
Fast Likelihood Search for Hidden Markov Models

Yasuhiro Fujiwara

NTT Cyber Space Labs and University of Tokyo

Yasushi Sakurai

NTT Communication Science Labs

and

Masaru Kitsuregawa

University of Tokyo

Hidden Markov models (HMMs) are receiving considerable attention in various communities and

many applications that use HMMs have emerged such as mental task classification, biological

analysis, traffic monitoring, and anomaly detection. This paper has two goals; The first goal is
exact and efficient identification of the model whose state sequence has the highest likelihood for

the given query sequence (more precisely, no HMM that actually has a high-probability path for the

given sequence is missed by the algorithm), and the second goal is exact and efficient monitoring
of streaming data sequences to find the best model. We propose SPIRAL, a fast search method

for HMM datasets. SPIRAL is based on three ideas; (1) it clusters states of models to compute

approximate likelihood, (2) it uses several granularities and approximates likelihood values in
search processing, and (3) it focuses on just the promising likelihood computations by pruning

out low-likelihood state sequences. Experiments verify the effectiveness of SPIRAL and show that

it is more than 490 times faster than the naive method.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining

General Terms: Algorithms, Theory

Additional Key Words and Phrases: hidden Markov model, likelihood, upper bound

Portion of this article have appeared in the 2008 ACM conference of Knowledge Discovery and

Data Mining (SIGKDD).
Authors’ address: Y. Fujiwara (contact author), NTT Cyber Space Laboratories, 1-1 Hikari-

no-oka, Yokosuka-Shi, Kanagawa, 239-0847 Japan; e-mail: fujiwara.yasuhiro@lab.ntt.co.jp; Y.

Sakurai, NTT Communication Science Laboratories, 2-4 Hikaridai, Seika, Soraku, Kyoto, 619-
0237 Japan; e-mail: yasushi.sakurai@acm.org; M. Kitsuregawa, Institute of Industrial Science,

University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; e-mail: kitsure@tkl.iis.u-

tokyo.ac.jp
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 1529-3785/2009/0700-0001 $5.00

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009, Pages 1–36.

2 · Y. Fujiwara et al.

1. INTRODUCTION

The hidden Markov model is a ubiquitous tool for representing probability distribu-
tions over sequences of observations. Since HMMs, which assess sequential data as
sequences of state transitions, are robust against noise, significant applications that
use HMMs have emerged, including mental task classification, biological analysis,
traffic monitoring, and anomaly detection. This paper has two goals. The first
goal is efficient identification of the model whose state sequence has the highest
likelihood for the given query sequence, exactly (i.e., an HMM that actually has
a high-probability path for the given sequence is never missed by the algorithm.).
The second goal is efficient monitoring of streaming data sequences to find the best
model without exception. Although numerous studies have been published in var-
ious research areas [Siddiqi and Moore 2005; Esposito and Radicioni 2007], to the
best of our knowledge, this is the first study to address the HMM search problem
that guarantees answer exactness.

1.1 Problem Definition

HMMs have found their widest application in problems that have inherent tem-
porality such as speech recognition or gesture recognition. HMM has a number
of parameters whose values are set so as to best explain the training patterns for
the known category. A given pattern is classified by the model with the highest
posterior probability, likelihood, i.e. the one that best explains the given pattern.

Increasing the speed of computing HMM likelihood remains a major goal for the
speech recognition community. This is because most of the total processing time
(30-70%) in speech recognition is used to compute the likelihoods of continuous den-
sity HMMs where each state is modeled by a separate mixture of Gaussian densities
[Gales et al. 1999]; the likelihood is computed using the Viterbi algorithm [Rabiner
and Juang 1986]. Replacing continuous density HMMs with discrete HMMs is a
useful approach to reducing the computation cost [Sagayama et al. 1995]. Unfortu-
nately, the CPU cost still remains excessive, especially for large datasets, since all
possible likelihoods are computed.

Therefore, this paper gives a solution by focusing on the following problem:

Problem 1. Given an HMM set, and a sequence X = (x1, x2, . . . , xn), find the
model whose state sequence has the highest likelihood, estimated with respect to X,
from the set of HMMs.

This problem is designed to handle human-generated queries. The system is a
repository storing a large collection of models, and the target of the system is to
identify the model that will best match the operator-given query sequence.

The focus on data engineering has recently shifted toward data stream applica-
tions [Abadi et al. 2003]. These applications handle continuous streams of input
from external sources such as a sensor.

We address the following problem in this paper:

Problem 2. Given an HMM set, and a subsequence of data stream X = (x1, x2, . . . , xn)
where xn is the most recent value, monitor incoming sequence X to identify the
model whose state sequences has the highest likelihood, estimated with respect to X,
from the set of HMMs.
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 3

Problems 1 and 2 focus on finding the best model. However, we can handle
range queries (find the models whose likelihoods exceed a given threshold) and
K-nearest neighbor queries (find the highest K likelihood models) as described in
later sections.

In order to simplify the presentation, in the remainder of the paper, we assume
that the models have non-zero likelihood, and that they will never give exactly the
same likelihoods. This assumption is made so that there is always just one best
model for any given sequence. This assumption can be eliminated without much
problem and is not pursued in this paper.

1.2 Problem Motivation

The problems tackled in this paper must be overcome to develop the following
important applications.

1.2.1 Applications of processing human-generated queries. We show mental task
classification and biological analysis as examples of the first problem.

Mental task classification. The Brain Computer Interface (BCI), which is mainly
designed to help disabled people control personal computers using biofeedback, is
a completely new approach in the field of neurology [G. Pfurtscheller and Neuper
1994]. Biofeedback is a coaching and training process that helps people learn how
to change patterns of behavior, to take greater responsibility for their health and for
their mental, physical, emotional and spiritual well-being. Since it is undesirable
for disabled people to have to adapt to their computers, the basic idea behind BCI
is for the computer to adapt rather than the person.

Electroencephalogram (EEG) signals are weak voltages resulting from the spatial
summation of electrical potentials in the brain cortex, which can easily be detected
by electrodes suitably placed on the scalp. They result from the superposition of
three main types of brain potential: oscillatory, event-related, and slow potential
shifts. Different components of the EEG signal have been widely demonstrated to
have measurable correlations with the brain activity associated with specific mental
tasks.

Mental task classification using EEG is an approach to understanding human
brain functions. HMM processing is a major tool for EEG since it has the capa-
bility to classify probabilistic and statistical signals. In the classification, artifacts,
such as body movement and respiration, are removed from the original signals by
digital filtering, correlation analysis, or independent component analysis [Novak
et al. 2004]. HMMs are prepared, and their parameters are trained using refined
data. The HMMs are manually labeled and stored in a database. To classify a
query sequence, it is fitted to all trained models, and is classified as belonging to
the model with the highest likelihood [Zhong and Ghosh 2002].

Biological analysis. One of the most important contributions of biological se-
quences to the study of evolution is the discovery that sequences of different organ-
isms are often related. Similar genes are conserved across widely divergent species,
often performing a similar or even identical function; some functions are altered
through the forces of natural selection [Mount 2001]. Thus, many genes are repre-
sented in highly conserved forms over a wide range of organisms. Sequence searches

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

4 · Y. Fujiwara et al.

against large databases have become a mainstay of bioinformatics, and sequencing
projects in which the entire genomic DNA sequence of an organism is obtained
have become quite commonplace [Durbin et al. 1999]. Search techniques can also
be especially useful in determining the function of genes whose sequences have been
established in the laboratory but for which there is no biological information. In
these searches, the sequence of the gene of interest is compared with every sequence
in a sequence database, and similar ones are identified. Alignments with the best-
matching sequences are shown and scored. If the query sequence can be readily
aligned with a sequence with known function, structure, or biochemical activity,
the query sequence is predicted to have similar properties.

The primary advantage of HMMs is that they can be automatically trained using
unaligned sequences. Therefore, HMMs have gained increasing acceptance by the
computational biology community as a means of sequence modeling, multiple align-
ment, and profiling [Baldi et al. 1994]. HMMs can also be used to model protein
families, or families of other molecular sequences such as DNA and RNA [Haussler
et al. 1993]. When modeling proteins, we observe the amino acids in the query
sequence of the protein. For all models in the databases, likelihoods are computed
with the Viterbi algorithm. The query sequence is assigned to the family of the
model that has the highest likelihood among those in the database.

1.2.2 Applications that monitor data streams. Traffic monitoring and anomaly
detection are key examples of the second problem.

Traffic monitoring. Traffic congestion is an unpleasant fact of modern life. The
existence of saturated freeways and congested main roads all over the world, reflects
the fact that the existing road networks are unable to cope with the demand for
mobility which will only increase in the future. Especially in densely populated
regions, it is socially untenable to expand the existing infrastructure in order to
handle the situation. On the other hand, mobility is vital for continued economic
development.

The existing road network, therefore, has to be used more efficiently by the ap-
plication of information systems that inform road users about the traffic conditions
or provide route guidance. The basic requirement for this service is the precise
processing of spatial and temporal data to yield accurate traffic status. Usually the
traffic status is measured locally by various detection technologies, mostly inductive
loops. In order to provide network-wide information, it is convenient to combine
the measured data with a suitable traffic flow model [Helbing et al. 2000]. This
data can be processed by information systems whose outputs allow the road users
to organize their trips with regard to individual preferences.

Various algorithms have been advanced to explain traffic congestion based on fluid
flow, cellular automata, and microscopic computer simulations. Unfortunately, all
of these approaches have limitations, particularly the need to tune many parameters
to each individual freeway.

HMM is a very cost-effective tool because it can extract the model parameters
from actual traffic data and effectively identify traffic status [Bickel et al. 2001;
Kwon and Murphy 2000]. Several kinds of information can be extracted from loop
detector data such as the number of vehicles passing the location during a given
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 5

time interval (flow rate), the fraction of time that vehicles are over the loop detector
(occupancy), and the vehicle velocities averaged over the time interval. Model
parameters are estimated with this information and traffic status like congestion
or free flow, which are defined beforehand. Once models are estimated, the traffic
status can be identified with the likelihood for streaming data sequence from a
road. For example, if a model estimated from past congested data shows the best
likelihood, the road can be labeled as ‘traffic jam’.

Anomaly detection. The widespread use of the Internet and computer networks
has brought, with all its benefits, another kind of threat: that of people using illicit
means to access, invade, and attack computers. Since we have become extremely
dependent on the use of information services, the danger of crucial operations being
seriously disrupted is frightening. What is worse, it is estimated than less than 4% of
these attacks will be detected or reported [Barbará et al. 2001]. Therefore, anomaly
detection in computer science is a key problem area because of its importance and
the widespread interest in the subject [Denning 1998].

Automated modeling of human behavior is useful in the computer security do-
main of anomaly detection. In the user modeling facet of the anomaly detection
domain, the task is to develop a model or profile of the normal working status of a
computer system user and to detect anomalies as deviations from expected behav-
ior patterns. A subset of hostile activities can then be detected through anomalous
behaviors. For example, recursively searching system directory hierarchies by hand
or browsing through another user’s files is unusual behavior for many users and the
presence of such activities may be indicative of an intruder who has penetrated the
account.

Recently, one feature of the anomaly detection domain is the threat of replay
attacks, in which an attacker monitors a system and records information such as
user commands; these commands then later are replayed back to the system literally.
Because user commands were, in fact, generated by a valid user, it seems perfectly
normal to the detection sensors unless some check is made for events that are too
similar to past events.

To avoid replay attacks, HMMs can be used to identify users by their command
line behavior patterns [Lane 1999; Warrender et al. 1999]. First, command traces
were gathered from UNIX users. The command traces were parsed with a recognizer
for the shell command language to convert them into a format suitable for scanning
by HMMs. Each whitespace-delimited command is considered to be a separate
symbol. The feature selection step removes filenames and replaces them with the
count of the number of file names occurring in the command line. Removal of
filenames reduces the alphabet size by deleting excessively unique symbols and
improves recognition accuracy. A model is trained with the observed behavioral
patterns of the valid user. The likelihood of the incoming data sequence is evaluated
with respect to the best model and sequences judged too sufficiently likely, the
likelihood is too high, are labeled as anomalous, i.e. a possible replay attack.

In addition to the applications mentioned above, HMMs have been used in many
fields such as scene classification for video analysis [Huang et al. 2005], isolated
word recognition for speech processing [Rabiner and Juang 1986], gesture recogni-
tion in motion-based image processing and recognition [Eickeler et al. 1998], and

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

6 · Y. Fujiwara et al.

handwritten character recognition in optical character recognition [Hu et al. 1996].
Our proposed method is applicable to all of these areas.

1.3 Contribution

We propose a novel method called SPIRAL that offers fast likelihood searches. In
order to reduce search cost, (1) we merge multiple states to compute approximate
likelihood, (2) we compute the approximate likelihood with several levels of granu-
larity, and (3) we prune low-likelihood state sequences that will not yield a fruitful
model. SPIRAL has the following attractive characteristics based on the above
ideas:

—High-speed searching: Solutions based on the Viterbi algorithm are pro-
hibitively expensive for large HMM datasets. SPIRAL uses carefully designed
approximations to efficiently identify the most likely model.

—Exactness: SPIRAL does not sacrifice accuracy; it returns the highest likelihood
model without any omission.

—No restriction on model type: It achieves a high level of search performance
regardless of model type.

In order to achieve high performance and to find the exact answer, SPIRAL first
prunes many models with approximate likelihoods at low computation cost. The
exact likelihood computations are limited to the minimum necessary, which yields
a dramatic reduction in the total search cost. Our experiments compared the
proposed method with the method based on the Viterbi algorithm. As expected,
the experiments demonstrate the superiority of SPIRAL. Specifically, SPIRAL is
more than 490 times faster.

This article is an extended version of the conference paper of Fujiwara et al.
[2008]; there are three additions. First, we enhance the search algorithm to bet-
ter handle given query sequences (Section 4); its effectiveness is shown using an
additional experimental dataset (Section 7). We introduce an additional problem
for data stream processing (Section 1) and then our solution (Section 5). Finally,
we discuss some extensions to SPIRAL when implementing it in real applications
(Section 8).

The remainder of this paper is organized as follows. Section 2 describes related
work on HMMs and data engineering. Section 3 overviews some of the background
of HMMs. Section 4 introduces SPIRAL and shows how it identifies the best
model for query sequence. Section 5 explains our stream processing algorithm to
support the identification of the best model. Section 6 gives a theoretical analysis
of SPIRAL. Section 7 reviews the results of our experiments. In Section 8, we give a
discussion on some topics in implementing SPIRAL. Section 9 is a brief conclusion.

2. RELATED WORK

The basic theory of the HMM was published by Baum and his colleagues in the
the late 1960’s and early 1970’s, but it has been well understood and used in the
speech recognition field only since the early 1980’s [Rabiner and Juang 1986]. Re-
cently, HMMs have been applied in various fields such as pattern recognition and
time sequence clustering. The database community has published many studies on
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 7

time sequence matching and query processing of uncertain data, which are slightly
related to this work. Although numerous studies have been published in various
research areas, none of the described techniques meet the conditions listed in Sec-
tion 1.

2.1 HMM

Computing HMM likelihood in reasonable time remains a major goal for the speech
recognition community. Continuous density HMMs typically have 8-64 Gaussian
components, and the likelihood of each component must be separately computed,
which incurs high CPU cost. Hunt et al. studied a technique based on LDA
(Linear Discriminant Analysis) for reducing the number of Gaussian components
[Hunt and Lefebvre 1989]. It is well known that Gaussian models are statistically
accurate if the input feature vector is near the Gaussian mean. Based on this idea,
Bocchieri presented a method that computes the likelihoods of only the Gaussian
neighbors, rather than the likelihood of all Gaussians [Bocchieri 1993]. Replacing
continuous density HMMs with discrete HMMs is a useful approach to reducing
the computation cost, since the likelihoods of a discrete HMM can be computed
by looking them up in a scalar quantized probability table [Sagayama et al. 1995].
These techniques can be applied to complement our method. Unfortunately, it still
incurs excessive CPU cost, especially for large datasets, since all possible likelihoods
are computed.

The Beam search algorithm is a popular approach to reducing the computational
expense of exhaustive dynamic programming search techniques such as the Viterbi
algorithm and has been employed in many studies [Ney et al. 1992; F. Jelinek
1999]. The basic idea of Beam search is that a path passing through states whose
likelihood is much less than the highest one is not be likely to become the best path
in a dynamic programming search (Viterbi path in the Viterbi algorithm). Beam
search defines a pruning beam width that identifies states that can be disregarded
according to their likelihood. It is clear from the naivety of the pruning criterion
that this reduction technique has an undesirable property; the best path may be
lost.

Attention has been focused on HMMs as a clustering tool for time-series data
where the HMMs are used to provide a similarity measure. Smyth et al. were the
first to discuss k-clustering of time-series data with HMMs [Smyth 1996]. They
proposed a method that automatically detects the number of clusters based on the
data distribution as determined from cross-validated likelihoods. Subsequent work
by Li et al. focused on the model selection issue (i.e. locating the HMM topology
that best represents the data) and on the clustering structure issue (i.e. finding
the most likely number of clusters) [Li and Biswas 1999; 2000]. Lae et al. similarly
studied the k-clustering problem for sequence datasets [Law and Kwok 2000]. They
applied rival-penalized competitive learning to the problem to improve clustering
accuracy.

2.2 Databases

Most previous studies have targeted the indexing of time-series databases. Agrawal
et al. studied whole sequence matching (similarity searches for equal length se-
quences) [Agrawal et al. 1993]. Faloutsos et al. and Moon et al. generalized whole

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

8 · Y. Fujiwara et al.

sequence matching to subsequence matching (similarity searches that focus on ar-
bitrary length sequences) [Faloutsos et al. 1994; Moon et al. 2002]. These studies
use Euclidean distance as the similarity distance measure.

Even though many similarity functions have been proposed [Agrawal et al. 1995;
Das et al. 1997] , DTW (Dynamic Time Warping) is the dominant distance measure;
it provides scaling along the time axis. Yi et al. first studied DTW for very large
datasets [Yi et al. 1998]. Keogh investigated a search method based on global
constraints which limits the duration along the time axis [Keogh 2002]. The method
guarantees no false negatives.

The focus of many studies has shifted toward raising the robustness of noisy data
search. Actual values are estimated using PDFs (Probability Density Functions).
Cheng et al. classified probabilistic queries in two dimensions into multiple types:
aggregate/non-aggregate and entity-based/value-based queries. They then studied
efficient processing for all types of queries [Cheng et al. 2003]. Probabilistic thresh-
old queries were also investigated by Cheng et al.; probabilities are computed to
determine whether they exceed a given threshold [Cheng et al. 2004]. Tao et al. in-
troduced U-tree [Tao et al. 2005] for uncertain data values, and this can be applied
to any type of PDF, such as Zipf and Poisson.

The challenges have made researchers re-think many parts of traditional database-
management system design in the streaming context, especially with regard to query
processing using correlated attributes [Deshpande et al. 2005], scheduling [Babcock
et al. 2003], load shedding [Tatbul et al. 2003], and memory requirements [Arasu
et al. 2002]. Various architectures for data stream management systems, such as Au-
rora [Abadi et al. 2003], Stream [Motwani et al. 2003], Telegraph [Chandrasekaran
et al. 2003], and Gigascope [Cranor et al. 2003], have been presented. They are
slightly related to our work.

3. HIDDEN MARKOV MODEL

HMM have been the mainstay of the statistical modeling techniques used in mod-
ern speech recognition systems. Variants of HMMs are still the most widely used
technique in that domain, and are generally regarded as the most successful. In
this section we explain the basic theory of HMMs.

3.1 Definitions

Unlike the regular Markov model, in which each state corresponds to an observable
event, an HMM is used when the observation is a probabilistic function of the state.
An HMM is composed of the following probabilities:

—Initial state probability: π={πi}
The probability of the state being ui (i = 1, · · · ,m) at time t = 1.

—State transition probability: a={aij}
The probability of the state transiting from state ui to uj .

—Symbol probability: b(v)={bi(v)}
The probability of symbol v being output from state ui.

We use the following urn-and-ball example to explain the basic HMM concept.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 9

Symbols Definitions

xt Value of sequence X at time t (t = 1, · · · , n)

n Sequence length of X

ui i-th state of an HMM (i = 1, · · · , m)

m Number of states

π={πi} Initial state probability of ui

a={aij} State transition probability from ui to uj

b(v)={bi(v)} Symbol probability of symbol v in state ui

P Exact likelihood

P̂ Approximate likelihood

Table I. Definition of main symbols.

Example 1. Assume there are m urns that represent m states and in each urn
there are balls of different colors. Also assume that the observation sequence of
length n is created by randomly extracting a ball from a randomly selected urn.
There can be multiple combinations of state (urn) sequences that correspond to the
same observation sequence (sequence of different ball colors). This is where the
“Hidden” concept lies, since the exact state transition sequence corresponding to
one observation sequence is unknown. To find one certain state transition sequence,
some restrictions need to be applied, such as “the state sequence that has the highest
probability”. In this example, the probability of extracting a certain ball color from
each urn is b(v). The urn selection probabilities are π and a.

HMMs are classified by the structure of the transition probability a as shown
in Figure 1, where the white circles represent states, and the arrows represent
transitions. Ergodic HMMs, or fully connected HMMs, have the property whereby
every state can be reached from every other state. As shown in Figure 1 (a), the
m = 4 state model has the property whereby every aij coefficient is positive. Hence,
for Figure 1 (a), we have

a =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 . (1)

Left-right HMM is another type of HMM; its state transitions have the property
whereby, as time increases, the state number increases or stays the same. The
fundamental property of all left-right HMMs is: (1) the state transition probability
is aij = 0 for j < i (that is, transitions to lower number states are prohibited).
(2) For the initial state probabilities, π1 = 1 (i.e., πi = 0 for i 6= 1) since left-
right HMMs always begin with the first state. (3) An additional constraint is that
possible transitions are limited to a small number of states. For example, aij = 0
for j ≥ i + 2 in Figure 1 (b), which means possible transitions are limited to two
states. Overall, the state transition probabilities for Figure 1 (b) are given by

a =

a11 a12 0 0
0 a22 a23 0
0 0 a33 a34

0 0 0 a44

 . (2)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

10 · Y. Fujiwara et al.

(a) Ergodic HMM (b) Left-right HMM

Fig. 1. HMM types.

3.2 The Viterbi algorithm

The well-known Viterbi algorithm is a dynamic programming algorithm for esti-
mating the likelihood of sequence X. The maximum probability yielded by a single
state sequence corresponds to that likelihood. The state sequence, which gives the
likelihood, is called the Viterbi path. For a given model, the likelihood P of X is
computed as follows,

P = max
1≤i≤m

(pin) (3)

pit =
{

max1≤j≤m(pj(t−1) · aji) · bi(xt) (2 ≤ t ≤ n)
πi · bi(x1) (t = 1).

where pit is the maximum probability of state ui at time t. The likelihood is com-
puted based on the trellis structure shown in Figure 2, where states lie on the
vertical axis, and sequences are aligned along the horizontal axis. The likelihood is
computed using the dynamic programming approach that maximizes the probabili-
ties from previous states (i.e., each state probability is computed using all previous
state probabilities, associated transition probabilities, and symbol probabilities).

Example 2. Assume the following model and sequence.

π =

1
0
0

 , a =

0.5 0.5 0
0.5 0.25 0.25
0 0 1

 ,

b(1) =

1
0.75
0

 , b(2) =

0
0.25
0

 , b(3) =

0
0
1

X = (1, 1, 2, 3).

From the Viterbi algorithm, we have

p11=1, p12=0.5, p13=0, p14=0
p21=0, p22=0.75·0.5, p23=(0.5)2·0.25, p24=0
p31=0, p32=0, p33=0, p34=(0.5)2·(0.25)2.

The state sequence (u1, u1, u2, u3) gives the maximum probability. Consequently, we
have P = (0.5)2 · (0.25)2.

The Viterbi algorithm generally needs O(nm2) time since it compares m transi-
tions to obtain the maximum probability for every state, that is, it requires O(m2) in
each time tick. The naive solution to identifying the best model for query sequence
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 11

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

m

n

Fig. 2. Trellis structure.

would be to compute the likelihood for every model using the Viterbi algorithm,
and then choose the most likely model (i.e., the model that shows the highest like-
lihood). This incurs excessive CPU time if the trellis structures have large numbers
of states. Furthermore, the naive approach to monitoring data stream is to perform
this procedure each time a sequence value arrives. However, considering the high
frequency with which new values will arrive, more efficient algorithms are needed.

4. FINDING THE BEST MODEL: SPIRAL

In this paper, we mainly tackle two problems: processing human-generated query
sequences and monitoring data streams. We start by focusing on search processing
for a query sequence, and then discuss how to handle data stream in Section 5.

4.1 Ideas behind SPIRAL

Our solution is based on the three ideas described below.

Likelihood approximation. We introduce approximations to reduce the high cost
of the Viterbi algorithm solution. Instead of computing the exact likelihood of a
model, we approximate the likelihood, thus low likelihood models are efficiently
pruned.

The first idea is to reduce the model size. For given m states and granularity g,
we create m/g states by merging ‘similar’ states in the model (See Figure 3 (a)),
which requires O(nm2/g2) time to obtain the approximate likelihoods instead of
the O(nm2) time demanded by the Viterbi algorithm solution. We use a clustering
approach to find groups of similar states, then create a compact model that covers
the groups. We refer to it as the degenerate model.

This new idea has the following two major advantages. First, we can find a likely
model without any omission even though we use approximations. Search omissions
are avoided completely by upper bounding the likelihood. This means that we can
safely discard unpromising models at low CPU cost.

The second advantage is that this idea does not depend on model type. We
can estimate the approximate likelihoods for any model type since we do not use
any probability constraints. The choice of model type depends on the user or
application.

Multi-granularities. Instead of creating degenerate models at just one granularity,
we propose using multiple granularities to optimize the trade-off between accuracy

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

12 · Y. Fujiwara et al.

n

g
m

� � � �

� � � �

� � � �

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

(a) Likelihood approximation (c) Transition pruning

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

(b) Multi-granularities

Fig. 3. Basic ideas behind SPIRAL.

and comparison speed. As the size of a model increases, accuracy improves (i.e.,
the upper bounding likelihood decreases), but the likelihood computation time
increases. Therefore, we generate models at granularity levels that form a geometric
progression: g = 1, 2, 4, . . . , m, where g = 1 gives the exact likelihood while g = m
means the coarsest approximation. We then gradually increase the size of the
models (i.e., we use a model with a smaller g), which improves the accuracy of the
approximate likelihood, as the search progresses (See Figure 3 (b)).

Low-likelihood models (i.e., unlikely models) are pruned in the coarse-grained
approximation stages, whereas fine-grained approximation is needed to more ac-
curately compute high-likelihood models. Therefore, we apply fine-grained ap-
proximation only to the models that remain after coarse-grained approximation.
Consequently, we can balance the competing goals of accuracy and computation
time.

This approach reinforces the first idea by adjusting the granularity of a model
according to its exact likelihood. That is, we can identify the best model among
a large number of models efficiently since exact likelihood computations are mini-
mized.

Transition pruning. Although our approximation technique is able to discard
unlikely models, we still rely on exact likelihood computation to guarantee the
correctness of the search results. Here we focus on reducing the cost of this com-
putation.

The Viterbi path shows the state sequence from which the likelihood is computed.
Even though the Viterbi algorithm does not compute the complete set of paths, the
trellis structure includes an exponential number of paths. Clearly the exhaustive
exploration of all paths is not computationally feasible, especially for a large number
of states. We therefore ask the question, which paths in the structure are not
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 13

promising to explore? This can be answered by using a threshold (say θ).
Our search algorithm that identifies the best model maintains the candidate (i.e.,

best-so-far) likelihood before reporting the final likelihood. We use θ here as the
best-so-far highest likelihood. θ is updated, i.e. increased, when a more promising
model is found during search processing. Note, we assume that no two models have
exactly the same likelihoods.

We exclude the unlikely paths in the trellis structure by using θ, since θ never
decreases during search processing. If the upper bounding likelihood of paths that
pass through a state is less than θ, that state cannot be contained in the Viterbi
path, and we can safely discard them.

After pruning all viable paths the likelihood computation can be stopped early,
and while m states may need to be searched for the next observation, the range of
computation is less than that demanded by the Viterbi algorithm which requires
O(m2) times in each time tick.

This technique can be applied to approximate likelihood computation as well as
to exact computation. This means that we can compute the approximate likelihood
more efficiently.

4.2 Likelihood approximation

Our first idea involves clustering states of the original models and computing upper
bounding likelihoods to realize reliable model pruning.

4.2.1 State clustering. Attempts to minimize model complexity by aggregating
states have been reported in the field of reinforcement learning [Singh et al. 1994].
We reduce the size of the trellis structure by merging similar states in order to com-
pute likelihoods at low computation cost. To achieve this, we adopt a clustering
approach. Given granularity g, we try to find m/g clusters from among the m orig-
inal states. We first describe how to compute the probabilities of a new degenerate
model, and then show our clustering method.

We merge all the states in a cluster and create a new state. For the new state, we
choose the highest probability among the probabilities of the states to compute the
upper bounding likelihood (described in Section 4.2.2). We obtain the probabilities
of new state uc by merging all the states in cluster C as follows:

π̂c = max
ui∈C

(πi), âcc = max
ui∈C, uk∈C

(aik),

âcj = max
ui∈C

(aij) for any uj /∈ C, (4)

âjc = max
ui∈C

(aji) for any uj /∈ C,

b̂c(v) = max
ui∈C

(bi(v)).

We use the following example to explain state clustering.

Example 3. We use the model of Example 2. Let two clusters C1 and C2, and
the original states u1 and u2 be elements of C1; u3 is in C2. We obtain the new

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

14 · Y. Fujiwara et al.

state probability by taking the maximum value of the original probabilities:

π̂1 = max(π1, π2), â11 = max(a11, a12, a21, a22),
â12 = max(a13, a23), â21 = max(a31, a32),

b̂1(1) = max(b1(1), b2(1)), b̂1(2) = max(b1(2), b2(2)),

b̂1(3) = max(b1(3), b2(3)).

Thus, we have

π̂=
[

1
0

]
, â=

[
0.5 0.25
0 1

]
,

b̂(1)=
[

1
0

]
, b̂(2)=

[
0.25
0

]
, b̂(3)=

[
0
1

]
.

We use the following vector of features Fi to cluster state ui.

Fi = (πi; ai1, . . . , aim, a1i, . . . , ami; bi(v1), . . . , bi(vs)). (5)

where s is the number of symbols. We choose this vector to reduce approximation
error. The highest probabilities are the probabilities of a new state. Therefore,
the greater the difference in probabilities possessed by the two states, the greater
the difference in the vectors becomes. Thus a good clustering arrangement can be
found by using this vector.

In our experiments, we used the well-known k-means method to cluster states
1 where the Euclidean distance is used as a distance measure. However, we can
exploit BIRCH [Zhang et al. 1996] instead of the k-means method, the L1 distance
as a distance measure, or SVD to reduce the dimensionality of the vector of features.
The clustering method is completely independent of SPIRAL, and is beyond the
scope of this paper.

4.2.2 Upper bounding likelihood. We compute approximate likelihood P̂ from
degenerate models that have m̂(= m/g) states. Given a degenerate model, we
compute its approximate likelihood as follows:

P̂ = max
1≤c≤m̂

(p̂cn) (6)

p̂ct =
{

max1≤j≤m̂(p̂j(t−1) · âjc) · b̂c(xt) (2 ≤ t ≤ n)
π̂c · b̂c(x1) (t = 1).

where p̂ is the maximum probability of states.

Theorem 4.1. For any HMM model, the following inequality holds.

P ≤ P̂ . (7)

Proof: For each original state ui (1 ≤ i ≤ m), we have

pi1 ≤ π̂c · b̂c(x1) = p̂c1, (1 ≤ c ≤ m̂).

If 2 ≤ t ≤ n, we have

pit ≤ max
1≤j≤m̂

(p̂j(t−1) · âjc) · b̂c(xt) = p̂ct.

1We repeat the clustering procedure until there are no more changes.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 15

These equations mean that any path in the degenerated trellis structure gives the
upper bounding likelihood for the corresponding path in the original trellis struc-
ture. The Viterbi path gives the maximum probability yielded by the original
trellis structure, this property of the degenerated trellis structure is also true for
the Viterbi path. That is,

P = max
1≤i≤m

(pin) ≤ max
1≤c≤m̂

(p̂cn) = P̂ .

which completes the proof. 2

Theorem 4.1 provides SPIRAL with the property of finding the exact answer.
We provide a proof of this property in Section 6.

4.3 Multi-granularity

In the previous section, we presented an algorithm that computed the approximate
likelihood of a degenerate model with a single level of granularity. However, we can
also exploit multiple granularity. Here, we describe the gradual refinement of the
likelihood approximation with multiple granularity.

We use h + 1 distinct granularities that form a geometric progression gi = 2i

(i = 0, 1, 2, . . . , h). We, therefore, generate trellis structures of models that have
bm/gic states. gh represents the smallest (coarsest) model2 while g0 corresponds
to the original model, which gives the exact likelihood. gi becomes geometrically
smaller to give larger structures, which improves the approximation accuracy.

In search processing to identify the best model, we first compute the coarsest
structure for all models. We then obtain the candidate and the exact likelihood
θ. If a model has an approximate likelihood smaller than θ, that model is pruned
with no further computation. Otherwise, we compute a finer-grained structure for
that model, and check whether the approximate likelihood is smaller than θ. We
iterate this check until we reach g0. For example, if the original HMM has 16
states, SPIRAL computes the likelihoods of models that have 1, 2, 4, 8, 16 states in
this order until the model is pruned. Consequently, we can prune unlikely models
with appropriate granularity according to exact likelihood.

Later we describe search algorithms based on these approaches.

4.4 Transition pruning

We introduce an algorithm for computing likelihoods efficiently based on the fol-
lowing lemma:

Lemma 4.2. Likelihoods of a state sequence are monotonic non-increasing.

Proof: In Equations (3) and (6), likelihoods are computed by dynamic program-
ming to maximize the probabilities from previous states. This procedure ensures
that the likelihood of a state is less than or equal to the likelihoods of any transited
states. 2

We exploit the above lemma in pruning paths in the trellis structure. We intro-
duce eit, which indicates a conservative estimate of likelihood pit, to prune unlikely

2Note that the coarsest granularity is gh = 2blog2 mc. The coarsest model has one state.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

16 · Y. Fujiwara et al.

paths as follows:

eit =
{

pit · (amax)n−t ·∏n
j=t+1 bmax(xj) (1 ≤ t ≤ n− 1)

pin (t = n)
(8)

where amax and bmax(v) are the maximum values of the state transition probability
and symbol probability, respectively:

amax = max
i,j

(aij) (i = 1, . . . , m; j = 1, . . . , m) (9)

bmax(v) = max
i

bi(v) (i = 1, . . . , m) (10)

The estimate is exactly the same as the maximum probability of ui when t = n.
Estimate eit, the product of the series of the maximum values of the state transition
probability and symbol probability, has the upper bounding property assuming the
Viterbi path passes through ui at time t.

Theorem 4.3. For paths that pass through state ui(i = 1, . . . , m) at time t(1 ≤
t ≤ n), the following inequality holds for state uj(j = 1, . . . , m) at time n.

pjn ≤ eit (11)

Proof: If 1 ≤ t ≤ n − 1, for a state sequence that passes through state ui at
time t, the following equation holds at time t + 1 for any state uj(1 ≤ j ≤ m) from
Lemma 4.2:

pj(t+1) = pit · aij · bj(xt+1) ≤ pit · amax · bmax(xt+1)

Similarly, the following equation holds at time t + 2:

pj(t+2) ≤ pit · (amax)2 ·
t+2∏

k=t+1

(bmax(xk))

Consequently, given a state sequence that passes through state ui at time t, the
following equation holds at time n for any state uj(1 ≤ j ≤ m):

pjn ≤ pit · (amax)n−t ·
n∏

k=t+1

bmax(xk) = eit

If t = n, pin = ein. which completes the proof. 2

This property enables SPIRAL to search for models exactly, the proof of which
is given in Section 6.

In search processing, if eit gives a value smaller than θ (i.e, the best-so-far highest
likelihood in the search processing for the best model), state ui at time t for the
model cannot be contained in the Viterbi path. Accordingly, unlikely paths can be
pruned with safety. Figure 4 shows the algorithm for the likelihood computation.
The algorithm prunes unlikely paths in the trellis structure with θ. We can similarly
apply this algorithm to the approximate likelihood computation as well as to the
exact computation. Threshold θ is updated when searching the model. We show
this algorithm in the next section.

We use two arrays S and S ′ for dynamic programming to keep track of transitions.
We also use θ to improve the efficiency. The algorithm initializes the first array,
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 17

Algorithm Pruning
input: sequence X, threshold θ
output: estimate e

add all states to S′;
for t := 1 to n do

S := ∅;
for i := 1 to m do

compute eit for X from the transitions of S′;
if eit ≥ θ then

add ui to S;
end for
S′ := S;
if S = ∅ then // terminate the likelihood computation

return max1≤i≤m(eit);
end for

return max1≤i≤m(ein)

Fig. 4. Likelihood computation algorithm. The algorithm prunes unlikely paths against given
threshold θ.

S, every time tick. If the likelihood estimate of ui at t (i.e., eit) does not exceed
θ, the state is not included in S, which means we do not need to take the state
into account at t + 1. If S is empty, we terminate the likelihood computation since
the given model cannot yield a search result. We can optionally compute the state
sequence by backtracking to the maximum probability if the user requires it.

Now let us use the following example to explain how to prune transition paths.

Example 4. We use the model of Example 2 and set θ = 0.1. The path through
u2 at t = 1 is not promising since e21 = p21 · (13) · (1 · 0.25 · 1) = 0 is lower
than θ. Therefore, we do not take this path into account when we compute the
probabilities at t = 2. Similarly, we exclude the path through u3 at t = 1, the path
through u2 at t = 2, and the path through u3 at t = 2. At t = 3, for all states, the
likelihood estimates are lower than θ, so we terminate the likelihood computation
and determine that this is not a likely model.

4.5 Search algorithm

We show our approach to finding the best model for query sequence in this section.
Our approach is that we (1) prune low-likelihood models by using the approximate
likelihood, which guarantees the exact answer, and then (2) ensure that the model
selected can be the answer by exact likelihood computation, while minimizing the
number of exact likelihood computations.

SPIRAL exploits the exact likelihood of the candidate model to prune other
models. We present the simplest way of finding the candidate in [Fujiwara et al.
2008], which computes likelihoods of the models one by one. That is, approximate
likelihoods of a model are computed while gradually increasing the model size,
and if the approximate likelihood is smaller than θ, the model is pruned since it
cannot be a qualifying model. The exact likelihood is computed only when the
approximate likelihood of the finest model is greater than or equal to θ, and if the
exact likelihood is larger than θ, the candidate and θ are updated. However, this
approach can compute many models of finer granularities. For example, as the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

18 · Y. Fujiwara et al.

Algorithm Searching
input: query sequence X
output: the best model Mbest

θ := 0;
add all models to M;
for i := h to 0 do

θ′ := 0;

for each model M ∈ M do
compute Pi for M ;

if Pi ≥ θ′ then //select candidate
Mmax := M ;
θ′ := Pi;

end if
end for

compute P0 for Mmax;

if P0 ≥ θ then //update the candidate
Mbest := Mmax;

θ = P0;
end if
for each model M ∈ M do //prune models

if Pi < θ then
subtract M from M;

end for

return Mbest;

Fig. 5. Algorithm for processing query sequences.

worst-case scenario, if models are checked in increasing order of exact likelihood,
the candidate does not give efficient likelihood to prune models, and this approach
could not find the best model efficiently.

In this paper, we present a sophisticated search algorithm to overcome the above
problem. We compute likelihoods of all models with a fixed granularity to identify
the candidate, and then increase the model size after selecting the candidate. More
concretely, SPIRAL first computes approximate likelihoods of the coarsest struc-
ture for all models, and then chooses the best one (the candidate) in terms of the
coarsest approximate likelihood. SPIRAL prunes models with this candidate and
computes approximate likelihoods of the second coarsest structure for all remaining
models. The new candidate model is selected using the second coarsest approxi-
mations. SPIRAL iterates this procedure until it computes the exact likelihoods of
the remaining models.

This approach has the effect of finding good candidates efficiently as the model
size increases by pruning unpromising models. Since good candidates can be com-
puted with larger models, this procedure can reduce the computation cost for finer
granularities by pruning low likelihood models at low granularities; there are fewer
finer models to compute.

Figure 5 shows the search algorithm of SPIRAL. In this figure, Pi indicates the
likelihood of granularity gi, and M represents the set of models. We first compute
the approximate likelihoods of gh for all models, and then choose the best candidate.
We obtain the initial value of θ by computing the exact likelihood of the best
candidate. If the approximate likelihood is smaller than θ, we prune the model since
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 19

it cannot be a qualifying model. We continue to compute approximate likelihoods
while gradually enhancing the accuracy. We compute the exact likelihood of the
model that gives the maximum approximate likelihood at each level of granularity,
and we update the candidate and θ to find the best model efficiently, provided P0

is larger than θ.
Although we described only a search algorithm that can identify the model that

has the highest likelihood, this approach can be applied to range queries and K-
nearest neighbor queries. For range queries, we would utilize a search threshold as
θ, instead of the best likelihood used in the above search algorithm (i.e., we do not
use the candidate). The best K-th likelihood would be utilized instead of the best
likelihood for K-nearest neighbor queries.

5. STREAMING ALGORITHM

The previous section explained how our approach can be used to search for the
best model relative to a given query sequence; the implicit assumption was that the
algorithm handles static data. In this section, we show that SPIRAL can be used
to monitor data streams.

5.1 Background

Over the past few years, a great deal of attention in the networking and mobile-
computing communities has been directed toward building networks of collections of
sensors scattered throughout our environment. Researchers at several universities
have embarked on projects to produce small, wireless, battery powered sensors and
low level networking protocols [Kahn et al. 1999]. These attempts have brought us
close to the vision of ubiquitous computing in which computers and sensors assist
in every aspect of our lives. To fully realize this vision, however, it will be necessary
to process the data structure in the form it occurs in; i.e. as a stream of data values.

In data stream processing, the time interval of interest is generally called as the
window and there are three temporal spans for which the values of data stream
need to be calculated [Ganti et al. 2000; Gehrke et al. 2001]:

—Landmark window model: In this temporal span, data streams are computed
based on the values between a specific time point, called the landmark, and the
present.

—Sliding window model: Given sliding window length, n, and the current time
point, the sliding window model would compute the subsequence from the prior
n− 1 time to the current time.

—Damped window model: In this model, recent data values are more important
than earlier ones. That is, in a damped window model, the weights of data
decrease exponentially into the past.

This paper focuses on the sliding window model, which is illustrated in Figure 6,
because it is used most often and is the most general model [Zhu and Shasha 2002;
Gao and Wang 2005].

We consider the data stream as time-ordered series of tuples (time point, value).
Each stream has a new value available at each time interval, e.g. every second.
If a stream has no value at a time point, a value would be assigned to that time

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

20 · Y. Fujiwara et al.

Window i

・ ・ ・ ・ ・ ・ ・ ・

D a t a s t r e a m

Window i-1

Window i-2

Fig. 6. Sliding window model.

point based on interpolation. If there are several values during a time point, then
a summary value would be assigned to that time point, but this is beyond the
scope of this work. We assume the most recent sample is always taken at time
n. Hence, a streaming sequence takes the form of (. . . , x1, x2, . . . , xn). Likelihoods
are computed only with n values from the streaming sequence, so we are only
interested in subsequences of the streaming sequence from x1 to xn. Streaming
sequence length must not be shorter than n, but this is not a severe restriction
since the streaming sequence is longer than n after being received for some period.
Lifting this restriction is not difficult, and is not pursued in this paper.

In the previous section, we assumed that we have a fixed number of HMMs and
the operator-specified sequence. In this section, we assume that we have a fixed
number of HMMs and a subsequence of the data stream, the problem we deal with
here is to find the model which has the highest likelihood for each subsequence
extracted from the data stream. The naive method for monitoring data streams
is to compute the likelihood of the model with the Viterbi algorithm every time a
sequence value arrive. However, this approach is not feasible due to the fact that
data streams are likely to have high bit rates.

5.2 Our solution

Our approach for data stream processing mainly follows the approach for static
sequences mentioned in Section 4.5. Our search procedure, however, is carefully
designed to process high bit rate data streams, which is based on the following
observation of data streams:

—There is little difference between subsequences before and after the arrival of a
data value.
In the case of a data stream, incoming data values are continually being added
to the already received data. The sliding window model is only interest in the
subsequence of the latest n values. Therefore, there is little difference in the
subsequences before and after the arrival of the latest value, even though new
data values will arrive at high frequency.

Our first basic conclusion from this observation is that model granularity can
be efficiently decided by referring to the immediately prior granularity. From this
observation, it is to be expected that the likelihood of the model examined for
the subsequence changes little, and that we can prune the models efficiently by
continuing to use the prior granularities. That is, in the present time tick, the
initial granularity is set relative to the finest granularity of the previous time tick
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 21

at which model likelihood was computed. If model pruning was conducted at the
coarsest granularity, we use this granularity in the next time tick, otherwise we use
the granularity level that is one step down (coarser) as the initial granularity.

Example 5. If the original HMM has 16 states and the model was pruned with
the 1 state model (granularity g4, coarsest), we adopt the 1 state model (granularity
g4) as the initial model in the next time tick; if the model is pruned using the
approximate likelihood of 16 states (granularity g0) , we select the 8 states model
(granularity g1) as the initial model.

If the model is not pruned at the initial granularity, the approximate likelihood of
a finer-grained structure is computed to check for model pruning against the given
θ. This procedure is the same as the algorithm for handling static sequences.

This procedure enables SPIRAL to automatically change the granularities in ac-
cordance with the stream trend. That is, if the model likelihoods show a declining
trend, the granularity is made coarser; if the likelihoods are rising, SPIRAL com-
putes the likelihoods of finer-grained models.

Our second basic conclusion is to select the best model of the previous time as
the initial candidate. The search algorithm for static sequences (which described
in Section 4.5) selects the initial candidate based on the approximate likelihood of
the coarsest model to find the best model. However, from the observation, the best
model of the last time tick is likely to be the best model again. Therefore, we first
compute the exact likelihood of the best model of one time tick before to obtain
the initial θ needed to identify the best model effectively.

5.3 Search algorithm

Figure 7 depicts our approach to data stream processing. In this figure, Mi rep-
resents the set of models for which we compute the likelihood of granularity gi,
and M′

i represents the set of models computed with the finest granularity in the
previous time tick, gi. SPIRAL first computes the initial value of θ based on the
best model of the last time. And SPIRAL sets the initial granularity. If a model
is pruned at the coarsest granularity at the last time tick, it uses this granularity
as the initial granularity. Therefore, we add M′

h to Mh in Figure 7. The one step
lower granularity is used as the initial granularity if the model was not pruned at
the coarsest granularity; ‘add M′

i−1 to Mi’ represents this procedure.
This approach is also applicable to range queries and K-nearest neighbor queries

against streaming sequences. We can handle range queries by applying a search
threshold as θ to the above algorithm. For K-nearest neighbor queries, we can
efficiently select the initial candidate to prune models by computing the exact
likelihoods of the K models at the previous time tick.

6. THEORETICAL ANALYSIS

In this section we provide a theoretical analysis that confirms the accuracy and
complexity of SPIRAL. Note that our theoretical analysis covers both cases; han-
dling query sequences and data streams. Let m be the number of states, n the
sequence length, and s the number of symbols.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

22 · Y. Fujiwara et al.

Algorithm Monitoring
input: subsequence X of stream, set of models M′,

the previous best model M ′
best

output: the best model Mbest

compute P0 for M ′
best; //set initial candidate

θ := P0;
Mbest := M ′

best;

add M′
h to Mh; //set initial granularity

for i := h to 1 do
add M′

i−1 to Mi;

end for
for i := h to 0 do

θ′ := 0;
for each model M ∈ Mi do

compute Pi for M ;
if Pi ≥ θ′ then //select candidate

Mmax := M ;
θ′ := Pi;

end if
end for

compute P0 for Mmax;
if P0 ≥ θ then //update the candidate

Mbest := Mmax;

θ = P0;
end if

for each model M ∈ Mi do //compute finer models

if Pi ≥ θ then
add M to Mi−1;

subtract M from Mi;

end if
end for

M′
i := Mi;

end for

M ′
best := Mbest;

return Mbest;

Fig. 7. Algorithm for monitoring data streams.

6.1 Accuracy

We first show the following lemma to show that SPIRAL identifies the best model
accurately in this section:

Lemma 6.1. The threshold θ is monotonic non-decreasing in the search process
of SPIRAL.

Proof: To find the best model in the search process, we first find a candidate
model based on the coarsest approximate likelihood or the best model at the last
time tick, and set the initial θ from the model. We maintain the candidate as the
best result; when we find a model higher likelihood, its exact likelihood is greater
than θ, the candidate is replaced by the new model. This makes θ larger. Therefore,
θ keeps increasing (note each model has different likelihood as mentioned in Section
1). 2

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 23

We can prove that SPIRAL finds the best model accurately (without fail) as
follows:

Lemma 6.2. SPIRAL guarantees the exact answer when identifying the model
whose state sequence has the highest likelihood.

Proof: Let Mbest be the best model in the dataset and θmax be the exact
likelihood of Mbest (i.e., θmax is the highest likelihood). Also let Pi be the likelihood
of model M for granularity gi and θ be the best-so-far (highest) likelihood in the
search process. From Theorems 4.1 and 4.3, we obtain P0 ≤ Pi, for any granularity
gi, for any M . For Mbest, θmax ≤ Pi holds. In the search process, since θ is
monotonic non-decreasing (Lemma 6.1) and θmax ≥ θ, the approximate likelihood
of Mbest is never lower than θ. The algorithm discards M if (and only if) Pi < θ.
Therefore, the best model Mbest cannot be pruned erroneously during the search
process. 2

6.2 Complexity

We first discuss the complexities of the Viterbi algorithm and then that of SPIRAL.

Lemma 6.3. Given a sequence and model, the Viterbi algorithm requires O(m2+
ms) space and O(nm2) time to compute the likelihood.

Proof: The Viterbi algorithm keeps m values for the initial state probability, m2

values for the state transition probability, and ms values for the symbol probability.
Thus, it needs O(m2 +ms) space. To compute the likelihood, the Viterbi algorithm
computes the maximum probability from all m previous states for every state in
each time tick. Therefore, it requires O(nm2) time. 2

Lemma 6.4. SPIRAL requires O(m2 + ms) space to compute the likelihood.

Proof: SPIRAL keeps m/2i (i = 0, 1, 2, . . . , log m) values for the initial state
probability for granularity gi. Since

∑log m
i=0 m/2i = 2(1−1/2log m)m ≈ 2m, SPIRAL

needs O(m) space for the initial state probability. Similarly, SPIRAL requires
O(ms) space for the symbol probability and O(m2) space for the state transition
probability. Consequently, the space complexity of SPIRAL is O(m2 + ms). 2

Lemma 6.5. SPIRAL requires at least O(n) time and at most O(nm2) time to
compute the likelihood.

Proof: When the search algorithm uses the coarsest approximation, the likeli-
hood computation requires O(n) time. SPIRAL needs O(nm2/4i) (i = 0, 1, 2, . . . , log m)
time for granularity gi. Thus, for the worst case scenario when the algorithm
uses the trellis structures of all granularities, SPIRAL requires O(nm2) time since∑log m

i=0 nm2/4i ≈ 4/3nm2. 2

Lemmas 6.3, 6.4 and 6.5 show theoretically that SPIRAL needs the same order
of memory space as the Viterbi algorithm, while SPIRAL can be up to m2 times
faster. In practice, the search cost depends on the granularity used by SPIRAL for
the likelihood approximation. In the next section, we show the effectiveness of our
approach by presenting the results of our extensive experiments.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

24 · Y. Fujiwara et al.

7. EXPERIMENTAL EVALUATION

We performed experiments to demonstrate SPIRAL’s effectiveness. We compared
SPIRAL to the Viterbi algorithm. We refer to the Viterbi algorithm implementation
as Viterbi hereafter.

7.1 Experimental data and environment

We used the following four standard datasets in the experiments.

—EEG :
This dataset was taken from a large study that examined the EEG correlates
of the genetic predisposition to alcoholism downloaded from the UCI website
3. It contains measurements from 64 electrodes placed on subjects’ scalps that
were sampled at 256 Hz (3.9-msec epoch) for 1 second. In our experiments,
we quantized EEG values in 1 microvolt steps, resulting in 506 elements. We
computed the probabilities of models from a dataset of 6 subjects (co2a0000365,
co2a0000368, co2a0000369, co2c0000338, co2c0000339, and co2c0000340), and we
extracted queries from a dataset of 2 subjects (co2a0000364 and co2c0000337).

—Chromosome:
We used DNA strings of human chromosomes 2, 18, 21, and 22, which were
obtained from the well-known NCBI website 4. These DNA strings are composed
of the letters {A,C,G,T,N} where N is unknown. We treat N as a different symbol,
resulting in a symbol size of 5. In our experiments, a query dataset is obtained
from chromosome 2, and models are trained using the rest of the dataset.

—Traffic:
This dataset contains loop sensor measurements of the Freeway Performance
Measurement System found on the UCI website. This loop sensor dataset was
collected in Los Angeles from 10 April 2005 to 1 October 2005 (5 minute count
aggregates), and the symbol size is 91. To train the models, we extracted se-
quences from the sensor measurements from April 10th to September 23th. We
similarly extracted query sequences from sensor measurements from September
24th to October 1st.

—UNIX :
We exploited the command histories of 8 UNIX computer users at a university
over 2 year period downloaded from the UCI website. This data is drawn from
tcsh(1) history files. The data was parsed and sanitized to remove filenames,
user names, directory structures, web addresses, host names, and other possibly
identifying items resulting in a symbol size of 2360. We obtained a query dataset
from user0 and models were trained with the rest of the dataset.

The models were trained by the Baum-Welch algorithm [Levinson et al. 1982]. In
our experiments, sequence length is 256 and possible transitions of left-right model
are restricted only to 2 states, which is typical in many applications.

We evaluated the search performance mainly through wall clock time. All exper-
iments were conducted on a Linux quad 3.33 GHz Intel Xeon server with 32GB of

3http://archive.ics.uci.edu/ml/
4http://www.ncbi.nlm.nih.gov

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 25

main memory. We implemented our algorithms using GCC. Each result reported
here is the average of 100 trials.

7.2 Results of identifying the best model for query sequence

We examined the effectiveness of SPIRAL in finding the highest likelihood model
for query sequence.

7.2.1 Search cost. We assessed the search time needed for SPIRAL and Viterbi.
We conducted trials with various numbers of states and models because differences
in these numbers are expected to strongly impact the time taken by Viterbi to
process HMM datasets.

Wall clock time versus number of states. Figure 8 compares SPIRAL and Viterbi
in terms of the wall clock time for various numbers of states m for 10,000 mod-
els. These figures show that SPIRAL offers greatly increased speed; Viterbi requires
O(nm2) time for computing likelihoods while SPIRAL requires O(nm2/g2) for com-
puting approximate likelihoods. SPIRAL requires O(nm2) time to compute exact
likelihoods for models that cannot be pruned through approximation. This cost,
however, has no effect on the experimental results. This is because a significant
number of models are pruned by approximation. Our method is much faster than
the Viterbi algorithm implementation under all the conditions examined. Specifi-
cally, SPIRAL is more than 280 times faster for ergodic HMM and more than 80
times faster for left-right HMM.

Wall clock time versus number of models. Figure 9 shows the wall clock time
as a function of the number of models, where the number of states is m = 100.
SPIRAL is superior to the Viterbi algorithm as in the case of changing the number
of states. Even if SPIRAL first computes the likelihoods of all models with the
coarsest granularity to find the initial candidate, this cost does not alter the search
cost since the coarsest approximation requires only O(n) time for a degenerate
model which has only one state. SPIRAL exploits the exact likelihood of the
candidate model to prune other models, and new candidates are selected based
on approximations of finer granularity. This ensures that SPIRAL compute fewer
models as model size increases.

7.2.2 Effect of likelihood approximation with Multi-granularities. SPIRAL first
prunes low-likelihood (unpromising) models using approximations of multiple gran-
ularities. The number of exact likelihood computations and fine-grained approx-
imations are factors influencing the search cost. Accordingly, we evaluated the
number of exact computations and approximations needed in SPIRAL. Figure 10
shows the number of computations. The number of states and models in this figure
is 100 and 10000, respectively.

This figure indicates that SPIRAL has strong pruning power; it excludes most
of the unlikely models with approximations of g = 64, g = 32, and g = 16. Owing
to this approximation quality, SPIRAL achieves excellent search performance as
shown in Figures 8 and 9.

This idea is especially effective with models of many states. This is because the
more states the models have, the more granularities there are for finding the best
model.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

26 · Y. Fujiwara et al.

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

����

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(a-1) EEG, ergodic (a-2) EEG, left-right

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(b-1) Chromosome, ergodic (b-2) Chromosome, left-right

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(c-1) Traffic, ergodic (c-2) Traffic, left-right

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � � � � � ���

� � 	
 � � � � � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(d-1) UNIX, ergodic (d-2) UNIX, left-right

Fig. 8. Wall clock time versus number of states.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 27

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

����

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(a-1) EEG, ergodic (a-2) EEG, left-right

�

��

���

� � �� � ��� � � �� �����

� � � 	
 � � � � � �
 � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(b-1) Chromosome, ergodic (b-2) Chromosome, left-right

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(c-1) Traffic, ergodic (c-2) Traffic, left-right

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

���

�

��

���

� � �� � ��� � � �� �����

� � 	
 � � � � 	 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

������

� � 	
 � � �

(d-1) UNIX, ergodic (d-2) UNIX, left-right

Fig. 9. Wall clock time versus number of models.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

28 · Y. Fujiwara et al.

�

��

�� �

�� � �

�� � � �

� � � � � � � � 	
 �

�
�
�
�
�
��
�
	�

�
�
�
�
�
��
�
�
�

EEG
C h o m o s o m eT r a f f i c
U N I X

� � � �� � � �
�

��

�� �

�� � �

�� � � �

� � � � � � � � 	
 �

�
�
�
�
�
��
�
	�

�
�
�
�
�
��
�
�
�

EEGC h o m o s o m e
T r a f f i cU N I X

� � � �� � � �

(a) Ergodic (b) Left-right

Fig. 10. Number of likelihood computations.

���

�

��

���

EEG C h o m o s o m e T r a f f i c U N I X

�
�
���
�
��
�
�
��
	

�
��

�

���������	
�������	�

 � � � � �

���

�

��

EEG C h o m o s o m e T r a f f i c U N I X

�
�
��
��
��
�
�
��
	

�
��

�

� � � � � 	 �
 � � � �
 � 	 � � � �

� � � � � �

(a) Ergodic (b) Left-right

Fig. 11. Comparison of search approaches.

7.2.3 Comparison with the previous version. We previously investigated a search
algorithm for HMM datasets [Fujiwara et al. 2008]. As described in Section 4.5,
we improve our search algorithm to reduce the number of approximate likelihood
computations of fine granularities. We compared the two search algorithms to show
the effectiveness of the improved version. Figure 11 depicts the wall clock time for
10,000 models of 100 states. In this figure, SPIRAL represents our new search
algorithm.

This figure indicates that our approach is effective, especially for ergodic HMM.
For ergodic HMM, it requires O(nm2) time to compute likelihood, therefore likeli-
hood computation cost increases as the square of model size. Our search approach,
by selecting the answer candidate in each granularity, avoids computing the like-
lihood of finer granularities which incur high computation cost. As a result, our
new approach can effectively find the best model for ergodic HMM. The improved
algorithm is up to 30 times faster than the previous version.

However, left-right HMMs have transition restrictions; in our experiment the
transitions are restricted to 2 states, and it requires O(nm) time to compute likeli-
hood. For this reason there is no visible difference between the search approaches.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 29

�

��

�� �

� � � � ��

� � 	
 � �
 � �

�
�
���
�
��
�
�
��
	

�
��

�

����������	

 � � � �

���

�

��

� � � � ��

� 	
 � � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

����������	

 � � � �

(a) Ergodic (b) Left-right

Fig. 12. Wall clock time versus bandwidth.

7.2.4 SPIRAL vs Beam search. One major advantage of SPIRAL is that it
guarantees the exact answer, but this raises the following simple question: “Can
SPIRAL identify models faster than another approach that does not guarantee the
exact answer?” To answer the this question, we conducted comparative experi-
ments using the well-known Beam search algorithm. We refer to the Beam search
algorithm implementation as Beam search.

We varied the beam width, i.e. the number of states taken into account, for
the Beam search algorithm. Figures 12 and 13 show the wall clock time and the
likelihood error ratio, respectively. These figures show the results for 10,000 models
of 100 states for EEG. Note, SPIRAL identifies the best model accurately, so the
likelihood error ratio is 0.

The results show that the Beam search algorithm forces a trade-off between
speed and accuracy. That is, as the number of states decreases, the wall clock
time decreases but the computation error increases. The Beam search algorithm is
an approximation technique and so can miss the best path for the original trellis
structure. SPIRAL also computes approximate likelihoods, but unlike the Beam
search algorithm, SPIRAL does not discard the best path in each trellis structure,
so the errors are 0. Although SPIRAL guarantees the exact answer, it greatly
reduces the computation time. Specifically, SPIRAL is up to 20 times faster than
the Beam search algorithm in this experiment.

This result implies that SPIRAL will allow HMMs to be applied to many more
applications than are currently being considered. While HMM is potentially useful
in many applications as described in Section 1, it has been difficult to utilize due
to the high computational costs of existing HMM-based techniques. By providing
exact solutions in a highly efficient manner, SPIRAL allows HMM to enhanced band
so allow larger data structures to be handled, which will improve the accuracy and
effectiveness of many applications.

7.3 Results of monitoring data stream

We conducted several experiments to show the effectiveness of our approach for
monitoring data stream.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

30 · Y. Fujiwara et al.

�

�� �

�� �

�� �

�� �

�

� � � � ��

� 	
 � � � � � �

�
�
�
�
�
��
�
�
��

�

�� �

�� �

�� �

�� �

�

� � � � ��

� 	
 � � � � � �

�
�
�
�
�
��
�
�
��

(a) Ergodic (b) Left-right

Fig. 13. Error ratio versus bandwidth.

���

�

��

���

����

EEG C h o m o s o m e T r a f f i c U N I X

�
�
���
�
��
�
�
��
	

�
��

�

���������	
�� ��	
�� � ���� �

���

�

��

���

EEG C h o m o s o m e T r a f f i c U N I X

�
�
���
�
��
�
�
��
	

�
��

�

���������	
�� ��	
�� � ���� �

(a) Ergodic (b) Left-right

Fig. 14. Wall clock time of monitoring data stream.

7.3.1 Search cost. Figure 14 compares the two versions of SPIRAL (i.e., stream
and non-stream algorithms) and Viterbi in terms of the wall clock time for various
datasets where the number of states and number of models are 100 and 10,000,
respectively.

As expected, the stream algorithm overwhelms the other algorithms, especially
the stream algorithm can find the best model up to 490 times faster than the Viterbi
algorithm. Our approach for data stream processing follows the approach used to
handle static query sequences. However, it differs in setting the initial granularity
and candidate, both of which provide the stream algorithm with higher search
efficiency. As described in Section 5, we adopt the sliding window model which
computes the latest n values of data stream, so the extracted subsequences show
little difference before and after the arrival of the next data value. Our approach
for data stream processing is based on the this observation, and its effectiveness is
confirmed in Figure 14.

7.3.2 Effectiveness of the data stream algorithm. Our stream algorithm auto-
matically changes the granularity and effectively sets the initial candidate to find
the best model. To show the effectiveness of these ideas, we plot the wall clock time
at each granularity for the two versions of SPIRAL. Figures 15 show the breakdown
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 31

�

�� �

�

�� �

�

� � � 	
 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

��������	
���

������

� � � � �� � � � �
�

�� ��

�� �

�� ��

�� �

� � � 	
 � � � � �

�
�
���
�
��
�
�
��
	

�
��

�

��������	
���

������

� � � � �� � � � �

(a) Ergodic (b) Left-right

Fig. 15. Breakdown of search cost.

in the cost of model search against 10,000 models for EEG, where each model has
100 states.

The stream algorithm requires less computation time at each granularity. Instead
of using gh (the coarsest) as the initial granularity for all models, this algorithm
sets the initial granularity with the finest granularity at the prior time tick, thus
this ensures that the algorithm reduces the number of models at each granularity.
Furthermore, the stream algorithm sets the best model of the prior time tick as the
initial candidate, which is expected to remain the answer. As a result, it can find
the best model for data stream much more efficiently.

8. DISCUSSION

This section discusses the further extension of SPIRAL to support its implementa-
tion in real applications.

8.1 Granularity level

SPIRAL identifies the best model by gradually doubling approximate model sizes.
This implies that we use the granularity of base 2. However, SPIRAL allows the
user to select other base numbers, which would change the memory requirements.
Therefore, experiments that examine other base numbers will be extremely useful
in designing system architectures for real applications. Table II shows the wall clock
time of SPIRAL for three base numbers against 10,000 models where each model
has 100 states.

We can see that small base numbers raise the search speed for the ergodic HMM.
As discussed in Section 7, the likelihood computation cost of ergodic HMM increases
as the square of model size. Therefore, a small base number enables SPIRAL to
prune models with low computation cost. However, we can not see this trend for
the left-right model. As a result, we can reduce the memory space used by the left-
right model by adopting base numbers above 2 while keeping the search efficiency
high.

8.2 Clustering approach

As mentioned in Section 4, SPIRAL can exploit arbitrary clustering methods and
distance measures. However, the combination adopted can impact the search effi-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

32 · Y. Fujiwara et al.

Base number
Wall clock time [s]

EEG Chromosome Traffic UNIX

2 2.22 2.35 0.33 0.76

4 3.96 3.85 1.65 1.35

8 5.97 12.77 2.25 3.54

(a) Ergodic

Base number
Wall clock time [s]

EEG Chromosome Traffic UNIX

2 0.23 2.26 0.94 1.53

4 0.19 1.79 1.18 1.28

8 0.18 2.03 1.16 0.96

(b) Left-right

Table II. Wall clock time versus base number.

Clustering
Wall clock time [s]

EEG Chromosome Traffic UNIX

k-means 2.22 2.35 0.33 0.76

PAM 7.66 35.82 5.39 3.58

(a) Ergodic

Clustering
Wall clock time [s]

EEG Chromosome Traffic UNIX

k-means 0.23 2.26 0.94 1.53

PAM 0.27 2.13 2.22 1.97

(b) Left-right

Table III. Comparison of clustering method.

ciency since a good clustering approach yields low approximate error. We compared
the k-means method used in this paper with the Euclidean distance to PAM with
Jensen-Shannon divergence. PAM is the famous clustering method developed by
Kaufman and Rousseeuw [Kaufman and Rousseeuw 2005], and Jensen-Shannon di-
vergence is a popular method of measuring the similarity between two probability
distributions in probability theory and statistics. Table III shows the results where
the number of states is 100 and the number of models is 10,000.

The results show that SPIRAL is greatly impacted by the clustering approach,
that is the k-means method basically enables SPIRAL to find the best model more
efficiently than PAM. Furthermore, our additional experiments confirmed that PAM
incurs high computation cost to construct degenerate structures from large data sets
as described in a previous study [Kaufman and Rousseeuw 2005]. Therefore, a user
should be careful in selecting the clustering approach for a real application.
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 33

8.3 Stream monitoring with dynamically changing models

We have assumed so far the use of static models for the monitoring of data streams
even though each data stream is a temporally-variable sequence data. However,
in real applications, SPIRAL will need to be modified to adapt to dynamically
changing models. Subsequent discussions are given below according to whether the
model has already been trained before starting to monitor the data stream or not.

If model has already been trained, it is not difficult to construct degenerate data
structures to compute approximate likelihood before monitoring of data streams
commences. Moreover, we can index these data structures by simply storing point-
ers to the structures, since our search algorithms (Figure 5 and 7) do not utilize
any search tree structures such as B-trees, all that is needed is to maintain model
sets for likelihood computation.

However, in some applications, a user may want to change the model parameters
while monitoring a data stream. In this case, on-line learning [Bishop 2007] is
effective since the model parameters are updated for one data set at a time. We
need to update the degenerate data structures according to the trained model, but
we can update these structures at low cost. That is, instead of initializing the
positions of cluster centers randomly, which is common in the standard k-means
method, the positions of cluster centers before the parameter update are utilized as
initial center values. This approach is expected to be effective since the positions
of cluster centers are almost the same before and after the update.

9. CONCLUSION

This paper addressed the problem of conducting a likelihood search on a large set
of Hidden Markov Models (HMMs) with the goal of finding the best model for a
given query sequence and for data streams. We proposed SPIRAL, which is based
on three ideas: (1) It prunes low-likelihood models in the HMM dataset by their
approximate likelihoods, which yields promising candidates in an efficient manner.
(2) It varies the approximation granularity for each model to maintain a balance
between computation time and approximation quality. (3) Its transition pruning
discards unlikely paths in the trellis structure, which improves the efficiency.

SPIRAL achieves all of the following goals:

—High-speed search: our experiments on real data show that it clearly outperforms
the naive implementation, achieving an increase in speed of several orders of
magnitude.

—We prove that it guarantees the exact answer.
—It can handle any HMM model type.

Our experiments show that SPIRAL works as expected, and finds high-likelihood
HMMs at high speed; Specifically, it is significantly (more than 490 times) faster
than the naive implementation.

REFERENCES

Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., and Zdonik, S. B. 2003. Aurora: a new model and architecture for

data stream management. VLDB J. 12, 2, 120–139.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

34 · Y. Fujiwara et al.

Agrawal, R., Faloutsos, C., and Swami, A. N. 1993. Efficient similarity search in sequence

databases. In FODO. 69–84.

Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K. 1995. Fast similarity search in the

presence of noise, scaling, and translation in time-series databases. In VLDB. 490–501.

Arasu, A., Babcock, B., Babu, S., McAlister, J., and Widom, J. 2002. Characterizing memory

requirements for queries over continuous data streams. In PODS. 221–232.

Babcock, B., Babu, S., Datar, M., and Motwani, R. 2003. Chain : Operator scheduling for
memory minimization in data stream systems. In SIGMOD Conference. 253–264.

Baldi, P., Chauvin, Y., Hunkapiller, T., and McClure, M. A. 1994. Hidden markov models
of biological primary sequence information. Proceedings of the National Academy of Science 91,

1059–1063.

Barbará, D., Couto, J., Jajodia, S., and Wu, N. 2001. Adam: A testbed for exploring the use

of data mining in intrusion detection. SIGMOD Record 30, 4, 15–24.

Bickel, P., Chen, C., Kwon, J., Pravin, J. R., and Zwet, V. E. V. 2001. Traffic flow on a
freeway network. In In Workshop on Nonlinear Estimation and Classification.

Bishop, C. M. 2007. Pattern Recognition and Machine Learning. Springer.

Bocchieri, E. 1993. Vector quantization for the efficient computation of continuous density
likelihoods. In ICASSP. 692–695.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,

Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M. A. 2003.
Telegraphcq: Continuous dataflow processing for an uncertain world. In CIDR.

Cheng, R., Kalashnikov, D. V., and Prabhakar, S. 2003. Evaluating probabilistic queries
over imprecise data. In SIGMOD Conference. 551–562.

Cheng, R., Xia, Y., Prabhakar, S., Shah, R., and Vitter, J. S. 2004. Efficient indexing
methods for probabilistic threshold queries over uncertain data. In VLDB. 876–887.

Cranor, C. D., Johnson, T., Spatscheck, O., and Shkapenyuk, V. 2003. Gigascope: A stream

database for network applications. In SIGMOD Conference. 647–651.

Das, G., Gunopulos, D., and Mannila, H. 1997. Finding similar time series. In PKDD. 88–100.

Denning, D. E. 1998. Cyberspace attacks and countermeasures. ACM Press/Addison-Wesley

Publishing Co., New York, NY, USA.

Deshpande, A., Guestrin, C., Hong, W., and Madden, S. 2005. Exploiting correlated attributes
in acquisitional query processing. In ICDE. 143–154.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. 1999. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Press.

Eickeler, S., Kosmala, A., and Rigoll, G. 1998. Hidden markov model based continuous
online gesture recognition. In ICPR. 1206–1208.

Esposito, R. and Radicioni, D. P. 2007. Carpediem: an algorithm for the fast evaluation of ssl
classifiers. In ICML. 257–264.

F. Jelinek. 1999. Statistical methods for speech recognition. The MIT Press.

Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. 1994. Fast subsequence matching

in time-series databases. In SIGMOD Conference. 419–429.

Fujiwara, Y., Sakurai, Y., and Yamamuro, M. 2008. Spiral: efficient and exact model identi-

fication for hidden markov models. In KDD. 247–255.

G. Pfurtscheller, D. F. and Neuper, C. 1994. Differentiation between finger, toe and tongue
movement in man based on 40 hz eeg. Electroencephalography and Clinical Neurophysiology,

456–460.

Gales, M., Knill, K., and Young, S. 1999. State-based gaussian selection in large vocabulary

continuous speech recognition using hmms. In TSAP. 152–161.

Ganti, V., Gehrke, J., and Ramakrishnan, R. 2000. Demon: Mining and monitoring evolving

data. In ICDE. 439–448.

Gao, L. and Wang, X. S. 2005. Continuous similarity-based queries on streaming time series.

IEEE Trans. Knowl. Data Eng. 17, 10, 1320–1332.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

Fast Likelihood Search for Hidden Markov Models · 35

Gehrke, J., Korn, F., and Srivastava, D. 2001. On computing correlated aggregates over

continual data streams. In SIGMOD Conference. 13–24.

Haussler, D., Krogh, A., Mian, I. S., and Sjolander, K. 1993. Protein modeling using hidden

Markov models: Analysis of globins. In HICSS 39. 792–802.

Helbing, D., Herrmann, H. J., Schreckenberg, M., and Wolf, D. E. 2000. Traffic and
Granular Flow ‘99: Social, Traffic, and Granular Dynamics. Springer-Verlag.

Hu, J., Brown, M. K., and Turin, W. 1996. Hmm based on-line handwriting recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 18, 10, 1039–1045.

Huang, J., Liu, Z., and Wang, Y. 2005. Joint scene classification and segmentation based on

hidden markov model. IEEE Transactions on Multimedia 7, 3, 538–550.

Hunt, M. and Lefebvre, C. 1989. A comparison of several acoustic representations for speech

recognition with degraded and undegraded speech. In ICASSP. 262–265.

Kahn, J. M., Katz, R. H., and Pister, K. S. J. 1999. Next century challenges: Mobile networking

for ”smart dust”. In MOBICOM. 271–278.

Kaufman, L. and Rousseeuw, P. J. 2005. Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley-Interscience.

Keogh, E. J. 2002. Exact indexing of dynamic time warping. In VLDB. 406–417.

Kwon, J. and Murphy, K. 2000. Modeling freeway traffic with coupled hmms. Tech. Rep.,

University of California at Berkeley.

Lane, T. 1999. Hidden markov models for human/computer interface modeling. In IJCAI-99
Workshop on Learning About Users. 35–44.

Law, M. H. C. and Kwok, J. T. 2000. Rival penalized competitive learning for model-based
sequence clustering. In ICPR. 2195–2198.

Levinson, S. E., Rabiner, L. R., and Sondhi, M. M. 1982. An introduction to the application
of the theory of probabilistic functions of a markov process to automatic speech recognition.

Bell Syst. Tech. J 62, 1035–1074.

Li, C. and Biswas, G. 1999. Clustering sequence data using hidden markov model representation.

In SPIE Conference on Data Mining and Knowledge Discovery: Theory, Tools, and Technology.
14–21.

Li, C. and Biswas, G. 2000. A bayesian approach to temporal data clustering using hidden

markov models. In ICML. 543–550.

Moon, Y.-S., Whang, K.-Y., and Han, W.-S. 2002. General match: a subsequence matching

method in time-series databases based on generalized windows. In SIGMOD Conference. 382–

393.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G. S.,
Olston, C., Rosenstein, J., and Varma, R. 2003. Query processing, approximation, and

resource management in a data stream management system. In CIDR.

Mount, D. W. 2001. Bioinformatics: sequence and genome analysis. Cold Spring Harbor Labo-

ratory Press.

Ney, H., Mergel, D., Noll, A., and Paesler, A. 1992. Data driven search organization for

continuous speech recognition. IEEE Trans. Signal Processing. 40, 2, 272–281.

Novak, D., T. Al-Ani, Y. H., and Lhotska, L. 2004. Electroencephalogram processing using

hidden markov models. In EUROSIM.

Rabiner, L. R. and Juang, B. H. 1986. An introduction to hidden markov models. IEEE ASSP
Magazine 3, 4–16.

Sagayama, S., Knill, K., and Takahashi, S. 1995. On the use of scalar quantization for fast
hmm computation. In ICASSP. 213–216.

Siddiqi, S. M. and Moore, A. W. 2005. Fast inference and learning in large-state-space hmms.
In ICML. 800–807.

Singh, S. P., Jaakkola, T., and Jordan, M. I. 1994. Reinforcement learning with soft state

aggregation. In NIPS. 361–368.

Smyth, P. 1996. Clustering sequences with hidden markov models. In NIPS. 648–654.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

36 · Y. Fujiwara et al.

Tao, Y., Cheng, R., Xiao, X., Ngai, W. K., Kao, B., and Prabhakar, S. 2005. Indexing multi-

dimensional uncertain data with arbitrary probability density functions. In VLDB. 922–933.

Tatbul, N., Çetintemel, U., Zdonik, S. B., Cherniack, M., and Stonebraker, M. 2003. Load
shedding in a data stream manager. In VLDB. 309–320.

Warrender, C., Forrest, S., and Pearlmutter, B. A. 1999. Detecting intrusions using system

calls: Alternative data models. In IEEE Symposium on Security and Privacy. 133–145.

Yi, B.-K., Jagadish, H. V., and Faloutsos, C. 1998. Efficient retrieval of similar time sequences
under time warping. In ICDE. 201–208.

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. Birch: An efficient data clustering method

for very large databases. In SIGMOD Conference. 103–114.

Zhong, S. and Ghosh, J. 2002. Hmms and coupled hmms for multi-channel eeg classification.
In IEEE Int. Joint Conf. on Neural Networks. 1154–1159.

Zhu, Y. and Shasha, D. 2002. Statstream: Statistical monitoring of thousands of data streams
in real time. In VLDB. 358–369.

Received January 2009

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, August 2009.

