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Abstract
This paper proposes a method that speeds
up a classifier trained with many con-
junctive features: combinations of (prim-
itive) features. The key idea is to pre-
compute as partial results the weights of
primitive feature vectors that appear fre-
quently in the target NLP task. A trie
compactly stores the primitive feature vec-
tors with their weights, and it enables the
classifier to find for a given feature vec-
tor its longest prefix feature vector whose
weight has already been computed. Ex-
perimental results for a Japanese depen-
dency parsing task show that our method
speeded up the SVM and LLM classifiers
of the parsers, which achieved accuracy of
90.84/90.71%, by a factor of 10.7/11.6.

1 Introduction

Deep and accurate text analysis based on discrimi-
native models is not yet efficient enough as a com-
ponent of real-time applications, and it is inade-
quate to process Web-scale corpora for knowledge
acquisition (Pantel, 2007; Saeger et al., 2009) or
semi-supervised learning (McClosky et al., 2006;
Spoustová et al., 2009). One of the main reasons
for this inefficiency is attributed to the inefficiency
of core classifiers trained with many feature com-
binations (e.g., word n-grams). Hereafter, we refer
to features that explicitly represent combinations
of features as conjunctive features and the other
atomic features as primitive features.

The feature combinations play an essential role
in obtaining a classifier with state-of-the-art ac-
curacy for several NLP tasks; recent examples in-
clude dependency parsing (Koo et al., 2008), parse
re-ranking (McClosky et al., 2006), pronoun reso-
lution (Nguyen and Kim, 2008), and semantic role
labeling (Liu and Sarkar, 2007). However, ‘ex-
plicit’ feature combinations significantly increase

the feature space, which slows down not only
training but also testing of the classifier.

Kernel-based methods such as support vector
machines (SVMs) consider feature combinations
space-efficiently by using a polynomial kernel
function (Cortes and Vapnik, 1995). The kernel-
based classification is, however, known to be very
slow in NLP tasks, so efficient classifiers should
sum up the weights of the explicit conjunctive fea-
tures (Isozaki and Kazawa, 2002; Kudo and Mat-
sumoto, 2003; Goldberg and Elhadad, 2008).

`1-regularized log-linear models (`1-LLMs), on
the other hand, provide sparse solutions, in which
weights of irrelevant features are exactly zero, by
assuming a Laplacian prior on the weights (Tibshi-
rani, 1996; Kazama and Tsujii, 2003; Goodman,
2004; Gao et al., 2007). However, as Kazama and
Tsujii (2005) have reported in a text categorization
task and we later confirm in a dependency pars-
ing task, when most features regarded as irrelevant
during training `1-LLMs appear rarely in the task,
we cannot greatly reduce the number of active fea-
tures in each classification. In the end, when effi-
ciency is a major concern, we must use exhaustive
feature selection (Wu et al., 2007; Okanohara and
Tsujii, 2009) or even restrict the order of conjunc-
tive features at the expense of accuracy.

In this study, we provide a simple, but effective
solution to the inefficiency of classifiers trained
with higher-order conjunctive features (or polyno-
mial kernel), by exploiting the Zipfian nature of
language data. The key idea is to precompute the
weights of primitive feature vectors and use them
as partial results to compute the weight of a given
feature vector. We use a trie called the feature
sequence trie to efficiently find for a given fea-
ture vector its longest prefix feature vector whose
weight has been computed. The trie is built from
feature vectors generated by applying the classifier
to actual data in the classification task. The time
complexity of the classifier approaches time that



is linear with respect to the number of primitive
features when the retrieved feature vector covers
most of the features in the input feature vector.

We implemented our algorithm for SVM and
LLM classifiers and evaluated the performance of
the resulting classifiers in a Japanese dependency
parsing task. Experimental results show that it
successfully speeded up classifiers trained with
higher-order conjunctive features by a factor of 10.

The rest of this paper is organized as follows.
Section 2 introduces LLMs and SVMs. Section 3
proposes our classification algorithm. Section 4
presents experimental results. Section 5 concludes
with a summary and addresses future directions.

2 Preliminaries

In this paper, we focus on linear classifiers that cal-
culate the probability (or score) by summing up
weights of individual features. Examples include
not only log-linear models but also support vec-
tor machines with kernel expansion (Isozaki and
Kazawa, 2002; Kudo and Matsumoto, 2003). Be-
low, we introduce these two classifiers and their
ways to consider feature combinations.

In classification-based NLP, the target task is
modeled as one or more classification steps. For
example in part-of-speech (POS) tagging, each
classification decides whether to assign a partic-
ular label (POS tag) to a given sample (each word
in a given sentence). Each sample is then repre-
sented by a feature vector x, whose element xi is
a value of a feature function fi ∈ F .

Here, we assume a binary feature function
fi(x) ∈ {0, 1}, in which a non-zero value means
that particular context data appears in the sample.
We say that a feature fi is active in sample x when
xi = fi(x) = 1 and |x| represents the number of
active features in x (|x| = |{fi|fi(x) = 1}|).

2.1 Log-Linear Models
The log-linear model (LLM), or also known as
maximum-entropy model (Berger et al., 1996), is
a linear classifier widely used in the NLP literature.
Let the training data of LLMs be {〈xi, yi〉}Li=1,
where xi ∈ {0, 1}n is a feature vector and yi is a
class label associated with xi. We assume a binary
label yi ∈ {±1} here to simplify the argument.

The classifier provides conditional probability
p(y|x) for a given feature vector x and a label y:

p(y|x) =
1

Z(x)
exp

∑
i

wi,yfi,y(x, y), (1)

where fi,y(x, y) is a feature function that returns
a non-zero value when fi(x) = 1 and the label is
y, wi,y ∈ R is a weight associated with fi,y, and
Z(x) =

∑
y exp

∑
i wi,yfi,y(x, y) is the partition

function. We can consider feature combinations in
LLMs by explicitly introducing a new conjunctive
feature fF ′,y(x, y) that is activated when a partic-
ular set of features F ′ ⊆ F to be combined is acti-
vated (namely, fF ′,y(x, y) =

∧
fi,y∈F ′ fi,y(x, y)).

We then introduce an `1-regularized LLM (`1-
LLM), in which the weight vector w is tuned so
as to maximize the logarithm of the a posteriori
probability of the training data:

L(w) =
L∑

i=1

log p(yi|xi)− C‖w‖1. (2)

Hyper-parameter C thereby controls the degree of
over-fitting (solution sparseness). Interested read-
ers may refer to the cited literature (Andrew and
Gao, 2007) for the optimization procedures.

2.2 Support Vector Machines
A support vector machine (SVM) is a binary clas-
sifier (Cortes and Vapnik, 1995). Training with
samples {〈xi, yi〉}Li=1 where xi ∈ {0, 1}n and
yi ∈ {±1} yields the following decision function:

y(x) = sgn(g(x) + b)

g(x) =
∑

xj∈SV
yjαjφ(xj)Tφ(x), (3)

where b ∈ R, φ : Rn 7→ RH and support vec-
tors xj ∈ SV (subset of training samples), each
of which is associated with weight αj ∈ R. We
hereafter call g(x) the weight function. Nonlinear
mapping function φ is chosen to make the train-
ing samples linearly separable in RH space. Ker-
nel function k(xj ,x) = φ(xj)Tφ(x) is then in-
troduced to compute the dot product in RH space
without mapping x to φ(x).

To consider combinations of primitive features
fj ∈ F , we use a polynomial kernel kd(xj ,x) =
(xT

j x + 1)d. From Eq. 3, we obtain the weight
function for the polynomial kernel as:

g(x) =
∑

xj∈SV
yjαj(xT

j x + 1)d. (4)

Since we assumed that xi is a binary value repre-
senting whether a (primitive) feature fi is active
in the sample, the polynomial kernel of degree d
implies a mapping φd from x to φd(x) that has



H =
∑d

k=0

(
n
k

)
dimensions. Each dimension rep-

resents a (weighted) conjunction of d features in
the original sample x.1

Kernel Expansion (SVM-KE) The time com-
plexity of Eq. 4 is O(|x| · |SV|). This cost is usu-
ally high for classifiers used in NLP tasks because
they often have many support vectors (|SV| >
10, 000). Kernel expansion (KE) was proposed
by Isozaki and Kazawa (2002) to convert Eq. 4
into the linear sum of the weights in the mapped
feature space as in LLM (p(y|x) in Eq. 1):

g(x) = wTxd =
∑

i

wix
d
i , (5)

where xd is a binary feature vector whose element
xd

i has a non-zero value when (φd(x))i > 0, w
is the weight vector for xd in the expanded fea-
ture space Fd and is precalculated from the sup-
port vectors xj and their weights αj . Interested
readers may refer to Kudo and Matsumoto (2003)
for the detailed computation for obtaining w.

The time complexity of Eq. 5 (and Eq. 1) is
O(|xd|), which is linear with respect to the num-
ber of active features in xd within the expanded
feature space Fd.

Heuristic Kernel Expansion (SVM-HKE) To
make the weight vector sparse, Kudo and Mat-
sumoto (2003) proposed a heuristic method that
filters out less useful features whose absolute
weight values are less than a pre-defined threshold
σ.2 They reported that increased threshold value σ
resulted in a dramatically sparse feature space Fd,
which had the side-effects of accuracy degradation
and classifier speed-up.

3 Proposed Method

In this section, we propose a method that speeds
up a classifier trained with many conjunctive fea-
tures. Below, we focus on a kernel-based classifier
trained with a polynomial kernel of degree d (here,

1For example, given an input vector x = (x1, x2)
T

and a support vector x′ = (x′1, x
′
2)

T, the 2nd-order
polynomial kernel returns k2(x

′, x) = (x′1x1 + x′2x2 +
1)2 = 3x′1x1 + 3x′2x2 + 2x′1x1x

′
2x2 + 1 (∵ x′i, xi ∈

{0, 1}). This function thus implies a mapping φ2(x) =

(1,
√

3x1,
√

3x2,
√

2x1x2)
T. In the following argument, we

ignore the dimension of the constant in the mapped space and
assume constant b is set to include it.

2Precisely speaking, they set different thresholds to posi-
tive (αj > 0) and negative (αj < 0) support vectors, consid-
ering the proportion of positive and negative support vectors.

Figure 1: Efficient computation of g(x).

SVMs), but an analogous argument is possible for
linear classifiers (e.g., LLMs).3

We hereafter represent a binary feature vector x
as a set of active features {fi|fi(x) = 1}. x can
thereby be represented as an element of the power
set 2F of the set of features F .

3.1 Idea

Let us remember that weight function g(x) in
Eq. 5 maps x ∈ 2F to W ∈ R. If we could cal-
culate Wx = g(x) for all possible x in advance,
we could obtain g(x) by simply checking |x| ele-
ments, namely, in O(|x|) time. However, because
|{x|x ∈ 2F}| = 2|F| and |F| is likely to be very
large (often |F| > 10, 000 in NLP tasks), this cal-
culation is impractical.

We then compute and store weight Wx′ =
g(x′) for x′ ∈ Vc(⊂ 2F ), a certain subset of
the possible value space, and compute g(x) for
x /∈ Vc by using precalculated weight Wxc for
xc ⊆ 4x in the following way:

g(x) = Wxc +
∑

fi∈xd−xd
c

wi. (6)

Intuitively speaking, starting from partial weight
Wxc , we add up remaining weights of primitive
features f ∈ F that are not active in xc but active
in x and conjunctive features that combine f and
the other active features in x.

An example of this computation (d = 2) is de-
picted in Figure 1. We can efficiently compute
g(x) for a vector x that has four active features
f1, f2, f3, and f4 (and x2 has their six conjunc-
tive features) using precalculated weight W{1,2,3};
we should first check the three features f1, f2, and
f3 to retrieve W{1,2,3} and next check the remain-
ing four features related to f4, namely f4, f1,4,
f2,4, and f3,4, in order to add up the remaining

3When a feature vector x includes (explicit) conjunctive
features f ∈ Fd, we assume weight function g′(y|x′) =
g(y|x), where x′ is a projection of x (by φ−1

d : Fd → F ).
4This means that all active features in xc are active in x.



weights, while the normal computation in Eq. 5
should check the four primitive and six conjunc-
tive features to get the individual weights.

Expected time complexity Counting the num-
ber of features to be checked in the computation,
we obtain the time complexity f(x, d) of Eq. 6 as:

f(x, d) = O(|xc|+ |xd| − |xd
c |), (7)

where |xd| =
d∑

k=1

(
|x|
k

)
(8)

(e.g., |x2| = |x|2+|x|
2 and |x3| = |x|3+5|x|

6 ).5 Note
that when |xc| becomes close to |x|, this time
complexity actually approaches O(|x|).

Thus, to minimize this computational cost, xc

is to be chosen from Vc as follows:

xc = argmin
x′∈Vc,x′⊆x

(|x′|+ |xd| − |x′d|). (9)

3.2 Construction of Feature Sequence Trie
There are two issues with speeding up the classi-
fier by the computation shown in Eq. 6. First, since
we can store weights for only a small fraction of
possible feature vectors (namely, |Vc| � 2|F|), we
should choose Vc so as to maximize its impact on
the speed-up. Second, we should quickly find an
optimal xc from Vc for a given feature vector x.

The solution to the first problem is to enumer-
ate partial feature vectors that frequently appear in
the target task. Note that typical linguistic features
used in NLP tasks usually consist of disjunctive
sets of features (e.g., word surface and POS), in
which each set is likely to follow Zipf’s law (Zipf,
1949) and correlate with each other. We can ex-
pect the distribution of feature vectors, the mixture
of Zipf distributions, to be Zipfian. This has been
confirmed for word n-grams (Egghe, 2000) and
itemset support distribution (Chuang et al., 2008).
We can thereby expect that a small set of partial
feature vectors commonly appear in the task.

To solve the second problem, we introduce a
feature sequence trie (fstrie), which represents a
hierarchy of feature vectors, to enable the clas-
sifier to efficiently retrieve (sub-)optimal xc (in
Eq. 9) for a given feature vector x. We build an
fstrie in the following steps:

Step 1: Apply the target classifier to actual (raw)
data in the task to enumerate possible feature
vectors (hereafter, source feature vectors).

5This is the maximum number of conjunctive features.

Figure 2: Feature sequence trie and completion of
prefix feature vector weights.

Step 2: Sort the features in each source feature
vector according to their frequency in the
training data (in descending order).

Step 3: Build a trie from the source feature vec-
tors by regarding feature indices as characters
and store weights of all prefix feature vectors.

An fstrie built from six source feature vectors is
shown in Figure 2. In fstries, a path from the root
to another node represents a feature vector. An
important point here is that the fstrie stores the
weights of all prefix feature vectors of the source
feature vectors, and the trie structure enables us to
retrieve for a given feature vector x the weight of
its longest prefix vector xc ⊆ x in O(|xc|) time.
To handle feature functions in LLMs (Eq. 1), we
store partial weight Wxc,y =

∑
i wi,yfi,y(xc, y)

for each label y on the node that expresses xc.
Since we sort the features in the source fea-

ture vectors according to their frequency, the pre-
fix feature vectors exclude less frequent features
in the source feature vectors. Lexical features or
finer-grained features (e.g., POS-subcategory) are
usually less frequent than coarse-grained features
(e.g., POS), so they lie in the latter part of the
feature vectors. This sorting helps us to retrieve
longer feature vector xc for input feature vector x
that will have diverse infrequent features. It also
minimizes the size of fstrie by sharing the com-
mon frequent prefix (e.g., {f1, f2} in Figure 2).

Pruning nodes from fstrie We have so far de-
scribed the way to construct an fstrie from the
source feature vectors. However, a naive enumer-
ation of source feature vectors will result in the
explosion of the fstrie size, and we want to have
a principled way to control the fstrie size rather
than reducing the processed data size. Below, we
present a method that prunes useless prefix feature
vectors (nodes) from the constructed fstrie to max-
imize its impact on the classifier efficiency.



Algorithm 1 PRUNE NODES FROM FSTRIE

Input: fstrie T , node_limit N ∈ N
Output: fstrie T

1: while # of nodes in T > N do
2: xc ← argmin

x′∈leaf(T )

u(x′)

3: remove xc, T
4: end while
5: return T

We adopt a greedy strategy that iteratively
prunes a leaf node (one prefix feature vector and
its weight) from the fstrie built from all the source
feature vectors, according to a certain utility score
calculated for each node. In this study, we con-
sider two metrics for each prefix feature vector xc

to calculate its utility score.

Probability p(xc), which denotes how often the
stored weight Wxc will be used in the tar-
get task. The maximum-likelihood estima-
tion provides probability:

p(xc) =

∑
x′⊇xc

nx′∑
x nx

, (10)

where nx ∈ N is the frequency count of a
source feature vector x in the processed data.

Computation reduction ∆d(xc), which denotes
how much computation is reduced by Wxc to
calculate a weight of x ⊇ xc. This can be es-
timated by counting the number of conjunc-
tive features we additionally have to check
when we remove xc. Since the fstrie stores
the weight of a prefix feature vector xc- ⊂ xc

such that |xc-| = |xc| − 1 (e.g., in Figure 2,
xc- = {f1, f2} for xc = {f1, f2, f4}), we
can define the computation reduction as:

∆d(xc) = (|xd
c | − |xd

c-|)− (|xc| − |xc-|)

=
d∑

k=2

(
|xc|
k

)
−

d∑
k=2

(
|xc| − 1

k

)
(∵ Eq. 8).

∆2(xc) = |xc| − 1 and ∆3(xc) = |xc|2−|xc|
2 .

We calculate utility score of each node xc in the
fstrie as u(xc) = p(xc) · ∆d(xc), which means
the expected computation reduction by xc in the
target task, and prune the lowest-utility-score leaf
nodes from the fstrie one by one (Algorithm 1). If
several prefix vectors have the same utility score,
we eliminate them in numerical descending order.

Algorithm 2 COMPUTE WEIGHT WITH FSTRIE

Input: fstrie T , weight vector w ∈ R|Fd|

feature vector x ∈ 2F

Output: weight W = g(x) ∈ R
1: x← sort(x)
2: 〈xc,Wxc〉 ← prefix_search(T , x)
3: W ←Wxc

4: for all feature fj ∈ xd − xd
c do

5: W ←W + wj

6: end for
7: return W

3.3 Classification Algorithm

Our classification algorithm is shown in detail in
Algorithm 2. The classifier first sorts the active
features in input feature vector x according to their
frequency in the training data. Then, for x, it re-
trieves the longest common prefix vector xc from
the fstrie (line 2 in Algorithm 2). It then adds the
weights of the remaining features to partial weight
Wxc (line 5 in Algorithm 2).

Note that the remaining features whose weights
we sum up (line 4 in Algorithm 2) are primitive
and conjunctive features that relate to f ∈ x−xc,
which appear less frequently than f ′ ∈ xc in the
training data. Thus, when we apply our algorithm
to classifiers with the sparse solution (e.g., SVM-
HKEs or `1-LLMs), |xd|−|xd

c | can be much smaller
than the theoretical expectation (Eq. 8). We con-
firmed this in the following experiments.

4 Evaluation

We applied our algorithm to SVM-KE, SVM-HKE,
and `1-LLM classifiers and evaluated the resulting
classifiers in a Japanese dependency parsing task.
To the best of our knowledge, there are no previous
reports of an exact weight calculation faster than
linear summation (Eqs. 1 and 5). We also com-
pared our SVM classifier with a classifier called
polynomial kernel inverted (PKI: Kudo and Mat-
sumoto (2003)), which uses the polynomial kernel
(Eq. 4) and inverted indexing to support vectors.

4.1 Experimental Settings

A Japanese dependency parser inputs bunsetsu-
segmented sentences and outputs the correct head
(bunsetsu) for each bunsetsu; here, a bunsetsu is
a grammatical unit in Japanese consisting of one
or more content words followed by zero or more
function words. A parser generates a feature vec-



Modifier,
modifiee
bunsetsu

head word (surface-form, POS, POS-subcategory,
inflection form), functional word (surface-form,
POS, POS-subcategory, inflection form), brackets,
quotation marks, punctuation marks, position in
sentence (beginning, end)

Between
bunsetsus

distance (1, 2–5, 6–), case-particles, brackets,
quotation marks, punctuation marks

Table 1: Feature set used for experiments.

tor for a particular pair of bunsetsus (modifier and
modifiee candidates) by exploiting the head-final
and projective (Nivre, 2003) nature of dependency
relations in Japanese. The classifier then outputs
label y = ‘+1’ (dependent) or ‘−1’ (independent).

Since our classifier is independent of individ-
ual parsing algorithms, we targeted speeding up
(a classifier in) the shift-reduce parser proposed
by Sassano (2004), which has been reported to be
the most efficient for this task, with almost state-
of-the-art accuracy (Iwatate et al., 2008). This
parser decreases the number of classification steps
by using the fact that a bunsetsu is likely to modify
a bunsetsu close to itself. Due to space limitations,
we omit the details of the parsing algorithm.

We used the standard feature set tailored for this
task (Kudo and Matsumoto, 2002; Sassano, 2004;
Iwatate et al., 2008) (Table 1). Note that features
listed in the ‘Between bunsetsus’ row represent
contexts between the target pair of bunsetsus and
appear independently from other features, which
will become an obstacle to finding the longest pre-
fix vector. This task is therefore a better measure
of our method than simple sequential labeling such
as POS tagging or named-entity recognition.

For evaluation, we used Kyoto Text Corpus Ver-
sion 4.0 (Kurohashi and Nagao, 2003), Mainichi
news articles in 1995 that have been manually an-
notated with dependency relations.6 The train-
ing, development, and test sets included 24,283,
4833, and 9284 sentences, and 234,685, 47,571,
and 89,874 bunsetsus, respectively. The training
samples generated from the training set included
150,064 positive and 146,712 negative samples.

The following experiments were performed on
a server with an Intel R© XeonTM 3.20-GHz CPU.
We used TinySVM7 and a simple C++ library for
maximum entropy classification8 to train SVMs
and `1-LLMs, respectively. We used Darts-Clone,9

6http://nlp.kuee.kyoto-u.ac.jp/nl-resource/corpus-e.html
7http://chasen.org/˜taku/software/TinySVM/
8http://www-tsujii.is.s.u-tokyo.ac.jp/˜tsuruoka/maxent/
9http://code.google.com/p/darts-clone/

Model type Model statistics Dep. Sent.
Model d ω / σ |Fd| |xd| acc. acc.
SVM-KE 1 0 39712 27.3 88.29 46.49
SVM-KE 2 0 1478109 380.6 90.76 53.83
SVM-KE 3 0 26194354 3286.7 90.93�54.43�

SVM-HKE 3 0.001 13247675 2725.9 90.92�54.39�

SVM-HKE 3 0.002 2514385 2238.1 90.91�54.32>

SVM-HKE 3 0.003 793195 1855.4 90.83 54.21
SVM-KE 4 0 293416102 20395.4 90.91�54.69�
SVM-HKE 4 0.0002 96522236 15282.1 90.93�54.53>

SVM-HKE 4 0.0004 19245076 11565.0 90.96�54.64�

SVM-HKE 4 0.0006 7277592 8958.2 90.84 54.48>

`1-LLM 1 1.0 9268 26.5 88.22 46.06
`1-LLM 2 2.0 32575 309.8 90.62 53.46
`1-LLM 3 3.0 129503 2088.3 90.71 54.09>

`1-LLM 3 4.0 85419 1803.0 90.61 53.79
`1-LLM 3 5.0 63046 1699.5 90.59 53.55

Table 2: Specifications of LLMs and SVMs. The
accuracy marked with ‘�’ or ‘>’ was signifi-
cantly better than the d = 2 counterpart (p < 0.01
or 0.01 ≤ p < 0.05 by McNemar’s test).

a double-array trie (Aoe, 1989; Yata et al., 2008),
as a compact trie implementation. All these li-
braries and algorithms are implemented in C++.
The code for building fstries occupies 100 lines,
while the code for the classifier occupies 20 lines
(except those for kernel expansion).

4.2 Results

Specifications of SVMs and LLMs used here are
shown in Table 2; |Fd| is the number of active fea-
tures, while |xd| is the average number of active
features in each classification for the test corpus.
Dependency accuracy is the ratio of dependency
relations correctly identified by the parser, while
sentence accuracy is the exact match accuracy of
complete dependency relations in a sentence.

For LLM training, we designed explicit conjunc-
tive features for all the d or lower-order feature
combinations to make the results comparable to
those of SVMs. We could not train d = 4 LLMs
due to parameter explosion. We varied SVM soft
margin parameter c from 0.1 to 0.000001 and LLM

width factor parameter ω,10 which controls the im-
pact of the prior, from 1.0 to 5.0, and adjusted
the values to maximize dependency accuracy for
the development set: (d, c) = (1, 0.1), (2, 0.005),
(3, 0.0001), (4, 0.000005) for SVMs and (d, ω) =
(1, 1.0), (2, 2.0), (3, 4.0) for `1-LLMs.

The accuracy of around 90.9% (SVM-KE, d =
3, 4) is close to the performance of state-of-the-

10The parameter C of `1-LLM in Eq. 2 was set to ω/L
(referred to in Kazama and Tsujii (2003) as ‘single width’).



Model PKI Baseline Proposed w/ fstrieS Proposed w/ fstrieM Proposed w/ fstrieL Speed
type d classify Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] up

[ms/sent.] (MB) classify (total) (MB) classify (total) (MB) classify (total) (MB) classify (total)

SVM-KE 1 13.480 0.2 0.003 (0.015) +0.6 0.006 (0.018) +20.2 0.007 (0.018) +662.9 0.016 (0.029) NA
SVM-KE 2 10.313 13.5 0.041 (0.054) +0.5 0.020 (0.032) +18.0 0.021 (0.034) +662.4 0.023 (0.036) 2.1
SVM-KE 3 10.945 142.2 0.345 (0.361) +0.5 0.163 (0.178) +18.2 0.108 (0.123) +667.0 0.079 (0.093) 4.4
SVM-KE 4 12.603 648.0 2.338 (2.363) +0.5 1.156 (1.178) +18.6 0.671 (0.690) +675.9 0.415 (0.432) 5.6

Table 3: Parsing results for test corpus: SVM-KE classifiers with dense feature space.

art parsers (Iwatate et al., 2008), and the model
statistics are considered to be complex (or re-
alistic) enough to evaluate our classifier’s util-
ity. The number of support vectors of SVMs was
71, 766 ± 9.2%, which is twice as many as those
used by Kudo and Matsumoto (2003) (34,996) in
their experiments on the same task.

We could clearly observe that the number of ac-
tive features |xd| increased dramatically according
to the order d of feature combinations. The den-
sity of |xd| for SVMs was very high (e.g., |x3| =
3286.7, close to the maximum shown in Eq. 8:
(27.33 + 5× 27.3)/6 ' 3414.

For d ≥ 3 models, we attempted to control
the size of the feature space |Fd| by changing
the model’s hyper-parameters: threshold σ for the
SVM-HKE and width factor ω for the `1-LLM. Al-
though we successfully reduced the size of the fea-
ture space |Fd|, we could not dramatically reduce
the average number of active features |xd| in each
classification while keeping the accuracy advan-
tage. This confirms that the solution sparseness
does not suffice to obtain an efficient classifier.

We obtained source feature vectors to build
fstries by applying parsers with the target clas-
sifiers to a raw corpus in the target domain,
3,258,313 sentences of 1991–94 Mainichi news
articles that were morphologically analyzed by
JUMAN6 and segmented into bunsetsus by KNP.6

We first built fstrieL using all the source feature
vectors. We then attempted to reduce the number
of prefix feature vectors in fstrieL to 1/2n the size
by Algorithm 1. We refer to fstries built from 1/32
and 1/1024 of the prefix feature vectors in fstrieL

as fstrieM and fstrieS in the following experiments.
Because we exploited Algorithm 2 to calcu-

late the weights of the prefix feature vectors, it
took less than one hour (59 min. 29 sec.) on the
3.20-GHz server to build fstrieL (and calculate the
utility score for all the nodes in it) for the slow-
est SVM-KE (d = 4) from the 40,409,190 source
feature vectors (62,654,549 prefix feature vectors)
generated by parsing the 3,258,313 sentences.
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Figure 3: Average classification time per sentence
plotted against size of fstrie: SVM-KE.

Results for SVM-KE with dense feature space
The performances of parsers having SVM-KE clas-
sifiers with and without the fstrie are given in Ta-
ble 3. The ‘speed-up’ column shows the speed-up
factor of the most efficient classifier (bold) ver-
sus the baseline classifier without fstries. Since
each classifier solved a slightly different num-
ber of classification steps (112, 853± 0.15%), we
show the (average) cumulative classification time
for a sentence. The Mem. columns show the size
of weight vectors for SVM-KE classifiers and the
size of fstriesS, fstriesM, and fstriesL, respectively.

The fstries successfully speeded up SVM-KE

classifiers with the dense feature space.11 The
SVM-KE classifiers without fstries were still faster
than PKI, but as expected from a large |xd| value,
the classifiers with higher conjunctive features
were much slower than the classifier with only
primitive features by factors of 13 (d = 2), 109
(d = 3) and 738 (d = 4) and the classification
time accounted for most of the parsing time.

The average classification time of our classifiers
plotted against fstrie size is shown in Figure 3.
Surprisingly, we obtained a significant speed-up
even with tiny fstrie sizes of < 1 MB. Further-
more, we naively controlled the fstrie size by sim-

11The inefficiency of the classifier (d = 1) results from the
cost of the additional sort function (line 1 in Algorithm 2) and
CPU cache failure due to random accesses to the huge fstries.



Model Baseline Proposed w/ fstrieS Proposed w/ fstrieM Proposed w/ fstrieL Speed
type d σ / ω Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] Mem. Time [ms/sent.] up

(MB) classify (total) (MB) classify (total) (MB) classify (total) (MB) classify (total)

SVM-HKE 3 0.001 64.6 0.348 (0.363) +0.5 0.151 (0.166) +17.6 0.097 (0.111) +638.0 0.070 (0.084) 5.0
SVM-HKE 3 0.002 13.9 0.332 (0.346) +0.5 0.123 (0.137) +17.0 0.074 (0.088) +612.2 0.053 (0.067) 6.2
SVM-HKE 3 0.003 4.2 0.314 (0.328) +0.4 0.102 (0.115) +14.7 0.057 (0.070) +526.2 0.041 (0.054) 7.8
SVM-HKE 4 0.0002 235.0 2.258 (2.280) +0.5 1.022 (1.042) +17.7 0.558 (0.575) +637.1 0.330 (0.346) 6.8
SVM-HKE 4 0.0004 82.8 2.038 (2.058) +0.5 0.816 (0.835) +16.8 0.414 (0.430) +601.7 0.234 (0.249) 8.7
SVM-HKE 4 0.0006 32.2 1.802 (1.820) +0.4 0.646 (0.662) +15.7 0.311 (0.326) +558.9 0.168 (0.183) 10.7
`1-LLM 1 1.0 0.1 0.004 (0.016) +0.8 0.006 (0.018) +25.0 0.007 (0.019) +787.7 0.016 (0.029) NA
`1-LLM 2 2.0 0.4 0.043 (0.055) +0.6 0.016 (0.028) +20.5 0.015 (0.027) +698.0 0.018 (0.030) 2.9
`1-LLM 3 3.0 1.0 0.314 (0.326) +0.5 0.091 (0.103) +17.8 0.041 (0.054) +601.0 0.027 (0.040) 11.6
`1-LLM 3 4.0 0.7 0.300 (0.313) +0.5 0.082 (0.094) +16.3 0.036 (0.049) +550.1 0.024 (0.037) 12.4
`1-LLM 3 5.0 0.5 0.290 (0.302) +0.5 0.076 (0.088) +15.1 0.032 (0.045) +510.7 0.022 (0.035) 13.3

Table 4: Parsing results for test corpus: SVM-HKE and `1-LLM classifiers with sparse feature space.
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Figure 4: Fstrie reduction: utility score vs. pro-
cessed sentence reduction for SVM-KE (d = 4).

ply reducing the number of sentences processed to
1/2n. The impact on the speed-up of the resulting
fstries (naive) and the fstries constructed by our
utility score (utility-score) on SVM-KE (d = 4)
is shown in Figure 4. The Zipfian nature of lan-
guage data let us obtain a substantial speed-up
even when we naively reduced the fstrie size, and
the utility score further decreased the fstrie size
required to obtain the same speed-up. We needed
less than 1/3 size fstries to achieve the same speed-
up: 0.671 ms./sent. (18.6 MB) (utility-score) vs.
0.680 ms./sent. (67.1 MB) (naive).

Results for SVM-HKE and `1-LLM classifiers
with sparse feature space The performances of
parsers having SVM-HKE and `1-LLM classifiers
with and without the fstrie are given in Table 4.
The fstries successfully speeded up the SVM-HKE

and `1-LLM classifiers by factors of 10.7 (SVM-
HKE, d = 4, σ = 0.0006) and 11.6 (`1-LLM,
d = 3, ω = 3.0). We obtained more speed-
up when we used fstries for classifiers with more
sparse feature space Fd (Figures 5 and 6). The
parsing speed with d = 3 models are now compa-
rable to the parsing speed with d = 2 models.
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Figure 5: Average classification time per sentence
plotted against size of fstrie: SVM-HKE (d = 3).
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Figure 6: Average classification time per sentence
plotted against size of fstrie: `1-LLM (d = 3).

Without fstries, little speed-up of SVM-HKE

classifiers versus the SVM-KE classifiers (in Ta-
ble 3) was obtained due to the mild reduction in
the average number of active features |xd| in the
classification. This result conforms to the results
reported in (Kudo and Matsumoto, 2003).

The parsing speed reached 14,937 sentences
per second with accuracy of 90.91% (SVM-HKE,
d = 3, σ = 0.002). We used this parser to pro-
cess 1,005,918 sentences (5,934,184 bunsetsus)
randomly extracted from Japanese weblog feeds



updated in November 2008, to see how much the
impact of fstries lessens when the test data and
the data processed to build fstries mismatch. The
parsing time was 156.4 sec. without fstrieL, while
it was just 35.9 sec. with fstrieL. The speed-up
factor of 4.4 on weblog feeds was slightly worse
than that on news articles (0.346/0.067 = 5.2)
but still evident. This implies that sorting features
in building fstries yielded prefix features vectors
that commonly appear in this task, by excluding
domain-specific features such as lexical features.

In summary, our algorithm successfully mini-
mized the efficiency gap among classifiers with
different degrees of feature combinations and
made accurate classifiers trained with higher-order
feature combinations practical.

5 Conclusion and Future Work

Our simple method speeds up a classifier trained
with many conjunctive features by using precal-
culated weights of (partial) feature vectors stored
in a feature sequence trie (fstrie). We experimen-
tally demonstrated that it speeded up SVM and
LLM classifiers for a Japanese dependency pars-
ing task by a factor of 10. We also confirmed that
the sparse feature space provided by `1-LLMs and
SVM-HKEs contributed much to size reduction of
the fstrie required to achieve the same speed-up.
The implementations of the proposed algorithm
for LLMs and SVMs (with a polynomial kernel) and
the Japanese dependency parser will be available
at http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/.

We plan to apply our method to wider range of
classifiers used in various NLP tasks. To speed up
classifiers used in a real-time application, we can
build fstries incrementally by using feature vec-
tors generated from user inputs. When we run our
classifiers on resource-tight environments such as
cell-phones, we can use a random feature mix-
ing technique (Ganchev and Dredze, 2008) or a
memory-efficient trie implementation based on a
succinct data structure (Jacobson, 1989; Delpratt
et al., 2006) to reduce required memory usage.

We will combine our method with other tech-
niques that provide sparse solutions, for example,
kernel methods on a budget (Dekel and Singer,
2007; Dekel et al., 2008; Orabona et al., 2008) or
kernel approximation (surveyed in Kashima et al.
(2009)). It is also easy to combine our method
with SVMs with partial kernel expansion (Gold-
berg and Elhadad, 2008), which will yield slower

but more space-efficient classifiers. We will in
the future consider an issue of speeding up decod-
ing with structured models (Lafferty et al., 2001;
Miyao and Tsujii, 2002; Sutton et al., 2004).
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