. In order to reduce
the space for mapping table, the block mapping scheme is proposed, using the
block mapping table with page offset to map the logical pages to flash pages
[1]. However, the block-copy may happen frequently. To solve this problem, Kim
improved the block mapping scheme to the hybrid scheme by using a log block
mapping table [10].

File System. Most of the file system designs for flash memory are based on
Log-structured file system [18], as a way to compensate for the write latency
associated with erasures. JFFS, and its successor JFFS2 [7], are journaling file
systems for flash. JFFS2 performs wear-leveling with the cleaner selecting a block

790 Y. Wang, K. Goda, and M. Kitsuregawa

with valid data at every 100th cleaning, and one with most invalid data at other
times. YAFFS [23] is a flash file system for embedded devices.

Database System. Previous design for database system on flash memory mainly
focused on the embedded systems or sensor networks in a log-structured behav-
ior. FlashDB [14] is a self-tuning database system optimized for sensor networks,
with two modes: disk mode for infrequent write, much like regular B+–tree; log
mode for frequent write, employed a log-structured approach. LGeDBMS [9], is
a relational database system for mobile phone. For enterprise database design
on flash memory, In-Page Logging [12] is proposed. The key idea is to co-locate
a data page and its log records in the same physical location.

6 Conclusion and Future Work

For transaction processing system on flash memory, we describe non-in-place
update techniques to improve the transaction throughput. In a system based
on NIPU techniques, the write operations are performed sequentially; while the
GC cleans the obsolete data in the background. This strategy greatly reduces
time-consuming erase operations for applications with intensive write operations,
thereby resulting in improved overall performance. We use a traditional log-
structured file system to build a test model for examination. We then validated
NIPU techniques with a set of experiments and showed that the NIPU-based
systems can considerably speed up the transaction throughput by x3.0 to x6.6
on flash memory.

In the near future, we plan to apply the non-in-place update technique into
different layers of the system and investigate appropriate algorithms for different
context.

References

1. Ban, A.: Flash file system. US Patent No. 5404485 (April 1995)
2. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance flash

disks. Operating Systems Review 41(2), 88–93 (2007)
3. EMC: White Paper: Leveraging EMC CLARiiON CX4 with Enterprise Flash

Drives for Oracle Database Deployments Applied Technology (December 2008)
4. Graefe, G.: Write-Optimized B-Trees. In: VLDB, pp. 672–683 (2004)
5. Hsu, W.W., Smith, A.J., Young, H.C.: Characteristics of production database

workloads and the TPC benchmarks. IBM Systems Journal 40(3), 781–802 (2001)
6. Iometer, http://www.iometer.org
7. JFFS2: The Journalling Flash File System, Red Hat Corporation (2001),

http://sources.redhat.com/jffs2/jffs2.pdf

8. Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory Based File System. In:
USENIX Winter, pp. 155–164 (1995)

9. Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.: LGeDBMS: A Small DBMS
for Embedded System with Flash Memory. In: VLDB, pp. 1255–1258 (2006)

10. Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-efficient flash translation
layer for CompactFlash systems. IEEE J CE 48(2), 366–375 (2002)

http://www.iometer.org
http://sources.redhat.com/jffs2/jffs2.pdf

Evaluating NIPU for Flash-Based Transaction Processing Systems 791

11. Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S., Moriai, S.: The Linux
implementation of a log-structured file system. Operating Systems Review 40(3),
102–107 (2006)

12. Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-page logging approach.
In: SIGMOD Conference, pp. 55–66 (2007)

13. MySQL, http://www.mysql.com/
14. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for NAND flash. In:

IPSN, pp. 410–419 (2007)
15. Neefe, J.M., Roselli, D.S., Costello, A.M., Wang, R.Y., Anderson, T.E.: Improving

the Performance of Log-Structured File Systems with AdaptiveMethods. In: SOSP,
pp. 238–251 (1997)

16. NTT: New Implementation of a Log-structured File System,
http://www.nilfs.org/en/about_nilfs.html

17. Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D.,
Lacaita, A.L., Bez, R.: Reliability study of phase-change nonvolatile memories.
IEEE J DMR 4(3), 422–427 (2004)

18. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-
Structured File System. ACM Trans. Comput. Syst. 10(1), 26–52 (1992)

19. Samsung: K9XXG08XXM Flash Memory Specification (2007)
20. Shenai, K.: In: Introduction to database and knowledge-base systems, p. 223. World

Scientific, Singapore (1992)
21. Strunk, J.D., Goodson, G.R., Scheinholtz, M.L., Soules, C.A.N., Ganger, G.R.:

Self-Securing Storage: Protecting Data in Compromised Systems. In: OSDI, pp.
165–180 (2000)

22. TPC: Transaction Processing Performance Council: TPC BENCHMARK C, Stan-
dard Specification,Revision 5.10 (April 2008)

23. YAFFS: Yet Another Flash File System, http://www.yaffs.net
24. Zhu, N., Chiueh, T.: Portable and Efficient Continuous Data Protection for Net-

work File Servers. In: DSN, pp. 687–697 (2007)

http://www.mysql.com/
http://www.nilfs.org/en/about_nilfs.html
http://www.yaffs.net

	Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems
	Introduction
	Issue of Flash Memory for Transaction Processing
	NIPU Techniques on Flash-Based Transaction Processing System
	Experimental Evaluation
	Experiment Setup
	Transaction Throughput
	IO Performance
	CPU Utilization
	Disk Buffer Cache
	Influence of Garbage Collection

	Related Work
	Non-In-Place Update Techniques
	Flash-Based Technologies

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

