
A Collaborative Replication approach for Mobile-P2P
networks

Anirban Mondal1 Sanjay Kumar Madria2 Masaru Kitsuregawa1

1 Institute of Industrial Science 2 Department of Computer Science

University of Tokyo, Japan University of Missouri-Rolla, USA

{anirban,kitsure}@tkl.iis.u-tokyo.ac.jp madrias@mst.edu

Abstract

This paper proposes CADRE (Collaborative Allocation and Deallocation of Replicas with

Efficiency), which is a dynamic replication scheme for improving the typically low data avail-

ability in dedicated and cooperative mobile ad-hoc peer-to-peer (M-P2P) networks. In partic-

ular, replica allocation and deallocation are collaboratively performed in tandem to facilitate

effective replication. Such collaboration is facilitated by a hybrid super-peer architecture in

which some of the mobile hosts act as the ‘gateway nodes’ (GNs) in a given region. GNs fa-

cilitate both search and replication. The main contributions of CADRE are as follows. First, it

facilitates the prevention of ‘thrashing’ conditions due to its collaborative replica allocation and

deallocation mechanism. Second, it considers the replication of images at different resolutions

to optimize the usage of the generally limited memory space of the mobile hosts (MHs). Third,

it addresses fair replica allocation across the MHs. Fourth, it facilitates the optimization of the

limited energy resources of MHs during replication. Our performance evaluation demonstrates

that CADRE is indeed effective in improving data availability in M-P2P networks with signif-

icant reduction in query response times and low communication traffic during replication as

compared to a recent existing scheme as well as a baseline approach, which does not consider

any replication.

Keywords: Mobile Peer-to-peer computing, dynamic replication, collaborative replica allocation,
data availability, fair replication

1

1 Introduction

In a Mobile ad-hoc Peer-to-Peer (M-P2P) network, mobile hosts (MHs) interact with each other

in a decentralized P2P fashion without using base stations. The proliferation of mobile computing

technology (e.g., laptops, PDAs, mobile phones) coupled with the ever-increasing popularity of

the Peer-to-Peer (P2P) paradigm (e.g., Kazaa [20]) strongly motivate M-P2P network applications.

M-P2P applications are essentially aimed at facilitating mobile users in obtaining information on-

the-fly from other mobile users in a P2P manner. Such P2P interactions are generally not supported

by existing mobile communication infrastructures.

This work focusses on improving the performance (i.e., query response time and data avail-

ability) of dedicated and cooperative M-P2P networks by means of a collaborative approach for

replica allocation and deallocation. Some M-P2P application scenarios for dedicated networks

follow. Suppose a group of agriculturists1 are performing studies of crops, crop diseases and soil

fertility in a remote agricultural area, where communication infrastructures (e.g., base stations)

do not exist. They need to share snapshots (pictures or video-clips) of the crops to determine

the progression of diseases in the crops to decide upon the appropriate amounts of fertilizers and

pesticides to administer to the crops.

Given the typically large size of such an agricultural area, suppose there is a chief agricultur-

ist, who supervises the working of the agriculturists in a specific region of the area, to facilitate

efficient data sharing. Thus, we can visualize the agricultural area as a set of regions, each region

having a chief agriculturist, who is in-charge of the agriculturists working in that region. Under-

standably, agriculturists within the same region may wish to share data among themselves (i.e.,

local querying) or they may wish to share data with those, who are working in other regions (i.e.,

remote querying). Each chief agriculturist could keep track of information (e.g., images, video-

clips) stored at MHs that are within its region, thereby facilitating local querying. Furthermore,

chief agriculturists in different regions of the agricultural area could interact with each other to

1Agriculturists are agricultural scientists, who specialize in all aspects of crop cultivation.

2

facilitate remote querying.

In the same vein, a group of archaeologists, who are performing excavations in a remote area

of Egypt, may need to share images (e.g., artefacts and ancient maps found), with each other by

means of mobile devices because they are working towards the same collaborative goal.

Now suppose agriculturist X in region A requests an image, and obtains a replica of the image

(from agriculturists of other regions). After a while, X deallocates (deletes) this replica, but now

another agriculturist Y in region A requests the same image, hence the replica has to be allocated

again to region A. Since images are relatively large in size, multiple allocations and deallocations

of the same replica at the same region tax the generally limited bandwidths and energy resources

of MHs. This may lead to undesirable ‘thrashing conditions’, where MHs spend more bandwidth

and energy on allocating and deallocating replicas than on answering queries.

Notably, our target applications mainly concern slow-moving objects e.g., agriculturists and

archaeologists moving in a remote area. Moreover, M-P2P ephemerality emphasizes the need for

queries to be answered in a fast and timely manner, thereby necessitating query deadlines.

Data availability is typically low in M-P2P networks due to frequent network partitioning aris-

ing from user movement and/or users switching ‘off’ their mobile devices. (Data availability is

less than 20% even in a wired environment [31].) Hence, several dynamic replication schemes

[16, 18, 26, 28, 34] have been proposed for improving data availability in M-P2P networks. How-

ever, while these existing schemes perform collaborative replica allocation, replica deallocation is

done only locally by each MH. Suppose a data item d has a high access frequency at MHs Mi and

Mj , while being rarely accessed at an MH Mk. Under the existing schemes, Mk would deallocate

d. But, since d is actually a ‘hot’ data item, d may be once again allocated to Mk after some-

time, which may lead to undesirable ‘thrashing’ conditions. Hence, both replica allocation and

deallocation should be performed collaboratively in tandem with each other to prevent thrashing.

Moreover, existing schemes do not consider fairness in replication since they allocate replicas

solely based on the read/write access probability of any given data item d without considering the

origin of queries for d. Thus, these schemes would regard d as ‘hot’ even if only a single MH

3

issues a large number of (read) queries for d, thereby possibly creating several replicas of d. This

runs contrary to the principle of fairness in serving multiple peers’ requests, which is an important

requirement in all P2P systems. Furthermore, MHs generally have resource constraints such as

limited memory space and energy resources. Such constraints should be adequately addressed for

any M-P2P replication scheme to work effectively in practice.

This paper proposes CADRE (Collaborative Allocation and Deallocation of Replicas with Ef-

ficiency), which is a dynamic replication scheme for improving the typically low data availability

in a cooperative mobile ad-hoc peer-to-peer (M-P2P) network. In particular, replica allocation and

deallocation are collaboratively performed in tandem to facilitate effective replication. Such col-

laboration is facilitated by a hybrid super-peer architecture in which some of the mobile hosts act

as the ‘gateway nodes’ (GNs) in a given region. GNs facilitate both search and replication.

The main contributions of CADRE are as follows:

1. It facilitates the prevention of ‘thrashing’ conditions due to its collaborative replica allocation

and deallocation mechanism.

2. It considers the replication of images at different resolutions to optimize the usage of the

generally limited memory space of the MHs.

3. It addresses fair replica allocation across the MHs.

4. It facilitates the optimization of the limited energy resources of MHs during replication.

Our performance evaluation demonstrates that CADRE is indeed effective in improving data avail-

ability in M-P2P networks with significant reduction in query response times and low communi-

cation traffic during replication as compared to a recent existing scheme (i.e., the E-DCG+ ap-

proach [16]). We also compare the performance of CADRE with a baseline approach designated

as NoRep, which does not perform any replication. The results of our experiments indicate that

CADRE outperforms E-DCG+ due to several reasons such as its collaborative replica allocation

and deallocation mechanism, its fair replica allocation scheme, its thrashing prevention scheme,

4

its consideration of MH energy and its load-conscious replica allocation scheme. Furthermore,

CADRE and E-DCG+ both outperform NoRep since NoRep does not perform any replication.

Our experiments show that CADRE is indeed capable of effectively preventing thrashing by

adjusting a particular threshold replication parameter. As the workload skew increases, the perfor-

mance gap between CADRE and E-DCG+ also increases due to the need for replication becoming

more prominent with increased load-imbalance. As the replica allocation period increases, replica

allocation traffic decreases dramatically due to decreased number of replica allocation periods.

CADRE also exhibits good scalability as more MHs imply better opportunities for replication.

The next section provides a brief introduction to the architecture of CADRE.

2 An overview of the architecture of CADRE

To manage replication efficiently, CADRE considers a hybrid super-peer architecture, in which

some of the MHs act as the ‘Gateway Nodes’ (GNs). The functionality of a GN is analogous to that

of a super-peer. In our M-P2P application scenario involving agriculturists, the chief agriculturist

in a given region would act as the GN for the MHs in that region. GNs have high processing

capacity, high available bandwidth and high energy. We assume that GNs in different regions have

the capability of interacting with each other.

GNs facilitate both replication and search. Intuitively, storing replicas arbitrarily at any MH

could adversely impact many MHs due to high communication overheads between MHs, unnec-

essary delays and querying failures. Thus, replication should be performed carefully based on

MH characteristics (e.g., load, energy) as well as network topology, thereby implying that some

regional knowledge becomes a necessity. As we shall see later, GNs have such regional knowledge

due to MHs periodically sending the necessary information to GNs, hence GNs can better manage

replication. GNs can also collaborate for replication across different regions. In contrast, for an

architecture without any GN, each MH would have to broadcast its status to all other MHs to make

each other aware of the regional status, thereby creating an undesirable broadcast storm during

replica allocation. Our architecture avoids such broadcast storm due to the presence of GNs.

5

Incidentally, our architecture does not have any single ‘root’ GN for supervising the working of

all the GNs. Neighbouring GNs periodically exchange their regional information with each other.

Hence, in case of GN failures, neighbouring GNs can take over the responsibility of the failed GN.

Furthermore, our architecture does not require local queries to pass via GN, thereby preserving

P2P autonomy. This is possible because every MH periodically sends the list of data items/replicas

hosted at itself to its GN, and GN broadcasts this information to all MHs within its region.

CADRE does not assume a priori knowledge of the movement patterns of the mobile peers

because in case of our application scenarios, mobile peers move randomly i.e., they do not follow

a specific pre-defined movement pattern. For example, the agriculturists and the archaeologists

would move randomly within their respective regions, while taking snapshots for collecting images

of their items of interest for purposes of scientific investigation. However, we do assume that the

GNs have limited mobility i.e., they only move within a specific radius. For example, the chief

agriculturist or the chief archaeologist of a given region would generally stay within that region.

The remainder of this paper is organized as follows. Section 3 discusses existing works, while

Section 4 presents the key components of CADRE. Section 5 discusses the energy-aware query

model of CADRE. Section 6 details the dynamic replication scheme of CADRE, while Section 7

presents the algorithm for replication in CADRE. Section 8 reports our performance evaluation.

Finally, we conclude in Section 9 with directions for future work.

3 Related Work

This section provides an overview of existing works.

Replication schemes for traditional distributed systems: Replication strategies for dis-

tributed environments have been discussed in [22, 21, 28]. In [22], a suite of replication proto-

cols for maintaining data consistency and transactional semantics of centralized systems have been

proposed. The protocols in [21] exploit the rich semantics of group communication primitives and

the relaxed isolation guarantees provided by most databases. The proposal in [28] discusses repli-

cation in distributed environments, where connectivity is partial, weak, and variant as in mobile

6

information systems. However, these approaches do not consider peer mobility issues.

Schemes for improving data availability in static P2P networks: Schemes for improving

data availability in static P2P networks have been discussed in [27, 8, 1]. A scalable P2P framework

for distributed data management applications and query routing has been presented in [27]. An

update strategy, based on a hybrid push/pull Rumor spreading algorithm, for truly decentralized

and self-organizing systems (e.g., pure P2P systems) has been examined in [8], the aim being

to provide probabilistic guarantees as opposed to strict consistency. Replication strategies for

designing highly available storage systems on highly unavailable P2P hosts are discussed in [1].

Incentive schemes have also been discussed for improving data availability in static P2P net-

works, the aim being to combat free-riding [12, 14, 19, 24]. These schemes involve formal game-

theoretic models for incentive-based P2P file-sharing systems [12], utility functions to capture peer

contributions [14], EigenTrust scores to capture participation criteria [19] and asymmetric incen-

tives based on disparities between upload and download bandwidths [24].

Notably, these static P2P approaches are too static to be deployed in M-P2P networks since

they assume peers’ availability and fixed topology. As a single instance, pre-defined data access

structures (e.g., distributed hash tables [33]) used in static P2P networks cannot effectively handle

peer mobility and frequent network partitioning, which are characteristic of mobile environments.

Schemes for improving data availability in Mobile ad hoc networks (MANETs): The pro-

posals in [16, 15] discuss replication in MANETs. E-DCG+ [16] creates groups of MPs that are

biconnected components in a MANET, and shares replicas in larger groups of MPs to provide high

stability. An RWR (read-write ratio) value in the group of each data item is calculated as a sum-

mation of RWR of those data items at each MP in that group. Each replica is allocated at an MP,

whose RWR value to the item is the highest among MPs that have free memory space to create

it. The work in [15] aims at classifying different replica consistency levels in a MANET based

on application requirements, and proposes protocols to realize them. Consistency maintenance is

performed via quorums and it is based on local conditions such as location and time.

Incidentally, P2P replication suitable for mobile environments has been incorporated in sys-

7

tems such as ROAM [29], Clique [30] and Rumor [13]. The work in [11] also discusses replication

issues in MANETs. Notably, the proposals in [16, 15, 29, 30, 13] do not consider M-P2P architec-

ture, collaborative replica deallocation, fairness in replication and energy issues.

Incentive schemes for improving data availability in MANETs by combating free-riding have

also been discussed [3, 4, 6, 7, 32]. The main purpose of these schemes is to stimulate node

cooperation by providing incentives to nodes for relaying messages. However, these schemes do

not consider M-P2P architecture and replication issues.

Schemes for improving data availability in M-P2P networks: The proposals in [36, 35]

discuss incentive schemes for improving M-P2P data availability by combating free-riding. The

work in [36] provides incentives to MPs for participation in the dissemination of reports about

resources in M-P2P networks. Each disseminated report contains information concerning a spatio-

temporal resource e.g., availability of a parking slot at a given time and location.

The work in [35] considers opportunistic resource information dissemination in transportation

application scenarios. An MP transmits its resources to the MPs that it encounters, and obtains

resources from them in exchange. The works in [36, 35] primarily address data dissemination with

the aim of reaching as many peers as possible i.e., they focus on how every peer can get the data.

In contrast, our work considers on-demand services (query-based approach) i.e., the query-issuing

peer obtains only its requested data items. Replication issues are not considered in [36, 35].

Economic schemes for resource allocation: The works in [25, 37, 38] discuss economic

schemes for resource allocation in wireless ad hoc networks. However, they do not consider repli-

cation. Economic schemes for resource allocation in distributed systems have also been proposed

[9, 10, 23]. However, they do not address M-P2P issues such as node mobility, frequent network

partitioning and mobile resource constraints.

4 Key components of CADRE

This section discusses the key components of CADRE.

8

User-specified size of the query result image

When a user issues a query for an image, he knows his available memory space status. Hence,

he knows the maximum amount of memory space, which he can expend for storing the query

result image. Thus, when querying, users specify the maximum size, designated as maxsize, for

the query result image and CADRE answers queries while considering this maxsize constraint.

This is especially important for M-P2P networks due to the generally limited memory space at

individual MHs and the significant differences in available memory space across the MHs. Since

image size increases with increasingly finer granularity, a user specifying larger value of maxsize

would obtain finer image granularity (i.e., better image quality). Notably, this is in contrast with

static P2P systems, where memory space constraints of the query issuing peer are not considered

when answering queries due to static peers generally having significant available memory space.

Suppose MH MI issues a query Q for an image img, and MH MS serves the query request.

MS could either be the owner of img or it could store a replica of img. Let the size of img at MS

be sizeimg . The following cases arise:

1. Query Result maxsize < sizeimg

2. Query Result maxsize ≥ sizeimg

In Case 1 above, img should be compressed to satisfy the maxsize query constraint. Such com-

pression should be performed by MS (and not MI) due to two reasons. First, it ensures smaller-

sized images being transmitted across the network, thereby optimizing bandwidth consumption.

Second, a one-time compression of img by MS is likely to enable MS to serve multiple user re-

quests, which optimizes energy consumption. Furthermore, performing the image compression at

MI would require every query-issuing MH to compress img individually, which would increase

individual MH energy consumption significantly. Notably, image compression algorithms [5, 17]

can be used in conjunction with CADRE. For Case 2, image decompression is not necessary since

users specifying larger maxsize values can be directed to either the original owner of img or any

MH that stores a relatively larger-sized replica of img.

9

Given that different users can specify different maxsize values for their queries on img, MS

needs to determine the size of the replica (of img) that it should store at itself to reduce its image

compression-related energy consumption. For this purpose, MS keeps track of queries issued to

itself by maintaining a list RepSize of the form (imgid, MHid, maxsize), where imgid is the

unique identifier of the queried image img, MHid is the identifier of the MH that issued the query

and maxsize is the maximum query result size specified by MHid. If an MH MI accesses img

multiple times, the value of maxsize for the most recent access is used to populate RepSize since

recent maxsize value specified by MI better reflects MI ’s current memory space status. Thus,

given img, MS determines img’s replica size by providing equal weight to accesses made by each

query-issuing MH since it considers one entry ofmaxsize for each of these MHs, thereby ensuring

fairness across multiple user requests for deciding the replica size.

The owner of an image stores the original image. Given the original image size So, we consider

n different ranges of granularity for replica size based on the extent of image compression relative

to So. Results of our preliminary performance study revealed that n = 4 is a reasonable value

for our application scenarios. Hence, we consider the following four ranges of granularity: low,

medium, high, original. Let the replica size be Sr. For low, (0.25 × So) ≤ Sr < (0.5 × So). In case

of medium, (0.5 × So) ≤ Sr < (0.75 × So). Similarly, for high (0.75 × So) ≤ Sr < So. Finally,

for original, Sr = So. Thus, when different MHs issue queries to MH MS with different maxsize

values, MS maps each query to any one of these four mutually exclusive ranges and keeps a count

of the number of queries for each range. MS determines the replica size to be in the range that

corresponds to the maximum number of queries. Finally, MS decides the exact size of the replica

by averaging the maxsize values of the queries within the selected range.

Fairness in replication

To ensure fairness in replication, each MH M assigns a score σ to each data item d. σ essentially

quantifies the importance of d to the network as a whole. Hence, σ should increase as d serves

more MHs. Given d, M computes σ as follows. First, M sorts the MHs, which recently requested

10

d, in descending order of their access frequencies for d i.e., the first MH in this order made the

maximum number of accesses to d. Given this order, M computes σ of d as follows:

σ = w × (

NMH∑

i=1

ni) × ρ × µ (1)

where ni is the number of accesses made to d by the ith MH in the order specified. Here, the weight

coefficient w equals (N/NMH), where N is the number of different MHs which queried the data

item d e.g., N = 10 means that 10 different MHs queried d. NMH is the total number of MHs in the

network. Thus, σ increases with increase in the number of MHs served by d. Thus, given two data

items with equal access frequencies, the score of the data item that serves a larger number of MHs

would be higher. This is in contrast with existing works [16], which do not consider the origin of

queries. In essence, the weight coefficient w ensures fairness in serving multiple MHs.

In Equation 1, ρ is the spatial density of the region from where the query originated. We

consider ρ since we want to replicate a data item to spatially denser neighbourhoods, in order to

serve more MHs. ρ = (NumMH /Area), where NumMH is the number of MHs in the region from

which the query was issued and Area is the area of the region. In our agricultural application,

NumMH would be the number of agriculturists in a given region of the agricultural area, while

Area would be the area of that region. Notably, GN G knows NumMH since every MH entering

G’s region needs to register with G. Area is pre-defined w.r.t. the application and G knows

the value of Area e.g., for the agricultural application, it could be the area of one region of the

agricultural area. Each GN periodically computes its ρ and piggybacks this information in its

periodic broadcast to all the MHs in its region. Hence, when an MH issues a query, it puts the

value of ρ in the header of its query.

µ is a weight factor for normalizing the data score w.r.t. image size. In M-P2P networks,

users often issue queries for small-sized data items due to limited memory space in their mobile

devices, hence more replicas for small-sized data items are likely to be allocated. Consequently,

replicas may seldom be allocated for large-sized images and this would be unfair to users who

11

issue queries for these images. µ ensures that larger-sized images would have a fair opportunity

of being replicated. We consider three different ranges of image sizes, namely small, medium and

big, for which we assign the values of µ to be 0.25, 0.5 and 0.75 respectively. These size ranges

are application-dependent.

The score σG of a data item d (or replica) w.r.t. a given GN G is the sum of the scores of d at

each MH within G’s region. Hence, σG equals (
∑η

i=1
σi), where η is the number of MHs in G’s

region, and σi is d’s score at the ith MH.

Prevention of thrashing conditions

To address prevention of thrashing, each MH keeps track of the number of deallocations of each

replica at itself over a period of time. We define a metric designated as the Flip-Flop Ratio (FFR).

The FFR of a replica r at a given MH M is computed as follows:

FFR = (Ndealloc ÷ Tdealloc) × (sizer ÷ Tsize) (2)

where Ndealloc is the number of times that r has been deallocated at M , and Tdealloc is the total

number of deallocations of all the replicas at M during recent time period. sizer is the size of the

replica, while Tsize is the sum of the sizes of all the replicas atM . Thus, the value of FFR is always

between 0 and 1. We normalize FFR w.r.t. replica size to minimize the probability of thrashing of

large data items since the effect of thrashing is more pronounced for such items due to bandwidth

and energy considerations. Periodically, every MH computes the FFR for each replica r stored at

itself. As the FFR value of r increases, the probability of thrashing of r also increases. Hence, r

should not be deallocated if its FFR value exceeds a certain threshold, which we shall designate as

ω. We compute ω as follows:

ω = (

NRep∑

i=1

FFRi) ÷ NRep (3)

12

where NRep is the total number of replicas at all the MHs in the entire M-P2P network and FFRi

is the value of FFR for the ith replica. Thus, ω is the average value of FFR across all the replicas

in the network.

5 Energy-aware Query Model of CADRE

This section discusses the energy-aware query model of CADRE.

User queriesQ are of the form {Qid, (k1,k2,...,kn), τmax, ttl,maxsize}, whereQid is the unique

identifier of a query, and ki are user-specified keywords e.g., if an M-P2P user requests an image of

‘asparagus officinalis’2, k1= ‘asparagus’ and k2 = ‘officinalis’. Here, τmax is the deadline for query

response from the user’s perspective. Notably, M-P2P ephemerality necessitates query deadlines.

ttl is the maximum time-to-live of a query, and it is application-dependent, while maxsize is the

user-specified maximum size of the query result.

Recall that our M-P2P applications support both local and remote querying. To support efficient

querying, each MH periodically sends its list of data items and replicas to its corresponding GN.

Thus, GN is able to periodically broadcast the list of available items within its region to the MHs,

thereby enabling a query issuing MH M to distinguish whether its query is local or global. When

an MH enters a region R, it registers with the GN G in R, and G provides the MH with the list of

data items currently available in R. (We assume that an MH will have to register with one GN.)

Processing of local queries: Query-issuing MP MI uses a broadcast mechanism i.e., it broad-

casts the query Q for a data item d to its neighbouring MHs, which in turn, forward it to their

neighbouring MHs and so on. If an MP MS receiving Q contains d (or its replica), it puts its MPid

(unique identifier of an MP) and its remaining energy into the query message and informs MI

about d’s size. Otherwise, it just puts its MPid and its remaining energy into the query message,

increments the number of hops in the query message, and forwards Q to its one-hop neighbours.

MS returns the size of d toMI only if it estimates that it can satisfy the τmax and ttl constraints.

MS estimates the time to answerQ based on d’s size, the bandwidth that it can make available for d

2‘Asparagus officinalis’ is the scientific name for asparagus.

13

and its knowledge of the previous history of the network by examining queries which pass through

itself as well as by periodically exchanging messages with its neighbours. Thus, local queries need

not pass through GN, thereby preserving P2P autonomy.

When MI receives messages from possibly multiple MPs, which host d or its replica, it lists

the query paths associated with each of these messages. (Recall that each MP appends its MPid

to the query messages.) Let L denote the list of possible query paths from MI to the queried data

item. From this list L of query paths, MI selects the query path as follows.

First, all paths, for which the querying-serving MH MS has energy below EnergyTh, are

deleted from L. Here, EnergyTh is an energy threshold, at which the energy of an MH is low

such that it will die out if it answers the query. Notably, EnergyTh is application-dependent. Sec-

ond, all paths, which contain at least one relay MH with (remaining) energy below EnergyTh, are

deleted from L. (In case no remaining query path exists in L, the query is not answered because

we give higher priority to preserving network connectivity over answering a single query.)

Third, for the remaining query paths, we define the total energy consumed in a given query

path as ((
∑r

i=1
Energyi) + EnergyMS

), where r is the number of relay MPs in that path,

Energyi is the remaining energy of the ith relay MH, and EnergyMS
is the energy of the query-

serving MH MS . Thus, MI selects the query path for which total energy consumption is mini-

mized.

Processing of remote queries: The query-issuing MHMI sends the remote query Q to its cor-

responding GN, which forwards Q to its neighbouring GNs. (Recall that GN periodically broad-

casts the list of data items to MHs in its region, hence MI knows when it is issuing a remote query.)

If any of the neighbouring GNs contains the item d queried by Q, they ask the MH, which hosts d,

to send d toMI . Otherwise, the neighbouring GN will forward it to its neighbouring GN and so on.

Each GN adds its unique identifier to the query header to ensure that it does not process the same

query more than once. Contrast this with an architecture without any GNs, where every remote

query would require a broadcast, thereby resulting in a broadcast storm. Thus, our architecture

avoids broadcast storm in case of remote queries due to GNs collaborating with each other.

14

Observe the hybrid nature of our architecture in that it uses a P2P paradigm within a region,

while deploying a distributed superpeer-based model across different regions. Notably, as in the

case for local queries, remote queries are also processed in an energy-aware manner i.e., the query

path with the least energy consumption is selected. This is possible without any intervention from

the respective GNs because the query message contains the remaining energy of each MH in the

query path, thereby allowing MI to select the query path with the lowest energy consumption.

After selecting the query path,MI sends a message to the target host MPMS of d in the selected

query path to indicate its interest to download d from MS . Then MS transfers d to MI through the

relay MPs in the selected query path.

6 CADRE: A dynamic replication scheme for M-P2P networks

This section discusses the details of the CADRE replication scheme for M-P2P networks. In

CADRE, each data item is owned by only one MH. Available memory space at each MH, band-

width and data item sizes may vary. We define the load Li of an MH Mi as follows:

Li = Ji,tj ÷ (BMi
÷ Bmin) (4)

where Ji,tj represents the job queue length of Mi at time tj, and BMi
is the available bandwidth

of Mi. A straightforward way of determining Bmin is to select a low bandwidth as Bmin e.g., we

have used 56 Kbps as the value of Bmin. Observe how our definition of load addresses bandwidth

heterogeneity among the MHs.

Table 1 summarizes our notations. Let us now examine how MH MS , which serves the query

request, maintains access statistics of queries issued to itself for facilitating replication.

Maintenance of access statistics at each MH

MS distinguishes between accesses made to its own data items from within the region of its corre-

sponding GN (i.e., internal accesses) and accesses to its own data items from MHs that are moving

within the region of other GNs (i.e., external accesses). Hence, in Table 1, Dint and Dext are lists

15

Parameter Significance

img A given queried image

imgid Identifier of img

MI Identifier of the query issuing MH

MS Identifier of the MH serving the query request

GNI Identifier of the GN in whose region MI is currently moving

maxsize User-specified maximum query result size

t Time of query issue

Dint List summarizing internal accesses to MS’s own data items at MS

Dext List summarizing external access to MS’s own data items at MS

Rint List summarizing internal accesses to replicas at MS

Rext List summarizing external access to replicas at MS

Table 1: Summary of Notations

in which MS summarizes the internal accesses and external accesses respectively to its own data

items. Dint guides MS in selecting its own data items that should be replicated within the region

of its corresponding GN, while Dext facilitates MS in determining its own data items that should

be replicated at regions covered by other GNs. Using Table 1, each entry in Dint is of the form

(imgid, MI), while entries in Dext are of the form (imgid, GNI , MI). MS uses the entry of GNI in

Dext to decide the GN, within whose region the given data item should be replicated.

MS also differentiates between its own data items and the replicas that are stored at itself. Thus,

in Table 1, Rint and Rext are lists in which MS summarizes the internal accesses and external

accesses respectively to the replicas stored at itself. Using Table 1, each entry inRint is of the form

(imgid, MI), while entries in Rext are of the form (imgid, GNI , MI). Notably, here imgid refers

to the identifier of the replica stored at MS , while for the lists Dint and Dext, imgid represented

the identifier of MS’s own data item. Besides this difference, the data structures of Rint and Rext

are essentially similar to that of Dint and Dext respectively. Rint and Rext guide MS in computing

replica scores w.r.t. different GNs, thereby facilitating MS in deallocating replicas that have low

scores w.r.t. a particular GN. The listsDint,Dext, Rint andRext are periodically refreshed to reflect

recent access statistics. This is performed by periodically deleting all the existing entries from these

lists and then re-populating them with fresh information from the recent queries. Such refreshing

16

is especially important due to the dynamic changes in access patterns in M-P2P networks.

Selection of candidate data items for replication

Using its Dint and Rint respectively, each MH computes the score of each of its items (i.e., its own

data items and replicas stored at itself), which were accessed by MHs from within the region of

its corresponding GN G. Since Dint and Rint summarize the internal accesses, these scores are

w.r.t. G. Similarly, from its Dext and Rext respectively, each MH calculates the score of each of its

items, which were accessed by MHs that are outside the region of G. In this case, MHs from the

respective regions corresponding to multiple GNs may have accessed a particular item, hence the

scores of data items and replicas are computed w.r.t. each GN separately. Periodically, each MH

sends all these scores to G. Upon receiving these scores from all the MHs in its region, G sums

up the score of each item (w.r.t. each GN) from each MH within its region, thereby computing the

total score of each item w.r.t. each GN.

Intuitively, internally accessed items should be replicated at MHs within G’s region, while the

externally accessed items need to be replicated at MHs in the regions of other GNs. Hence, when

selecting candidate items for replica allocation, G distinguishes between internally accessed and

externally accessed data items. For the internally accessed items, G sorts these items in descend-

ing order of their scores. G considers those items, whose scores exceed the average score ψ, as

candidates for replication. ψ equals ((1/Nd)
∑Nd

j=1
σj), where Nd is the total number of items

and σj is the score of the jth item. Observe how G prefers items with relatively higher scores for

replica allocation due to the higher importance of these items.

For the externally accessed items, G computes the score of each data item d w.r.t. every (ex-

ternal) GN from whose region at least one access was made for d. Then G creates a list LSuggest

of these items, each entry of which is of the form (imgid, σ, GNI), where imgid is the identifier of

the item, and σ is the score of the item w.r.t. GNI , which is the identifier of a given external GN.

ThenG sorts the items in LSuggest in descending order of σ. G considers items (of LSuggest), whose

scores exceed the threshold λ, as candidates for replication. (The remaining items are deleted from

17

LSuggest.) λ equals ((1/Nd)
∑Nd

j=1
σj), where Nd is the total number of items accessed by external

GNs, and σj is the score of the jth data item w.r.t a given external GN.

Observe the similarities in determining the candidate data items for replication for internally

and externally accessed data items, the difference being that the case for externally accessed data

items is more complicated due to the computation of data scores w.r.t. multiple GNs. Furthermore,

G does not participate in allocating replicas for the selected candidate items in LSuggest. Instead,

for each candidate item, G just sends a message to the relevant external GN, which will perform

the actual replica allocation at some MH within its region. Given imgid, the relevant external GN

is the correspondingGNI in LSuggest. Note that, just asG suggests external GNs to replicate items,

the external GNs also suggest G to replicate items that have been accessed at these external GNs

by the MHs of G’s region. We shall henceforth refer to the list of items, for which G needs to

allocate replicas, as IRep. Thus, IRep comprises two types of items: (a) items that are stored at the

MHs within its own region R (i.e., internal items) (b) items which are stored at MHs outside R

(i.e., external items). External items are recommended to G by the other (external) GNs.

Selection of a destination MH for storing the replica

Given a data item d to be replicated, the GN determines the destination MH within its region

for hosting the replica of d based on the remaining energy of the MHs, the time required for

downloading the data item to the destination MH and the MH’s load.

First, GN G determines the MH Mmax, which made the maximum number of accesses to d.

This facilitates bringing d nearer to the origin of most of the requests for d. Then G creates a

list LDest, which consists of Mmax and the n-hop neighbours of Mmax. Notably, we also consider

the n-hop neighbours of Mmax because Mmax may not have adequate available memory space

and/or remaining energy to host d’s replica. Our preliminary experiments indicated that n = 3 is

appropriate for our application scenarios, hence CADRE considers MHs, which are upto 3 hops of

Mmax, as candidates for hosting d’s replica.

From LDest, G first deletes all MHs, whose available memory space is less than the size of d’s

18

replica, because such MHs obviously cannot host d. Then, from LDest, G deletes all MHs, whose

energy is below Energyavg, which is the average of the remaining energy of all the MHs in LDest.

Thus, CADRE aims at replicating d only at MHs with relatively higher energy because high-energy

MHs are more likely to be able to provide better service to the network by possibly answering more

queries on d’s replica for longer duration of time. This also facilitates improved data availability

due to the preservation of network connectivity, which reduces network partitioning.

Then from LDest, G deletes all MHs, whose download time for replica allocation exceeds

DownloadAvg. Here, download time refers to the time required for transferring the replica from the

replica’s source MH to the destination MH.DownloadAvg is the average of the download times for

the (remaining) MHs in LDest. This facilitates in minimizing the total time required for completing

the replication procedures. G estimates the time required for the replica to be transmitted from the

replica’s source MH to the destination MH by using its knowledge about the past statistics of the

network as well as the size of the replica.

Finally, as we shall see shortly in Section 7, CADRE selects the destination MH for storing

the replica by using MH load as a criteria on the remaining MHs in LDest. Observe that even

though CADRE aims at minimizing replication overheads by trying to allocate the replica at an

MH with relatively low download time for replica allocation, this does not necessarily imply that

replica allocation occurs only at the one-hop neighbours of Mmax. As a single instance, the one-

hop neighbours of Mmax may all be having low remaining energy. In essence, replica allocation in

CADRE can occur at any MH within three hops of Mmax.

7 Algorithms for replication in CADRE

In CADRE, each GN executes replica allocation and deallocation within the region that it covers.

In addition to the scores of items, each MH also sends its load status, energy status, available

memory space status and the FFR values of the replicas stored at itself to the corresponding GN

in its region. Figure 1 depicts the CADRE replication algorithm, which is executed by a given GN

G for allocating replicas at MHs within its own region. The list IRep in Figure 1 comprises items

19

that are candidates for replica allocation by G. (We have discussed the composition of the list IRep

earlier in Section 6.) Line 1 of Figure 1 indicates that CADRE allocates replicas starting from

the data item with the highest score, thus preferring data items with higher scores since these data

items are important to the network as a whole.

Lines 3-7 indicate how CADRE determines the candidate list LDest of the potential destination

MHs for storing the replica, as described earlier in Section 6. Observe how CADRE considers the

available memory space and remaining energy of the MHs, as well as the download times required

for the replica to be transmitted from the replica’s source MH to the destination MH. Notably, the

values of the thresholds such as EnergyAvg and DownloadAvg are computed as discussed earlier

in Section 6.

CADRE avoids replica allocation at overloaded MHs primarily because such MHs would not be

able to provide good service due to their large job queues, which would force queries to incur long

waiting times and consequently, higher response times. As Line 11 indicates, CADRE allocates

replicas of data items with relatively high scores to underloaded MHs. Notably, the score of an

item d may not have a direct correlation with the load imposed by d on the MH M , if d were to be

replicated at M . This is primarily because the score depends not only on the total access frequency

of d, but also on the number of MHs that accessed d. However, we believe that assigning items

with high scores to relatively underloaded MHs is reasonable because it facilitates better query

response times for items, which are important to a larger number of MHs.

Lines 12-33 depict how the score of the item d to be replicated at the MH M is compared

with the scores of the existing replicas. The algorithm keeps adding the existing replicas to the list

Ldealloc as long as the sum of the scores of these replicas is less than the score of d. If the total

size of the replicas in Ldealloc exceeds the size of d, the replicas in Ldealloc will be deallocated in

order to replicate d at M . Otherwise, the replicas in Ldealloc will not be deallocated. In essence, we

are first simulating the eviction of replicas, and if d can be replicated at M by removing a set of

existing replicas, whose combined score is less than that of d, we deallocate those existing replicas

in favour of d. This is justifiable because d is more important to the network than these deallocated

20

Algorithm CADRE
IRep: List of data items that are candidates for replica allocation

(1) Sort data items in IRep in descending order of σ

(2) for each data item d in IRep

(3) Find the MH Mmax which has made maximum number of accesses to d

(4) Add Mmax and its n-hop neighbours to a set LDest

(5) From LDest, delete MHs with low available memory space

(6) From LDest, delete MHs with remaining energy below EnergyAvg

(7) From LDest, delete MHs with replica download time above DownloadAvg

(8) if LDest is an empty list

(9) break

(10) else

(11) Sort the MHs in LDest in ascending order of load

(12) for each MH M in LDest

(13) Create a list LR of the replicas stored at M

(14) From LR, delete replicas with FFR above threshold ω

(15) if LR is an empty list

(16) break

(17) else

(18) Sort LR in ascending order of σ

(19) Ldealloc = empty /* List of deallocations */

(20) σcnt = 0, sizecnt = 0

(21) for each replica r in LR

(22) /* sized is d’s size and sizer is r’s size */

(23) /* σd is d’s score and σr is r’s score */

(24) σcnt = σcnt + σr

(25) sizecnt = sizecnt + sizer

(26) if σd < σcnt

(27) break

(28) else

(29) if sized < sizecnt

(30) Deallocate all entries in Ldealloc from M

(31) Allocate d at M

(32) else

(33) Add r to Ldealloc

end

Figure 1: CADRE replication algorithm

21

replicas based on the scores. However, when the total score of the replicas in Ldealloc exceeds

d’s score, we do not deallocate the replicas because the combined importance of these replicas is

higher than that of d.

Line 14 indicates that we do not deallocate replicas whose FFR values exceed the pre-defined

threshold ω, the primary reason being to avoid thrashing conditions. High FFR value of a replica

means that it has been allocated and deallocated multiple times. Thus, a replica with FFR value

above ω is likely to be accessed again, which might require it to be allocated once again, thereby

increasing the probability of thrashing. Incidentally, if there is still some available memory space

at some MHs after the CADRE algorithm has been executed for all the candidate data items,

the algorithm is executed multiple times until none of the MHs have adequate memory space for

storing replicas.

8 Performance Evaluation

This section reports our performance evaluation using simulation. For the simulation, we have

used our own implementation.

The parameter values used in our performance evaluation have been selected carefully based

on other works such as [16], where a similar environment has been considered for performance

evaluation. Additionally, some of the parameter values have been selected according to our envi-

ronment and our application scenarios. As a single instance, our application scenarios typically

concern situations, where the number of MHs in a given region is not large. For example, in the

application scenario concerning agriculturists in an agricultural area, the number of agriculturists

in the network (within a given region) would typically be less than 50. Hence, in our experiments,

we have set the number of MHs to 50.

The bandwidth range of 28-100 Kbps is in consonance with the available bandwidth ranges,

which could be reasonably expected in our application scenarios. We have set the size of a data

item in the range of 1-10 MB because our data items are generally in that range e.g., images/video-

clips of plants, soil and historical artefacts. In particular, we do not consider big-sized data such

22

as movies. We have set the relocation period to 200 seconds since it is a reasonable value for

our application scenarios. In general, relocation period is tied to replication, and it is essentially

application-dependent.

We consider five different regions. Each region has 50 MHs and 1 GN. MHs in each region

move according to the Random waypoint model [2] within the region, the area of the region being

1000 metre ×1000 metre. The Random waypoint model is appropriate for our application scenar-

ios, which involve random movement of users. GNs move within their respective regions and we

assume that they are able to communicate with each other. Each region contains 200 data items

that are uniformly distributed among 50 MHs i.e., each MH owns 4 data items. Each query is a

request for either a local data item or a remote one. For query routing purposes, we have used

the AODV protocol. In all the experiments presented here, 60% of the queries were remote ones,

while the other 40% were local queries. We had performed experiments with different percentages

of remote and local queries, the results indicating increasing query response times with increasing

percentage of remote queries. Since these experiments exhibited similar trends, we do not present

the results here due to space constraints.

Periodically, every TP seconds, each GN decides whether to perform replica allocation. Net-

work topology does not change significantly during replica allocation since it requires only a few

seconds [16]. In all our experiments, 20 queries/second are issued within each region, the number

of queries directed to each MH being determined by the Zipf distribution. Communication range

of all MHs (except the GNs) is a circle of 100 metre radius. Notably, initial energy of an MH is

selected to be between 90000 to 100000 energy units using a random number generator. Table 2

summarizes the performance study parameters, which are the same for each of the five regions.

We ran each experiment 10 times, hence the experiment result values are the average of these

runs. The respective confidence intervals for our experiments ranged from 90% to 95%.

Performance metrics are average response time (ART) of a query, data availability (DA) and

communication traffic (TR) for replica allocation. ART = (1/NQ)
∑NQ

i=1
(Tf − Ti), where Ti is the

time of query issuing, Tf is time of the query result reaching the query-issuing MH, and NQ is the

23

Parameter Default value Variations

No. of MHs (NMH) in each region 50 10, 20, 30, 40

Zipf factor (ZF) 0.9 0.1, 0.3, 0.5, 0.7

Allocation period TP (102 s) 2 1, 3, 4, 5, 6

Queries/second 20

Bandwidth between MHs 28 Kbps to 100 Kbps

Probability of MH availability 50% to 85%

Size of a data item 1 MB to 10 MB

Available Memory at an MH 10 MB to 20 MB

Initial energy of an MH 90000 to 100000 energy units

Speed of an MH 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Table 2: Performance Study Parameters

total number of queries. ART includes the download time, and is computed only for the successful

queries. Notably, unsuccessful queries are not considered for ART computations.

DA = (NS/NQ)*100, NS being the number of queries that were answered successfully. Each

query has a ‘time-to-live’ (TTL) i.e., queries that are not answered within n hops are dropped. All

our experiments use n = 6 since preliminary experiments indicated that it is a reasonable value for

our application scenarios. In CADRE, queries can fail due to their deadlines not being satisfied

or due to MHs being unavailable or due to network partitioning, or due to exceeding the TTL. We

define TR as the total hop-count for replica allocation during the experiment.

In our simulation model, we have also considered the probability of interruption during data

transfer as a parameter with the chances of interruption/failure (during data transfer) being 10%

to 20%. However, our simulation model does not consider complete disconnections. In particular,

the occurrence of complete interruptions during data transfer is in the realm of networking, which

is not our primary focus in this paper. However, we do acknowledge the importance of this issue

and leave this issue open to further research. Furthermore, the overhead introduced by the GN is

negligible in comparison to the traffic for allocation and deallocation of data items. Notably, the

overhead introduced by the GN and the replica allocation is part of the communication delay.

Performance comparison w.r.t. existing approaches: Our work cannot be meaningfully

24

compared with replication schemes for traditional distributed environments [22, 21, 28] and repli-

cation schemes for static P2P networks [27, 8, 1] because these schemes are too static to be de-

ployed in M-P2P environments as they assume peers’ availability and fixed topology. In a similar

vein, incentive schemes for improving data availability in static P2P networks [12, 14, 19, 24] are

not directly comparable to our work because they do not consider peer mobility and limited energy

resources of the peers, which are characteristic of M-P2P environments. Finally, our work cannot

also be directly compared with incentive schemes for improving data availability in M-P2P net-

works [36, 35] because they consider a data dissemination model, while we consider a query-based

model. Moreover, they do not address replication. The “push-based” data dissemination model in

[36, 35] will increase traffic significantly as compared to our “pull-based” querying model, thereby

resulting in significantly higher energy consumption of MHs, and consequently, making it unsuit-

able for our M-P2P application scenarios, where the energy of devices is generally limited.

For meaningful performance comparison purposes, we adapt the E-DCG+ approach [16] to our

scenario and compare our work against the E-DCG+ approach since it is the closest to our proposed

M-P2P replication approach. E-DCG+ is executed at every reallocation period. Notably, E-DCG+

allocates replicas based on data item access frequencies and it does not consider collaborative

replica deallocation, fairness in replication and preservation of MH energy. As a baseline, we also

compare CADRE with an approach NoRep, which does not perform replica allocation.

Effect of fair replica allocation

We conducted an experiment to observe the number of replicas created by CADRE and E-DCG+

for a single ‘hot’ data item d over a period of time. This data item was selected randomly from the

top 10% hottest data items. Figure 2a depicts the results. The confidence interval for the results of

this experiment is 93%.

For both CADRE and E-DCG+, the number of replicas increases over time in response to

conditions necessitating replica allocation. However, the number of replicas does not increase

indefinitely over time and eventually plateaus after some time due to competition among replicas

25

5

10

2 4 6

N
o
.
o
f

re
p
li

c
a
s

Time (102 s)

CADRE
E-DCG+

NoRep

(a) No. of replicas

5

10

2 4 6

A
v

e
ra

g
e
 Q

u
e
ry

 h
o

p
-c

o
u

n
t

Time (102 s)

CADRE
E-DCG+

NoRep

(b) Average query hop-count

Figure 2: Effect of fair replica allocation

for MH memory space. Observe that CADRE creates more replicas than E-DCG+. This is because

CADRE would create a replica for a data item d, which is accessed by a large number of MHs,

even if d’s total access frequency is low, in which case E-DCG+ would not create any replica.

Thus, CADRE creates replicas for more data items than E-DCG+ since CADRE selects candidate

items for replication based on scores as opposed to total access frequencies.

Figure 2b indicates the average number of hop-counts required for querying the same data

item d during different periods of time. These results were averaged over a total of 1200 queries.

Initially, before replica allocation had been performed, all three approaches required comparable

number of hops for querying d. After replica allocation has been performed, CADRE requires

lower number of hops than E-DCG+ to answer queries on d since CADRE creates more replicas

for d, as discussed for Figure 2a. More replicas generally decrease the querying hop-count since

it increases the likelihood of queries being answered within lower number of hops and provide

multiple paths to locate a queried data item. Furthermore, CADRE’s effective preservation of

the energy of MHs implies better network connectivity (i.e., less frequent network partitioning),

which also reduces the querying hop-counts in case of CADRE. E-DCG+ requires lower number

of querying hop-counts than NoRep essentially due to replication.

26

Effect of thrashing prevention

Recall that CADRE deallocates only those replicas, whose FFR values are less than that of the

FFR threshold ω. Figures 3a and 3b depict the effect of variations in ω on the ART and DA of

CADRE. The confidence interval for the results of this experiment is 95%.

60

120

180

0 0.3 0.6 0.9

A
R

T
(s

)

FFR Threshold

CADRE
E-DCG+

NoRep

(a) Average Response Time

20

60

100

0 0.3 0.6 0.9
D

A

FFR Threshold

CADRE
E-DCG+

NoRep

(b) Data Availability

Figure 3: Effect of thrashing prevention

E-DCG+ and NoRep show relatively constant ART and DA as these approaches are indepen-

dent of ω. For high values of ω, the FFR of more replicas fall below ω, thereby making the occur-

rence of a large number of deallocations more likely. This is likely to lead to thrashing conditions,

and consequently increased ART and decreased DA. However, when the value of ω is low, the FFR

of few replicas fall below ω. This makes deallocation too ‘conservative’ in the sense that replicas,

which should have been deallocated to create memory space for ‘hot’ items, will not be deallocated,

Thus, items with high scores cannot be allocated due to lack of space, thereby adversely affecting

the performance of CADRE. As the results in Figures 3a and 3b indicate, CADRE performs best at

intermediate values of ω i.e., 0.4 ≤ ω ≤ 0.6. By computing ω for this experiment according to our

analytical formula in Equation 3, we obtain ω ≈ 0.54, which experimentally justifies Equation 3.

Performance of CADRE

We conducted a simulation experiment using default values of the parameters in Table 2. Figure 4

depicts the results. The confidence interval for the results of this experiment is 94%.

Figure 4a indicates that the performance gap between CADRE and E-DCG+ keeps increasing

27

60

120

180

4 8 12 16 20

A
R

T
 (

s)

No. of queries (103)

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

4 8 12 16 20

D
A

No. of queries (103)

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

4 8 12 16 20

T
R

 (
1
0

4
)

No. of queries (103)

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 4: Performance of CADRE

over time due to several reasons. First, in case of CADRE, replica allocation and deallocaton are

both performed by the GNs. Since a GN has good regional knowledge concerning load status,

available memory space status and energy status of MHs as well as network topology, it is able to

better manage replication in its region. In contrast, for E-DCG+, replica allocation is performed in

a distributed manner by individual MHs, which lack good regional knowledge. Second, CADRE

allocates replicas only to MHs with relatively low loads, thereby ensuring relatively short waiting

times for queries at the job queues of these MHs, and consequently, reduced query response times.

However, since E-DCG+ does not consider MH load, it may allocate replicas to overloaded MHs,

thereby resulting in high query response times at these MHs due to their large job queues. Third,

CADRE uses the FFR threshold to facilitate the prevention of thrashing conditions, which E-DCG+

does not address. Notably, preventing thrashing can improve performance significantly when large-

sized items (e.g., images) are present, as in our application scenarios. Fourth, unlike E-DCG+,

CADRE creates replicas for more data items since it considers fairness in replica allocations via

data scores, as discussed for the results in Figure 2. Fifth, unlike E-DCG+, CADRE takes MH

energy into account, which improves query response times due to better network connectivity.

The results in Figure 4b suggest that CADRE provides higher data availability than E-DCG+

essentially due to the reasons discussed for Figure 4a. Incidentally, during replica allocation, E-

DCG+ requires every MH to broadcast its RWR values to every MH, thereby incurring O(N 2

MH)

messages, while CADRE requires each MH to send only one message to its corresponding GN,

28

and the GN broadcasts a message to each MH, thus incurring O(NMH) messages, which explains

the results in Figure 4c.

Effect of variations in the workload skew

Figure 5 depicts the results when the zipf factor (ZF) is varied. The confidence interval for the

results of this experiment is 90%.

60

120

180

0.1 0.5 0.9

A
R

T
 (

s)

ZF

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

0.1 0.5 0.9

D
A

ZF

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

0.1 0.5 0.9

T
R

 (
1
0

4
)

ZF

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 5: Effect of variations in the workload skew

For high ZF values (i.e., high skew), both CADRE and E-DCG+ perform better than NoRep in

terms of ART and DA due to more replica allocations in response to load-imbalance conditions.

The performance gap (in terms of ART and DA) between CADRE and E-DCG+ increases with

increasingly skewed workloads essentially due to the reasons explained for Figures 2 and 4. In

particular, unlike E-DCG+, CADRE uses MH load as a replication criteria, thereby making it

more sensitive to load-imbalance conditions. However, the performance of all three approaches is

comparable at lowly skewed workloads since such workloads do not necessitate replica allocations.

The explanation for Figure 5c is essentially the same as that of Figure 4c.

Effect of variations in the replica allocation period

Recall that every TP seconds, a GN decides whether to allocate replicas. Figure 6 depicts the

results of varying TP . The confidence interval for the results of this experiment is 92%.

At lower values of TP , more number of replica allocation periods occur, hence load imbalances

29

60

120

180

2 4 6

A
R

T
 (

s)

TP (102 s)

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

2 4 6

D
A

TP (102 s)

CADRE
E-DCG+

NoRep

(b) Data Availability

5

10

2 4 6

T
R

 (
1
0

4
)

TP (102 s)

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 6: Effect of variations in the replica allocation period TP

are corrected quickly in response to changing access patterns, thereby improving ART and DA for

both CADRE and E-DCG+. As TP increases, load imbalances are corrected less frequently, hence

performance degrades for both CADRE and E-DCG+. For NoRep, ART and DA remain relatively

constant because they depend only upon probability of MH availability. The explanation for the

results in Figure 6c is similar to that of Figure 4c. In particular, replica allocation traffic decreases

dramatically with increasing TP due to decreased number of replica allocation periods.

Effect of variations in the number of MHs

To test CADRE’s scalability, we varied the number NMH of MHs, keeping the number of queries

proportional to NMH . Figure 7 depicts the results. The confidence interval for the results of this

experiment is 94%. At high values of NMH , CADRE outperforms E-DCG+ due to the reasons

explained for Figures 2 and 4. As NMH decreases, the performance gap decreases due to lim-

ited replication opportunities. Replica allocation traffic for E-DCG+ dramatically decreases with

decreasing NMH due to reduced broadcast traffic.

9 Conclusion

We have proposed CADRE, which is a dynamic replication scheme for improving the typically low

data availability in dedicated and cooperative M-P2P networks. CADRE collaboratively performs

both replica allocation and deallocation in tandem to facilitate effective replication and to avoid

30

60

120

180

10 30 50

A
R

T
 (

s)

NMH

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

10 30 50

D
A

NMH

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

10 30 50

T
R

 (
1
0

4
)

NMH

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 7: Effect of variations in the number of MHs

‘thrashing’ conditions, while addressing fair replica allocation across the MHs. Such collaboration

is facilitated by a hybrid super-peer architecture in which some of the mobile hosts act as the

‘gateway nodes’ (GNs) in a given region. GNs facilitate both search and replication. Furthermore,

CADRE considers the replication of images at different resolutions to optimize the usage of the

generally limited memory space of the MHs. CADRE also facilitates the optimization of the

limited energy resources of MHs during replication.

Our performance evaluation demonstrates that CADRE is indeed effective in improving data

availability in M-P2P networks with significant reduction in query response times and low com-

munication traffic during replication as compared to a recent existing scheme as well as a base-

line approach, which does not consider any replication. In the near future, we plan to integrate

CADRE’s replica allocation and deallocation algorithms with incentive models for peer participa-

tion to further improve data availability in M-P2P networks.

References

[1] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker. Replication strategies for highly

available peer-to-peer storage. Proc. Future Directions in Distributed Computing, 2003.

[2] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A performance comparison

of multi-hop wireless ad hoc network routing protocol. Proc. MOBICOM, pages 159–164,

1998.

31

[3] L. Buttyan and J. Hubaux. Nuglets: a virtual currency to stimulate cooperation in self-

organized mobile ad hoc networks. Technical Report DSC/2001/001, Swiss Federal Institute

of Technology,Lausanne, 2001.

[4] L. Buttyan and J.P. Hubaux. Stimulating cooperation in self-organizing mobile ad hoc net-

works. ACM/Kluwer Mobile Networks and Applications, 8(5), 2003.

[5] B. Carpentieri, M. Weinberger, and G. Seroussi. Lossless compression of continuous-tone

images. Proc. IEEE, 2000.

[6] K. Chen and K. Nahrstedt. iPass: an incentive compatible auction scheme to enable packet

forwarding service in MANET. Proc. ICDCS, 2004.

[7] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring. Modelling incentives for collaboration in

mobile ad hoc networks. Proc. WiOpt, 2003.

[8] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly unreliable replicated peer-to-peer

systems. Proc. ICDCS, 2003.

[9] D.F. Ferguson, C. Nikolaou, and Y. Yemini. An economy for managing replicated data in

autonomous decentralized systems. Proc. International Symposium in Autonomous Decen-

tralized Systems, pages 367–375, 1993.

[10] D.F. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms for load balancing in

distributed computer systems. Proc. ICDCS, pages 491–499, 1988.

[11] L.D. Fife and L. Gruenwald. Research issues for data communication in mobile ad-hoc

network database systems. ACM SIGMOD Record, 32(2):42–47, 2003.

[12] P. Golle, K.L. Brown, and I. Mironov. Incentives for sharing in peer-to-peer networks. Proc.

Electronic Commerce, 2001.

[13] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile data access

through optimistic peer-to-peer replication. Proc. ER Workshops, 1998.

32

[14] M. Ham and G. Agha. ARA: A robust audit to prevent free-riding in P2P networks. Proc.

P2P, pages 125–132, 2005.

[15] T. Hara and S.K. Madria. Consistency management among replicas in peer-to-peer mobile

ad hoc networks. Proc. IEEE SRDS, 2005.

[16] T. Hara and S.K. Madria. Data replication for improving data accessibility in ad hoc networks.

IEEE Transactions on Mobile Computing, 2006.

[17] http://compression.ca/act/.

[18] Y. Huang, A. P. Sistla, and O. Wolfson. Data replication for mobile computers. Proc. ACM

SIGMOD, 1994.

[19] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Incentives for combatting free-riding on

P2P networks. Proc. Euro-Par, 2003.

[20] Kazaa. http://www.kazaa.com/.

[21] B. Kemme. Implementing database replication based on group communication. Proc. Future

Directions in Distributed Computing, 2002.

[22] B. Kemme and G. Alonso. A new approach to developing and implementing eager database

replication protocols. ACM TODS, 25(3), 2000.

[23] J. F. Kurose and R. Simha. A microeconomic approach to optimal resource allocation in

distributed computer systems. IEEE Trans. Computers, 38(5):705–717, 1989.

[24] N. Liebau, V. Darlagiannis, O. Heckmann, and R. Steinmetz. Asymmetric incentives in peer-

to-peer systems. Proc. AMCIS, 2005.

[25] Jinshan Liu and Valerie Issarny. Service allocation in selfish mobile ad hoc networks using

vickrey auction. Proc. Current Trends in Database Technology - EDBT Workshops revised

papers, LNCS 3268, 2004.

33

[26] A. Mondal, S.K. Madria, and M. Kitsuregawa. CLEAR: An efficient context and location-

based dynamic replication scheme for mobile-P2P networks. Proc. DEXA, 2006.

[27] V. Papadimos, D. Maier, and K. Tufte. Distributed query processing and catalogs for peer-to-

peer systems. Proc. CIDR, 2003.

[28] E. Pitoura. A replication scheme to support weak connectivity in mobile information systems.

Proc. DEXA, 1996.

[29] D. Ratner, P.L. Reiher, G.J. Popek, and G.H. Kuenning. Replication requirements in mobile

environments. Mobile Networks and Applications, 6(6), 2001.

[30] B. Richard, D. Nioclais, and D. Chalon. Clique: A transparent, peer-to-peer replicated file

system. Proc. MDM, 2003.

[31] S. Saroiu, P.K. Gummadi, and S.D. Gribbler. A measurement study of peer-to-peer file shar-

ing systems. Proc. MMCN, 2002.

[32] V. Srinivasan, P. Nuggehalli, C.F. Chiasserini, and R. R. Rao. Cooperation in wireless ad hoc

networks. Proc. INFOCOM, 2003.

[33] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. Proc. ACM SIGCOMM, 2001.

[34] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm. ACM TODS,

22(4):255–314, June 1997.

[35] O. Wolfson, B. Xu, and A.P. Sistla. An economic model for resource exchange in mobile

Peer-to-Peer networks. Proc. SSDBM, 2004.

[36] B. Xu, O. Wolfson, and N. Rishe. Benefit and pricing of spatio-temporal information in

Mobile Peer-to-Peer networks. Proc. HICSS-39, 2006.

34

[37] Yuan Xue, Baochun Li, and Klara Nahrstedt. Channel-relay price pair: Towards arbitrating

incentives in wireless ad hoc networks. Journal of Wireless Communications and Mobile

Computing, Special Issue on Ad Hoc Networks, Wiley InterScience, 2005.

[38] Yuan Xue, Baochun Li, and Klara Nahrstedt. Optimal resource allocation in wireless ad hoc

networks: A price-based approach. IEEE Transactions on Mobile Computing, 2005.

35

