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Abstract In mobile ad hoc peer-to-peer (M-P2P) networks, economic models become a
necessity for enticing non-cooperative mobile peers to provide service. M-P2P users may
issue queries with varying constraints on query response time, data quality of results and
trustworthiness of the data source. Hence, we propose ConQuer, which is an economic
incentive model for the efficient processing of constraint queries in M-P2P networks. Con-
Quer also provides incentives for peer collaboration in order to improve data availability.
The main contributions of ConQuer are three-fold. First, it uses a broker-based economic
M-P2P model for processing constraint queries via a Vickrey auction mechanism. Second,
it proposes the CR*-tree, a dynamic multidimensional R-tree-based index for constraints of
data quality, trust and price of data to determine target peers efficiently. The CR*-tree is
hosted by brokers, who can sell it to other peers, thereby encouraging the creation of mul-
tiple copies of the index for facilitating routing. Third, it provides incentives for peers to
form collaborative peer groups for maximizing data availability and revenues by mutually
allocating and deallocating data items using royalty-based revenue-sharing. Such realloca-
tions facilitate better data quality, thereby further increasing peer revenues. Our performance
study shows that ConQuer is indeed effective in answering constraint queries with improved
response time, success rate and data quality, and querying hop-counts.
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1 Introduction

In a Mobile ad hoc Peer-to-Peer (M-P2P) network, mobile peers (MPs) interact with each
other in a peer-to-peer (P2P) fashion. Proliferation of mobile devices (e.g., laptops, PDAs,
mobile phones) coupled with the ever-increasing popularity of the P2P paradigm (e.g.,
Kazaa, Gnutella) strongly motivate M-P2P network applications. Mobile devices with sup-
port for wireless device-to-device P2P communication are beginning to be deployed such as
Microsoft’s Zune.

The M-P2P paradigm has significant applications in social networking. Suppose John
is looking for other car users with the objective of car-pooling so that he can reduce his
expenses on gas. Hence, he could send a message to other nearby mobile users (e.g., people
living in the same apartment complex) to locate prospective car-pooling partners, who fol-
low similar paths and timings. Observe that he would need to find his car-pooling partners
within a certain time-frame, thereby suggesting that timeliness of data delivery is important
to him. Since John may not have any a priori information concerning his prospective part-
ners, the trust associated with the peers, who reply to John’s request for car-pooling, would
also be important. Understandably, John would like to avoid untrustworthy partners as far
as possible since such partners may not adhere to the car-pooling agreement. In a similar
vein, cab-sharing among mobile users can also be facilitated by M-P2P interactions. For ex-
ample, several mobile users at an airport may wish to go to the downtown area, where their
respective hotels or business venues are located.

While walking around a shopping mall, Richard could issue a query for finding the
cheapest available Levis jeans. Here, query response time is important to Richard because
he needs the information while he is still somewhere near to the mall. Observe that if Richard
receives a newly updated sales brochure on his mobile device, it is likely to be more useful to
him than if the brochure was designed a few months ago. This is because the new brochure
would contain updated prices and possibly provide a more updated view of the shop’s in-
ventory. Thus, data quality also carries significance to Richard. Indeed, mobile users could
trade any items with each other by means of M-P2P interactions (as in a future mobile eBay
market). For example, mobile users could share songs with each other in a P2P manner, and
they could also trade PDF files and books with each other. Mobile users could also look for
like-minded individuals at a conference or at a social gathering such as an art exhibition.

Observe that users may issue queries with varying constraints on query response time,
data quality of results and trustworthiness of the data source. The weightage assigned to
each constraint depends upon user preferences and the application under consideration. For
example, when Jane is looking for a song, she could want good data quality (i.e., good audio
quality) and high trust (i.e., legal copyrighted song version), but she may be willing to wait
for the copy of the song. Thus, she would give higher weightage to data quality and trust as
compared to response time. On the other hand, Jack may want to obtain the song quickly,
and he may be willing to sacrifice data quality and trust in lieu of fast response time.

Multiple copies of a data item (e.g., a song) may exist at different MPs with varying
constraint values e.g., different data quality and trust values. Such copies are not replicas
since their constraint values differ. We shall henceforth use the term copies to distinguish
such copies from replicas. Notably, higher trust in the data source may not necessarily
imply better data quality e.g., a user may want a document from a trusted source, even if
the document has not been recently updated. Our target applications mainly concern slow-
moving objects e.g., people moving in a market-place or a conference venue, or students in
a University campus.
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Data availability in M-P2P networks is typically lower than in fixed networks due to
frequent network partitioning arising from user movement and mobile devices switching
‘off’ when their generally limited energy is drained. (Data availability is less than 20%
even in a wired environment [36].) Non-incentive replication schemes [20] for improving
M-P2P data availability do not combat free-riding [18,22]. Since a large percentage of the
peers in P2P environments are typically free-riders [1] (i.e., they do not provide any data to
the network), they are unlikely to collaboratively host copies of data. Furthermore, a small
study [29], which was conducted on users’ motivation and decision to share resources in P2P
networks, revealed that 50% of the questioned users would share more, if some materialistic
incentives (e.g., money) are dispensed by the application. Hence, an economic incentive-
based model becomes necessary to entice free-riders to host data.

For value-added services such as constraint querying in M-P2P networks, incentives
become absolutely necessary to address limited energy, memory and bandwidth resources
of MPs for ensuring efficient and timely query processing. Incidentally, existing incentive
schemes for mobile ad hoc networks [5,6,37,8,9] are designed for providing incentives to
mobile nodes for forwarding messages. However, they do not provide any incentives for
free-riders to host data and they do not address constraint queries. Moreover, existing M-
P2P incentive schemes [42,43] do not address constraint queries and they do not entice
free-riders to host data. Furthermore, they address data dissemination, while we consider a
query-based model (i.e., on-demand services).

If a constraint query is processed by flooding the M-P2P network, the query-issung MP
may not obtain an answer within its desired time-frame and location due to mobility. On the
other hand, if multiple queries are issued with one constraint per query, the query-issuing
MP could possibly receive too many results. To obtain fewer results, it could select the first
result or it could limit the TTL (Time-to-live) of the query, but this would not enable it to
obtain the result satisfying its constraints at the cheapest price. (As we shall see shortly, a
query issuing MP is required to pay a price for querying.)

For facilitating the efficient processing of constraint queries in M-P2P networks, we
propose ConQuer, which is an economic incentive model for M-P2P networks. ConQuer
also provides incentives for peer collaboration in order to improve data availability. In this
paper, our goal is to design the guidelines for an economic incentive model for M-P2P
networks with incentives for peer collaboration. We assume here that the peers are trusted
and they do not cheat. However, trust and security issues have been handled in existing
proposals. Our proposal can be used in conjunction with existing works [28,27,47], which
handle P2P and mobile fairness issues e.g., ensuring the collection of payments, ensuring
that source nodes get their desired service after they have made their payments, and the
usage of tamper-proof hardware for handling payments. Furthermore, our proposal can also
be used in conjunction with the works on secure virtual currency payments [10,12,48,14].
Furthermore, there are existing works, which deal with P2P and mobile trust issues for
controlling the deceiving behaviour of peers [23,35,8,7]. In essence, we do not focus on
trust and security issues in this paper, but these issues can be handled using the existing
works discussed above.

The main contributions of ConQuer are three-fold:

1. It uses a broker-based economic incentive M-P2P model for processing user-defined
constraint queries by means of a Vickrey auction mechanism.

2. It proposes the CR*-tree, a dynamic multidimensional R-tree-based index for constraints
of data quality, trust and price of data to determine target peers efficiently. The CR*-tree
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is hosted by brokers, who can sell it to other peers, thereby creating multiple copies of
the index for facilitating routing.

3. It provides incentives for MPs to form collaborative peer groups for maximizing data
availability and revenues by mutually allocating and deallocating data items using royalty-
based revenue-sharing. Such reallocations facilitate better data quality, which allows
MPs to further increase their revenues.

Each data item in ConQuer is associated with a price in virtual currency. Data item prices
depend on data quality (e.g., image resolution, audio quality) and the amount of bandwidth
that the data-providing MP makes available to the query-issuing MP for the download of the
queried data item. ConQuer requires a data-requesting MP to pay the price of its queried
item to the data-providing MP, a commission to the broker MP and a commission to the
relay MPs in the successful query path. We define the revenue of an MP as the difference
between the amount of virtual currency that it earns (by hosting data and indexes, relaying
messages) and the amount that it spends (by requesting data). Thus, ConQuer provides an
incentive for MPs to host data and indexes, and to relay messages so that they can earn
revenue for issuing their own requests.

Notably, virtual currency is suitable for P2P environments since the transaction costs of
micro-payments in real currency are generally high [40]. Similar to the motivation provided
in [40], suppose MTV offers Jean 5 units of virtual currency per month (as she is a regular
customer) if she agrees to store a video-clip and stream it on-demand to other peers 25 times
in a market-place on a Sunday. She can use these units to buy some MTV products. The
work in [12] discusses how to ensure secure payments using a virtual currency.

ConQuer does not assume a priori knowledge of the movement patterns of the mobile
peers because in case of our application scenarios, mobile peers move randomly i.e., they
do not follow a specific pre-defined movement pattern. However, we do assume that the
brokers have limited mobility i.e., they only move within a specific radius. As an example
of an application scenario, consider the case of a mobile user looking for the cheapest Levis
jeans in a shopping district. In this example, the brokers are the shop-owners and they would
generally stay within a threshold distance of their shops. On the other hand, the mobile user
would move randomly within the shopping district, while looking for his/her queried item.

The next section provides a brief introduction to peer collaboration in ConQuer.

2 An overview of peer collaboration in ConQuer

In ConQuer, peer collaboration is facilitated by broker MPs, which collect bids from data-
providing MPs and then pass these bids to the query-issuing MP, which selects a single bid
and pays a commission to the broker MP in the selected query path. In ConQuer, brokers
could be pre-designated in accordance with the application scenario under consideration,
and there could be multiple pre-designated brokers. For example, recall our application sce-
nario concerning an M-P2P user searching for the cheapest Levis jeans in a shopping district.
In this application scenario, the shop-owners in the shopping area will act as brokers. Simi-
larly, for the car-pooling application scenario, the manager of the apartment complex, where
the prospective car-pooling users live, can act as the broker. If songs or movies are shared
among M-P2P users in a University campus setting, some of the students (e.g., student or-
ganization leaders) can act as brokers. In the social networking setting of a conference, the
conference organizers can act as brokers. Additionally, brokers can also be elected by means
of an existing leader election protocol [24].
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Each broker dynamically creates and maintains its own CR*-tree index based on the
queries that it intercepts so that it can efficiently target MPs for answering constraint queries.
The CR*-tree indexes constraints in a multi-dimensional space involving data quality, trust
and price. ConQuer allows a broker to sell its index to other MPs in lieu of an payment. The
index-buyer MPs are incentivized to buy indexes since they can earn broker commissions
by successfully answering queries via the copy of the index. Thus, this entices both the
broker and the other MPs towards the creation of multiple copies of the index, which further
improves data availability and query response times.

In ConQuer, each MP makes available only few data items to be shared based on the
amount of bandwidth that it would like to share, but it has additional data items in the
memory, which can be made available during reallocation. We shall henceforth refer to the
data items that an MP makes available as the shared data items, while the additional items
in the MP’s memory are called unshared data items.

There are three methods in ConQuer, namely CAM (Care-About-Me), CAN (Care-
About-Neighbours) and CAG (Care-About-Groups). CAM is a greedy method in which
there is no collaboration among the MPs. In CAM, MPs host only the hot data items to
maximize their revenues. Thus, CAM suffers from the disadvantage that it may lead to the
duplication of the hot data items across several neighbouring MPs, while other items would
become unavailable due to memory space constraints of the MPs, thereby decreasing over-
all data availability. This would also reduce the revenues of individual MPs due to the total
revenue for the hot data items being divided among neighbouring MPs and due to query
failures (resulting in lost revenues) related to the unavailable data items.

To address the deficiencies of CAM, we propose the CAN and CAG methods, in which
MPs perform collaborative data reallocations using royalty-based revenue-sharing. While
CAN collaboratively reallocates data iteratively among one-hop neighbours, CAG reallo-
cates data in peer groups, which may extend beyond one hop. In CAG, MPs form groups
[46] to collaboratively reallocate data items using a royalty-based revenue-sharing method
to maximize data availability, thus conquering the business against other groups. This in-
creases revenues of MPs as they make available higher quality items by removing excess
low quality copies. In the absence of peer groups, MPs acting individually would host only
hot items to maximize their own revenues, hence relatively less hot items would become
unavailable and queries on them would fail, thus resulting in lost revenues.

Thus, ConQuer provides MPs with an incentive to maximize the revenue of the group
as a whole, which encourages non-selfish behaviour. This also helps in building trust among
MPs in a group due to increasing revenue, thereby creating a strong bond among strangers.
Existence of multiple peer groups ensures non-monopolistic pricing. If an MP is currently
located at the intersection of multiple groups, it can choose to be a part of one group for the
purpose of allocation and deallocation of data items since it can only abide by the rules of
one group. However, an MP can serve as a broker or as a relay MP for multiple groups.

Our performance study shows that ConQuer is indeed effective in answering constraint
queries with improved query response times, query success rates and querying hop-counts.
In particular, we compare the performance of the three methods in ConQuer, namely CAG,
CAN and CAM with the E-DCG+ approach [20] as reference.

The results show that CAG, CAN and CAM outperform E-DCG+ due to their economic
nature resulting in better MP participation and also due to the fact that they use the effi-
cient CR*-tree for efficiently directing queries to target data-providing MPs. CAG and CAN
outperform CAM due to their royalty model-based collaboration among the MPs, which re-
sults in better data allocations as compared to that of CAM, in which MPs act individually
without any collaboration among themselves. CAG and CAN also facilitate improvement of



6

data quality in the network by collaboratively removing excess low-quality copies of data
items in favour of high quality copies during reallocation. CAG outperforms CAN due to its
better view of the network i.e., in CAN, data reallocations occur only across one-hop neigh-
bours, while in CAG, such reallocations occur across a group, which may extend beyond
one hop. Finally, our proposed methods exhibit good scalability as more MPs imply better
opportunities for making available copies of items.

The remainder of this paper is organized as follows. Section 3 discusses existing works,
while Section 4 presents the architecture of the ConQuer economic model. Section 5 pro-
poses the CR*-tree index and details the index selling mechanism by brokers. Section 6
presents ConQuer’s peer group-based royalty model for encouraging peer collaboration in
efficiently handling constraint queries. Section 7 reports our performance evaluation. Sec-
tion 8 discusses some additional issues, which are relevant to our proposal. Finally, we
conclude in Section 9.

3 Related Work

This section provides an overview of existing works.
Non-incentive-based replication in Mobile ad hoc networks (MANETs): The pro-

posals in [20,19] discuss replication in MANETs. E-DCG+ [20] creates groups of MPs
that are biconnected components in a MANET, and shares replicas in larger groups of MPs
to provide high stability. An RWR (read-write ratio) value in the group of each data item
is calculated as a summation of RWR of those data items at each MP in that group. Each
replica is allocated at an MP, whose RWR value to the item is the highest among MPs that
have free memory space to create it. The work in [19] aims at classifying different replica
consistency levels in a MANET based on application requirements, and proposes protocols
to realize them. Consistency maintenance is performed via quorums and it is based on local
conditions such as location and time. P2P replication suitable for mobile environments has
also been incorporated in systems such as Clique [34] and Rumor [17]. However, the pro-
posals in [20,19,34,17] are non-economic in nature, and they do not provide any incentives
for the mobile nodes to host data and to forward messages.

Incentive schemes for combating free-riding in MANETs: The proposals in [5,6,
37,8,9] discuss incentive schemes for combating free-riding in MANETs. The work in [5]
introduces a virtual currency to stimulate cooperation among the nodes in a MANET. Each
node behaves autonomously and aims at maximizing its benefits from the network. The work
in [5] is extended in [6], which entices nodes to forward messages by means of a simple
counter-based mechanism at each node. The work in [37] proposes a distributed algorithm,
which is utilized by the nodes to determine whether to accept or reject a relay request.

In [8], an auction-based incentive scheme, designated as iPass, has been proposed to
entice nodes in MANETs to forward packets. The market price of the packet forwarding
service is paid to the relay nodes. The work in [9] provides incentives to users for acting
as transit nodes on multi-hop paths by rewarding nodes according to their ability to send
messages. The work in [49] proposes incentive-compatible protocols for both routing and
packet forwarding in wireless ad-hoc networks from a game-theoretic perspective. Using
both incentive mechanisms and security techniques, routing protocols for deterministic link
models and probabilistic link models have been designed. Furthermore, an efficient forward-
ing protocol, which is based on the use of hash chains in cryptography, has been proposed
to deliver payments. Observe that the works in [5,6,37,8,9,49] essentially focus on provid-
ing incentives to mobile nodes for forwarding messages. However, they do not provide any
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incentives for free-riders to host data. Furthermore, they do not consider prices of data items
and different prices based on data requested and queries answered.

Incentive schemes for combating free-riding in M-P2P networks: The work in [43]
provides incentives to MPs for participation in the dissemination of reports about resources
in M-P2P networks. Each disseminated report contains information concerning a spatial-
temporal resource. The proposal in [42] considers opportunistic resource information dis-
semination in transportation application scenarios. An MP transmits its resources to the MPs
that it encounters, and obtains resources from them in exchange.

Our work differs from that of [43,42] in the following ways. First, the works in [43,
42] primarily address data dissemination, while we consider a query-based model (i.e., on-
demand services). The push-based data dissemination model has limited applications since
devices need to preserve their limited battery power. Hence, M-P2P environments require
pull-based querying models so that peers get exactly what they are looking for. Second, the
works in [43,42] do not consider incentives for free-riders to host data, while we provide
such incentives (e.g., royalty model). In querying, incentives make much more sense since
an MP has to find the right data, thus, it is a more value-added service. Therefore, we need
incentive schemes to entice free-riders to host data.

Third, in [43,42], constraint queries are not addressed since their model is data dissemi-
nation as opposed to querying. In contrast, we consider the efficient processing of constraint
queries by means of the CR*-tree constraint index. Fourth, in [43,42], a royalty model is
not considered, while we propose a group-based royalty model. Observe that collabora-
tion is very explicit in a querying model, where peers may work in groups, and therefore
royalty-sharing models are required. Additionally, in order to have better control, we select
a broker-based model for better managment of the network operations. Furthermore, eco-
nomic schemes for resource allocation in wireless ad hoc networks [26,44,45] also do not
entice free-riders to host data.

Schemes for static P2P networks: Schemes for combating free-riding in static P2P
networks involve formal game-theoretic models for incentive-based P2P file-sharing sys-
tems [15], utility functions to capture peer contributions [18], EigenTrust scores to capture
participation criteria [22] and asymmetric incentives based on disparities between upload
and download bandwidths [25]. The work in [2] proposes a barter-based economic model
for P2P systems. However, the approaches in [15,18,22,25,2], are too static to be deployed
in M-P2P networks since they assume peers’ availability and fixed topology. As a single
instance, pre-defined data access structures (e.g., distributed hash tables [38]) used in static
P2P networks cannot effectively handle mobility of peers and frequent network partitioning,
which are characteristic of mobile environments.

Multi-dimensional indexing: The R-tree [16] is a popular multidimensional index struc-
ture. Leaf nodes in the R-tree contain entries of the form (oid, rect) where oid is a pointer
to the object in the database and rect is the Minimum Bounding Rectangle (MBR) of the
object. Non-leaf nodes contain entries of the form (ptr, rect) where ptr is a pointer to a child
node in the R-tree and rect is the MBR that covers all the MBRs in the child node. The
R*-tree [3] is a popular and efficient variant of the R-tree.

4 Architecture of the ConQuer economic model

This section discusses the architecture and economic model of ConQuer, and details con-
straint query processing in ConQuer. The architecture of ConQuer consists of query-issuing
MPs, relay MPs, broker MPs and data-providing MPs. Relay MPs forward messages (e.g.,
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queries, data) in lieu of a relay commission. Each broker MP maintains a constraint index
called the CR*-tree, and uses this index to direct queries to potential data-providing MPs
in lieu of a broker commission. (We shall discuss the CR*-tree in Section 5.) The query-
issuing MP pays the price of the queried data item to the data-providing MP (which serves
the query), and a commission to the broker MP and the relay MPs in the successful query
path.

4.1 Illustrative example for the network topology in ConQuer

Figure 1 depicts an illustrative example of the M-P2P network topology at a certain point of
time. In Figure 1, the query issuing MP MI , the broker MPs B1 to B4, the data-providing
MPs (i.e., MS) D1 to D4 and the relay MPs R1 to R12 are indicated by white, yellow, blue
and green circles respectively. In this example, suppose a data item d is being requested by
MI . Suppose D1 to D4 all contain some copy of d albeit possibly with varying data quality.

Observe that there can be multiple paths from MI to the same MS , and these paths may
pass through different brokers. As a single instance, D4 may be accessed by the paths {MI ,
R3, B2, R7, R8, R9, D4} and {MI , R5, R6, R7, B4, R12, D4} and {MI , R4, B3, R11,
B4, R12, D4}. A given path between MI and a given MS may have multiple brokers e.g.,
the path {MI , R4, B3, R11, B4, R12, D4} contains two brokers B3 and B4. In such cases,
the broker that occurs first in the traversal starting from MI (i.e., B3 in this example) acts
as the broker MP, while the other brokers (i.e., B4) in the path only act as relay MPs. As we
shall see shortly in Section 4.4, this is necessary to avoid conflicts among brokers.

Fig. 1 Illustrative example of an instance of network topology

The number of relay MPs between MI and a broker MP can vary e.g., the paths {MI ,
R2, B1} and {MI , R5, R6, R7, B4} have one and three relay MPs respectively. Further-
more, the number of relay MPs between broker MPs and a given data providing MP MS

can vary e.g., the number of relay MPs in the paths {B4, R12, D4} and {B2, R7, R8, R9,
D4} are 1 and 3 respectively. Thus, the number of hops in the path from MI to a given MS
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can differ. Interestingly, it is also possible for a given MS to be a one-hop neighbour of MI

e.g., MI and D2 are one-hop neighbours. However, some other MS such as D1 may be able
to provide better data quality and/or lower response time than D2 (e.g., due to low band-
width between D2 and MI ). Hence, the role of the broker MPs would still be relevant in
such cases. In essence, the broker MPs provide MI with different paths for accessing MI ’s
requested data item d or its copy. This allows MI to choose the copy of d, which best suits
MI ’s requirements in terms of response time, data quality, trust and price.

4.2 Specifying constraint queries in ConQuer

User queries are of the form {Qid, (k1,k2,...,kn), τmax, DQ, Trust, ρmax}. Qid is the
unique identifier of a query, and ki are user-specified keywords. For example, if an M-P2P
user requests for the song ‘Imagine’ by Beatles, k1= ‘Imagine’ and k2 = ‘Beatles’. τmax

is the query deadline time because of the ephemeral nature of M-P2P environments, due to
which queries need to be answered quickly within acceptable deadlines. DQ is the range
of user-desired data quality (e.g., image resolution, audio quality) provided by the data-
providing MP to the query-issuing MP. We consider three discrete levels of DQ i.e., high,
medium and low, their values being 1, 0.5 and 0.25 respectively [30,31]. Each MP maintains
a table Tε,DQ, which contains the following entries: (x%, high), (y%, medium), (z%, low),
where x, y, z are error-bounds, whose values are essentially application-dependent and pre-
specified by the system at design time. Thus, DQ is computed using the table Tε,DQ, which
is replicated at each MP and is the same for each MP.

Trust is the range of user’s desired trust value. ConQuer computes the trust values of
data items by adopting the proposal in [33], which proposes a a light-weight decentralized
reputation-based trust management mechanism for ad-hoc P2P networks. In [33], the repu-
tation information of each peer is stored in its neighbours and piggy-backed on its messages.
As in the computation of DQ, each MP maintains a table Tε,Trust, which contains the fol-
lowing entries: (x%, high), (y%, medium), (z%, low), where x, y, z are error-bounds, whose
values are essentially application-dependent and pre-specified at design time. ConQuer as-
signs the trust value Trust of an item as follows: For high data trust, Trust ≥ 0.8; for
medium trust, 0.5≤ Trust < 0.8; for low trust, Trust <0.5. Thus, 0 ≤ Trust ≤ 1. Thus,
a query issuing MP can specify DQ and Trust values as ‘high’, ‘medium’ or ‘low’, and
these values are mapped to a value between 0 and 1 e.g., Trust = ‘high’ maps to the range
(0.8,1). Based on queries which a peer relays, he can generally gain some knowledge about
these constraints, which helps him to specify them. Finally, ρmax is the maximum price that
the user is willing to pay for obtaining the query result. Thus, the value of ρmax facilitates
in determining the candidate set of data-providing MPs, which can answer a given query.

4.3 Economic model of ConQuer

Now we shall present the economic model of ConQuer. In particular, we discuss the com-
putation of data item prices, broker commissions and relay commissions.

Data item price: In ConQuer, every data item d has a price ρ. When an MP requests
d, it has to pay the price ρ to the data-providing MP of d. Higher data quality DQ of d

implies better quality of service for queries on d, hence ρ increases as DQ increases. As the
bandwidth BAMS

provided by the data-providing MP MS for queries on d increases, ρ also
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increases. This is because faster response times for queries on d should command higher
price due to better service quality, given the timeliness requirements of M-P2P applications.

The value of BAMS
depends upon the total bandwidth of MS and the number of con-

current access requests to MS . Notably, the value of BAMS
is only an estimate, which we

use as a guide for computing the data item price. This is because at the time of query issu-
ing, neither the query-issuing MP nor the data-providing MP can know in advance the exact
amount BAMS

of bandwidth that the data-providing MP would be able to provide to the
query-issuing MP for the download of a given data item. Thus, the exact value of BAMS

will become known to both the query-issuing MP and the data-providing MP only after the
data item has been already downloaded.

For determining the value of BAMS
, the following two cases arise:

– Actual download bandwidth is greater than or equal to BAMS
: The data item price

remains the same i.e., even if the data-providing MP provides higher bandwidth for
download than BAMS

, the data item price would not increase.
– Actual download bandwidth is less than BAMS

: The data-providing MP and the query-
issuing MP would renegotiate and determine the actual data item price to be paid based
on the actual download bandwidth.

In essence, the value of BAMS
reflects the negotiation for download bandwidth, and this

negotiation is for the range of bandwidth, and we can always take the average in order to
compute the price.

MS computes the price ρ of a given data item d as follows:

ρ = ( DQ × BAMS
) (1)

Observe that the value of DQ will be known to the query-issuing MP MI when it obtains
the queried data item d from the data-providing MP MS . Furthermore, MI can estimate the
value of BAMS

based on the the download time and the queried data item size. However, this
is only an estimate because the queried item may pass through multiple relay MPs before it
reaches MI . On the other hand, observe that if MS lies about its bandwidth to charge higher
data item price to MI , it may ultimately not earn any currency from MI since another data-
providing MP of d may be able to provide d at a cheaper price to MI . In essence, our data
item price formula can be seen as a guideline for MPs to price their data items, but even if
some of the MPs deviate from this guideline, the data item price would still be decided by
the results of the Vickrey auction (which we shall discuss in Section 4.4) i.e., item prices
would essentially depend on demand and supply.

Broker commission: For every query answered successfully through itself, a broker
obtains a commission from the query issuing MP, which provides an incentive for MPs to
become brokers. The broker’s commission β increases with decrease in the query response
time τR w.r.t. the query deadline τD to encourage brokers to process constraint queries
quickly. Thus, ConQuer provides incentives to well-connected MPs to act as brokers since
they can earn higher amount of commission by providing query answers quickly. (We define
connectivity of an MP as the number of its one-hop neighbours.) Hence, MPs at the articu-
lation points of biconnected networks [20] are enticed to act as brokers, thereby improving
routing services. The computation of β follows.

β = eτD/τR if τR ≤ τD

= 0 otherwise (2)
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Since the values of τD and τR are known to both the query-issuing MP and the broker, it is
not possible for the broker to overcharge on commissions, and it is also not feasible for the
query-issuing MP to cheat the broker by paying less commission. For trusted accounting in
payments between the query-issuing MP and the broker, we use a tamper-resistant security
module at each MP [6].

Relay commission: The query-issuing MP has to pay a commission ρRelay to the relay
MPs in the successful query path. The value of ρRelay depends upon the size of the message
being relayed. As the message size size (in bytes) increases, ρRelay also increases due to
higher energy and bandwidth consumption of the relay MP. Given that K is the amount of
relay commission per byte, ρRelay is computed below:

ρRelay = K × size (3)

The value of K is essentially application-dependent, and known to all the MPs in the net-
work. Trusted accounting in payments between the query-issuing MP and the relay MPs can
be handled by using a tamper-resistant security module at each MP [6]. Since the values of
K and size are known to both the query-issuing MP and the relay MPs, it is ensured that
the relay MPs cannot fraudulently charge higher relay commissions from the query-issuing
MP, and the query-issuing cannot cheat relay MPs by paying lower relay commissions.

4.4 Broker-facilitated Constraint Query processing in ConQuer via Vickrey Auctions

Constraint query processing in ConQuer uses a reverse Vickrey auction [41] mechanism.
Hence, let us understand how the Vickrey auction works for a single item d. For simplicity,
suppose there is only one seller Sd of d, and prospective buyers of d send their sealed bids
to Sd. (Since bids are sealed, buyers are not aware of each others’ bids.) Sd sells d to the
highest-bidding buyer BHigh . Interestingly, instead of paying Sd its own bid price for d,
BHigh pays the price of the second-highest bid (i.e., the highest losing bid) to Sd.

A variant of the Vickrey auction is the reverse Vickrey auction, whose explanation fol-
lows. For simplicity, assume a single item d being auctioned, and there are multiple sellers,
but only one buyer Bd. Sellers send their bids to Bd, and Bd selects the seller SLow, whose
bid value is lowest. Now, instead of paying SLow the bid price of SLow, Bd has to pay SLow

the price of the second-lowest bid. The reverse Vickrey auction mechanism is applicable to
ConQuer because we can view the data-providing MPs as the sellers, and the query-issuing
MP as the single buyer of the queried item under consideration. As noted in [26], the ad-
vantage of this auction mechanism is that it provides incentives to sellers to bid according
to their perception of the true value of an item without considering the bids of other sellers.
Thus, this auction mechanism gives data-providing MPs higher incentives to provide items
to the query-issuing MP.

Query processing in ConQuer proceeds as follows. A query-issuing MP MI broadcasts
its constraint query Q. Each query has a pre-specified TTL (time-to-live). Non-broker MPs
simply forward Q. A broker MP Bi receiving Q checks if its index contains the data item
(satisfying queried constraints) required by Q and if so, it puts its broker id (unique identifier
for a broker) into the query message with a timestamp and becomes a designated broker for
Q; otherwise, it simply forwards Q. (We shall discuss the details of the index at the broker
in Section 5.) Notably, once a broker has become a designated broker for Q, it uses its index
to forward Q to potential data-providing MPs as opposed to broadcasting Q.

ConQuer stipulates that in a given query path, only a single MP can act as a broker,
thereby resolving conflicts among brokers. Competition among brokers in the same query
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path is undesirable because it would be likely to result in duplicate messages, which would
increase energy and bandwidth consumption of the relay MPs due to possibly sending and
receiving the same query messages more than once. Thus, if a broker B sees that a broker id
has already been appended to Q, it will not attempt to become a designated broker for Q.
Even if B fraudulently tries to become the second designated broker in that query path,
it cannot earn any currency by facilitating the answer to Q because the query-issuing MP
would detect that the timestamp (in the query message) of the designated broker of that
path was earlier than B’s timestamp. Thus, B would receive no commission from the query-
issuing MP, hence it has no incentive to illegitimately try to become the second designated
broker in that query path.

Observe that the designated broker for a given query path has no incentive to accept
being a broker for a given query if it does not intend to find the answer to the query since it
cannot earn any currency by this kind of cheating behaviour. This is because only the broker
in the successful query path gets the commission from the query-issuing MP. Furthermore,
observe that Q can propagate along multiple paths, hence multiple brokers albeit in different
paths would process Q, thereby providing better fault-tolerance against the unavailability of
some of the brokers. This also guards against the probability of a few brokers accepting
queries, but not intending to answer them.

Each broker Bi issues a route-finding query to locate the path to the target data-providing
MPs likely to satisfy Q. Then Bi sends the query constraints to these target MPs, and col-
lects bid information concerning price, data quality and trust values for the queried data
item(s) from each target data-providing MP, and then returns the bid information to the
query-issuing MP MI . Notably, the data-providing MPs are allowed to send only one sealed
bid per query to a given broker in order to optimize communication overheads e.g., time
delays and energy consumption. Since bids are sealed, the target data-providing MPs are not
aware of each others’ bids. Such sealed bids can be achieved by using traditional encryption
schemes such as symmetric keys or public-private key pairs.

From these bids, MI selects the lowest-priced bid bidlow satisfying its constraints and
requests the broker BrokerSel, which passed it bidlow , to obtain the queried item from the
data-providing MP Mbidlow

corresponding to bidlow . BrokerSel obtains the data item from
Mbidlow

and passes the item to MI . Finally, in accordance with the rules of the reverse Vick-
rey auction mechanism, MI pays the price of the second lowest-bid to Mbidlow

, the broker
commission to BrokerSel and the relay commissions to the relay MPs in the successful
query path. Since bidlow is the lowest bid by definition, the second-lowest bid is definitely
higher than bidlow , thereby providing added incentive to MPs to host data items. Notably,
as discussed earlier, trusted accounting in payments among the MPs is handled by using a
tamper-resistant security module at each MP [6].

5 CR*-tree: A dynamic Multidimensional Index for Constraint Queries

This section discusses the CR*-tree constraint index, which is used by the brokers to effi-
ciently direct queries to potential data-providing MPs.

To earn commission, brokers index the constraints of a subset of data items in the net-
work by means of the CR*-tree. The CR*-tree indexes may differ across brokers since they
are constructed by brokers based on the queries intercepted by the brokers. Brokers can de-
cide which items to index in several ways e.g., based on interests or commissions gained.
For example, a broker may index only movies, while another broker could index a specific
genre of songs and so on. Since brokers collect access frequencies and failed query statistics
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concerning queries that they intercept, over a period of time, they can estimate their commis-
sion from indexing a given item. In essence, in consonance with P2P autonomy, ConQuer
allows brokers to autonomously decide the data items, which they want to index.

If each broker indexes only the data items stored at different MPs, constraint queries may
be unnecessarily sent to MPs containing the queried data items, but not satisfying the user-
specified constraints. Hence, the constraints need to be indexed. The query response time
constraint cannot be indexed since it depends upon network conditions, and delays between
the query issuing MP and the data-providing MP. But the constraints of data quality, trust
and price can be indexed since they are static as they depend solely upon the data item. Thus,
the constraints of each data item can be specified as a point in 3D-space, the dimensions
being data quality, trust and price.

Fig. 2 Constraints in 2D-space

For clarity, Figure 2 provides the intuition concerning how to index constraints in 2D-
space with data item price and data quality as the dimensions. Each point in Figure 2 indi-
cates the constraints of a given data item, while Q1 to Q4 represent constraint queries with
the queried ranges in parentheses. Since multiple data items may satisfy the range of user-
specified constraints, such constraint indexing has the drawback of unnecessarily retrieving
non-queried data items, which satisfy the respective constraint ranges.

5.1 The CR*-tree constraint index

To satisfy our objective of retrieving only the queried data items that satisfy user-specified
constraints, we propose the CR*-tree (Constraint R*-tree), which is a multi-dimensional
constraint index stored at each broker. (We use the R*-tree [3] as an example, although it can
be substituted by any other multi-dimensional index.) The constraints of each data item are
represented by a point in 3D-space with data quality, trust and price as the dimensions. The
CR*-tree indexes this 3D-space. Non-leaf nodes of the CR*-tree contain entries of the form
(ptr, mbr, LL) where ptr is a pointer to a child node in the CR*-tree and mbr is 3D-MBR
(Minimum Bounding Rectangle), which covers all the MBRs in the child node. mbr is of
the form {(xmin, ymin, zmin), (xmax, ymax, zmax)}, the first and second terms denoting
the minimum and maximum values of the constraint parameters in 3D-space. We specify a
given data item using one or more keywords. We shall henceforth use the terms keywords
and data items interchangeably. LL is a linked list of such keywords within mbr. Entries in
LL are sorted in dictionary order to facilitate efficient retrieval. Incidentally, the root node
is a special case of the non-leaf nodes for which LL is simply a null list. This facilitates
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in avoiding the execution of a sequential scan of all keywords indexed by the CR*-tree for
each incoming constraint query.

A leaf node of the CR*-tree is an array of 3D-MBRs. Each MBR contains entries of the
form (mbr, LLI ), where the form of mbr is same as that of the non-leaf nodes. LLI is a
linked list containing entries of the form (keyword, freq, arr MP), where keyword indicates
the keyword of a given data item within mbr. LLI is sorted in dictionary order of the key-
words. freq is the number of times keyword occurs within mbr. (freq facilitates deletion of
data items from the CR*-tree). arr MP is an array of the MPs that store the data item. (A
data item could occur at multiple MPs with different values of data quality, trust and price
albeit within the same mbr.) Thus, brokers process constraint queries by issuing 3D-window
queries on the CR*-tree to short-list queried data items satisfying the constraints, and then
examining them to determine items satisfying the response time constraint (based on its ac-
cess statistics for similar queries targetted to the same set of peers). In case a user specifies
multiple keywords to specify a given data item, the keywords need to occur together in at
least one MP within the 3D query window for a query match to occur. For example, suppose
the user requests the song ‘Imagine’ by Beatles. If the keywords ‘Imagine’ and ‘Beatles’
occur in different MPs, it does not imply a query match since both these keywords relate to
one data item, hence they should occur together in at least one MP for a match to occur.

CR*-tree creation uses the R-tree insertion algorithm [16]. Insertion/deletion of points
from the CR*-tree also follow standard R-tree algorithms. The linked lists in the CR*-tree
enable efficient insertion/deletion of data items, which is important for ephemeral M-P2P
environments. In particular, the CR*-tree uses lazy deletions to conserve MP energy. Brokers
maintain access statistics concerning average prices of data items for different values of data
quality, trust and response time constraints, hence they have some knowledge concerning
reasonable prices, thereby enabling them to reject unrealistic user queries.

Now let us examine the memory space consumption of the CR*-tree. Suppose there are
n data items indexed by a given CR*-tree, which has a fanout f . Hence, the number h of
levels in the CR*-tree would be dlogfne. Thus, the number of nodes in level i of the CR*-
tree would be f i−1. (The root is considered to be level 1 i.e., i =1 for the root level, and
the level just below the root is level 2 and so on.) Thus, the maximum number of nodes in a
CR*-tree with h levels (including the root) would ( 1 + f + f 2 + f3 + . . . + fh−1 ), which is
essentially the sum of a geometric progession, that reduces to ((1−fh)/(1−f)). Since each
node can have at most f MBRs, the maximum number of MBRs is (f(1 − fh)/(1 − f)).
Each 3D-MBR can be represented by 12 bytes (restricting to 2 bytes for each of the six
constraint values), thus the memory space consumed by the MBRs would be 12 × (f(1 −

fh)/(1 − f)).

At level i of the CR*-tree, there will be at most f i MBRs i.e., a maximum of f i linked
lists of keywords. Suppose the linked list corresponding to the jth MBR at level i contains
ni,j keywords, hence the number of pointers in this linked list would be (ni,j − 1) plus one
pointer connecting the linked list to an MBR. Restricting each keyword to be encoded within
8 bytes and representing each pointer by 1 byte, each linked list will consume memory
space of (8 × ni,j) + (ni,j − 1 + 1) = 9 × ni,j . Thus, all the linked lists together consume
memory space of Σh

i=1
Σli

j=1
(9×ni,j). Here, li is the total number of MBRs in level i. For

simplicity, we neglect the small differences in memory consumption between linked lists LL

of keywords (for non-leaf nodes) and linked lists LLI (for leaf-nodes) as the predominant
storage cost is due to keywords, while the storage costs for keyword frequencies and arr MP
are negligible w.r.t. keyword storage cost.
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The number of pointers emanating from the the ith level of the CR*-tree is f i. Hence,
the total number of pointers emanating from all the levels is Σh−1

i=1
f i. Representing each

pointer by one byte, the total amount of memory space consumed by the pointers emanating
from all levels of the CR*-tree would be Σh−1

i=1
fi.

Thus, the total memory space consumed by a given CR*-tree indexing n items and
having h levels is ( 12 × f(1 − fh)/(1 − f) + Σh

i=1
Σli

j=1
(9 × ni,j) + Σh−1

i=1
fi ). To

put things into perspective, suppose n = 10000 and f = 32. Thus, the CR*-tree will have 3
levels, including the root level. (Incidentally, 32768 items can be indexed by a CR*-tree with
f = 32.) For simplicity, assuming no overlaps and one keyword per item, the second level
and the leaf-level will each have at most a total of 10000 keywords in the corresponding
linked lists. (Recall that the root level does not contain a linked list to keywords in order
to avoid the potential cost of sequentially scanning through all the items in the index.) In
this case, the total number of bytes for storing the CR*-tree (including the linked list of
keywords) is less than 600 Kbytes.

Given that the total number of items in M-P2P networks is generally far below 10000
(and a single broker would typically not index all the items), the average size of an MP3
song is usually at least 1 Megabyte and 600 Kbytes is negligible w.r.t. the memory space of
most mobile devices in circulation nowadays, we believe that the memory space consumed
by the CR*-tree even in the most extreme cases is a small price to pay for the benefit of the
value-added routing service provided by the index.

5.2 Selling of the CR*-tree index by a broker

ConQuer allows a broker to autonomously sell its CR*-tree index anytime to other MPs in
lieu of a payment ρindex. This provides an added incentive for brokers to index data and
encourages free-riders to host indexes to earn revenue. Furthermore, this also effectively
entices the creation of multiple copies of the index, which facilitates more efficient query
redirections. This is due to two reasons. First, the broker is enticed to make multiple copies
of its index because it is able to earn currency by selling the index. Second, there is an
incentive for MPs to buy the index since they can earn currency due to broker commissions
on queries successfully directed via the index. In essence, given that there is generally a
significant number of queries directed at the index for hot items within a certain time-frame,
the index selling mechanism in ConQuer provides incentives to both the broker and the MPs
to create multiple copies of the index, thereby leading to improved data availability, query
hop-counts and query response times. Trusted accounting in payments between the broker
and the MPs can be handled by using a tamper-resistant security module at each MP [6].

The price ρindex of a CR*-tree index hosted at a broker is computed below.

ρindex = ΣNitems

i=1
( ( ηsucci / ηtotal ) × τi ) / NCp (4)

where Nitems denotes the number of items indexed, ηsucci is the number of queries on item
i successfully answered by using the index and ηtotal is the total number of queries (on i)
that were directed at the index. Thus, the term ( ηsucci/ηtotal ) quantifies the quality of the
index by incorporating the success rate of queries on i due to using the index. In Equation 4,
τi is the time-to-expiry of item i. ρindex increases with increase in τi because the revenue-
earning potential of the index increases when the index comprises higher time-to-expiry
items. Finally, ρindex decreases with the number NCp of existing copies of the index. This
is because if more MPs host copies of the index, the future revenue-earning potential of each
MP from the index decreases due to the query direction work being divided among the MPs.
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The value of NCp is only an estimate by the broker Bi (which hosts the index) because Bi

computes the value of NCp based on the queries that it intercepts.

Observe that it is possible for Bi to fraudulently increase the price of its index so that it
can charge higher selling price for its index since other MPs do not know the values of the
variables in Equation 4. However, such a possibility is significantly reduced due to several
reasons. First, if Bi charges too high a selling price for its index, fewer MPs would be willing
to buy the index from Bi, thereby decreasing the total amount of currency that Bi would be
able to earn from its index. Second, ConQuer does not restrict the number of copies of a
given index because more copies of the index leads to better data availability, lower number
of query hop-counts and consequently, faster response times. Moreover, as we discussed
earlier, the memory space consumed by the index is negligible w.r.t. the memory space of
the mobile devices in circulation nowadays. Thus, Bi has more incentive to keep the index
selling price lower so that it can earn more currency by selling its index to more MPs albeit
possibly at a lower price.

Third, prospective MPs, which intend to buy the index from Bi, would have some idea
concerning the actual value of the index due to the queries that pass through themselves,
hence they would not be willing to buy an index, whose selling price is estimated by them
to be too high. Fourth, since several brokers would try to sell their indexes to earn currency,
there would be competition among brokers in terms of index selling. Such competition im-
plies that any given broker would not have much of an incentive to lie about their index sell-
ing price since over-priced indexes would be more difficult to sell due to the competition.
Our formula for the index selling price is essentially a guideline to the brokers. However,
even if some of the brokers deviate from this guideline, the index selling mechanism would
still be based on the market forces of demand and supply since the prospective index-buyer
MPs autonomously decide whether to buy the index.

When a broker Bi wishes to sell its index, it broadcasts the list of items in the index and
the price ρindex of the index. MPs, which wish to buy the index from the broker and are
willing to pay the price of the index, reply to Bi. Bi sends a copy of the index to each of
these MPs and receives a payment of ρindex from each of them. MPs decide whether to buy
the index based on their estimate of the future revenue-earning potential of the index. This
estimate is based on the queries relayed by the MPs and the relative position of the MP in
the network w.r.t. the network topology.

ConQuer does not allow indexes to be re-sold i.e., once an MP buys an index from a
broker, it cannot re-sell that index. This is because if an index-buyer MP is allowed to re-sell
the index, there would be a high possibility of the index selling prices being driven down
due to too much supply of indexes w.r.t. demand for the indexes. Such an over-supply of
indexes would be highly likely to occur because index-buyer MPs would have a definite
incentive to re-sell indexes to earn more currency. However, significant decrease in index
selling prices would provide less incentive for brokers to index data. On the other hand,
observe that the index selling mechanism in ConQuer from brokers to index-buyer MPs
ensures that index prices are not significantly decreased because of the fewer sources of
supply (since only brokers can sell indexes), thereby providing the brokers with incentive to
index data. The enforcement of this policy of ConQuer concerning not allowing indexes to
be re-sold essentially relates to digital rights management and copyright issues, which are
beyond the scope of this paper. However, existing digital rights management techniques can
be used in conjunction with ConQuer to enforce this policy.
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6 Peer Group-based Incentive M-P2P Model for Constraint Querying

This section first discusses a greedy method in which all MPs try to maximize their own
revenues. Next, to address its drawbacks, we propose a royalty-based revenue sharing mech-
anism among a set of peers. Finally, we devise two royalty-based peer-group methods for
improving data availability, data quality and MP revenues.

6.1 Greedy method: Care-About-Me (CAM)

Under the CAM method, each MP M greedily tries to make available (i.e., host) only those
data items that will maximize its own revenue. Let the data items stored at M constitute
a list D. M sorts D in descending order of a parameter γ, which quantifies the revenue-
earning potential of a given data item. M greedily fills up its available memory space with
data items from D (starting from the item with highest value of γ) until it has no available
memory space. While traversing D, if M encounters a data item, whose size is larger than
its available memory space, it skips to the next item in D. Let access frequency and price
of data item i in D at M be acci and ρi respectively. γ is computed based on one of the
following approaches:

1. Energy-constrained approach: M makes available data items that facilitate it in earn-
ing the maximum revenue per unit of energy spent since M ’s energy resource may be
limited. M computes γ as Σi(acci × ρi/ Ei), where Ei is total energy spent by M for
processing acci accesses to data item i.

2. Efficiency-constrained approach: M makes available data items that facilitate it in
earning the maximum revenue per unit of time served since M may become unavailable
after a short period of time (e.g., due to its schedule or because it may soon relocate
outside the group). M computes γ as Σi(acci × ρi/ Ti), where Ti is the total time spent
by M for processing acci accesses to item i.

3. Memory-space-constrained approach: M makes available data items that facilitate
it in earning the maximum revenue per unit of its memory space since M ’s available
memory space may be limited. M computes γ as Σi(acci × ρi/ sizei ), where sizei is
the size of data item i.

Observe that CAM may lead to the duplication of the hot data items across several neigh-
bouring MPs, while other items would become unavailable due to memory space constraints
of the MPs, thereby decreasing overall data availability. This would also reduce the revenues
of individual MPs due to the total revenue for the hot data items being divided among neigh-
bouring MPs and due to query failures (resulting in lost revenues) related to the unavailable
data items. Notably, the approaches in [20], which allocate replicas based on access fre-
quencies of data items, cannot be used to reconcile such redundancy in our incentive-based
approach because MPs are autonomous and can therefore exhibit greedy behaviour. Thus,
neighbouring MPs would not want to remove duplicate data items among themselves in the
absence of incentives.

6.2 Royalty-based revenue-sharing approach

To address the deficiencies of the greedy CAM method above, we propose a royalty-based
revenue-sharing mechanism among a set of MPs, the aim being to provide incentives to



18

the MPs to host different data items, thereby improving the overall data availability and
data quality. Even though some duplicate copies of an item need to be removed, we do not
want to completely eliminate all duplicates. This is because we need to maintain acceptable
response time so that MPs do not lose revenues due to failure of queries with response time
constraints.

In order to effectively coordinate the working of the set of MPs in royalty-based revenue-
sharing, a Master Broker (MB) is needed for the set of MPs. MB is also needed for better
network management to facilitate the efficient handling of constrained resources. As we
shall see shortly, MB is also required for determining in a coordinated manner how many
copies of each item is needed. Recall our application scenario concerning an M-P2P user
searching for the cheapest Levis jeans in a shopping district. In this application scenario, the
shop-owners in the shopping area will act as brokers. During each time-period, a different
shop-owner (broker) will become the MB i.e., the brokers become MB on a round-robin
basis. Thus, ultimately, every broker puts in almost equal effort for the coordination of the
set of MPs.

Observe that MB is essentially a broker albeit with some additional responsibility. The
incentive for a broker to act as the MB is that MB gains additional information concerning
the data items in the network from the other brokers. Thus, MB can incorporate this added
information into its index, thereby improving the quality of its index. The quality of the
MB’s index is further improved because when MB is assigning copies of data items to
peers under the royalty-based revenue-sharing model, it can also include this information
in its index. This enables it to earn more currency in subsequent time-periods due to more
amount of broker commissions arising from its better index quality. Furthermore, taking on
the responsibilities of being the MB on a round-robin basis ensures smooth and coordinated
functioning of the set of MPs, which ultimately results in better revenues as well as better
data availability and query response times for the set of MPs as a whole.

Let us now discuss how the MB determines the number of copies for a given item. All
brokers in the set send item access frequency information for each query intercepted by
them to the designated MB of the set. If all queries on a data item i had been successful in
satisfying the response time constraint, MB takes no action. Otherwise, MB computes total
access frequency acci of i by summing up individual access frequencies of i at each broker
within the group. Given that sizei is the size of i, MB initially computes the number Ki

of copies for i as (
√

(sizei × acci)). Then MB checks the response time constraints on the
failed queries on i to determine the failed query (on i), which had the lowest response time
constraint Tmin. MB also determines the current average response time Tavg of queries on
i. Then MB computes the optimal number K ′

i of copies of i as follows.

K′

i = ( Ki(1 + d(Tavg − Tmin)/Tavg e) ) (5)

Thus, (K′

i − Ki) additional copies of i need to be made available. Hence, MB estimates
the number of copies of data items based on response time constraints posed by queries on
them. Notably, MB does not decrease the number of copies of i since such decrease occurs
during data reallocation, as we shall see now.

Suppose n MPs in a group are currently making available the data item i. In practice, n

would be much higher than K ′

i since initially, most of the MPs would make available copies
of the same hot items to maximize their own revenues as in the CAM method. (If n equals
K′

i , no action needs to be taken.) If n > K ′

i , we proceed as follows. Given that the access
frequency and price of i at the jth MP j are acci,j and ρi,j respectively, the revenue Revi,j

generated due to i at MP j equals (acci,j × ρi,j ).
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MB sorts the MPs in descending order of their values of Revi,j , and selects the top-K ′

i

MPs from the sorted list. These top-K ′

i MPs would make available i, while the remaining
(n - K′

i) MPs would replace their copy of i and fill in the resulting available memory space
with some of their unshared data item(s). (Recall that each MP has shared and unshared
items.) However, this may result in increasing the revenues of the MPs that make i available,
while decreasing the revenues of the MPs which replaced i. We shall henceforth refer to
the MPs that make i available and the MPs which replaced i as store-MPs and replace-
MPs respectively. Users generally want high quality items, hence access frequencies for
high quality items are much higher than for low quality items. Thus, an MP hosting a high
quality copy of an item i generally earns higher revenues due to i than an MP that stores
a low quality copy of i. Hence, selection of the top-K ′

i revenue-earners for i essentially
implies that during data reallocation, excess low quality copies are replaced, while the high
quality copies are hosted, thereby implying improvement of data quality.

If the store-MPs pay a percentage of the revenues that they earned from i to the replace-
MPs, it would not be economically viable. This is because replace-MPs would not agree
to give up their ‘hot’ data items just for receiving only a small percentage of the revenues
(as royalty) since they would want to earn as much revenue as they were earning earlier
by hosting the ‘hot’ items. On the other hand, if the replace-MPs demand the amount of
revenue that they were earning earlier from i, there would be no benefit for the store-MPs.
Replace-MPs would also earn some revenue by making available their previously unshared
data items to fill up the available memory space arising from replacing i. Hence, to evaluate
the royalty payment that must be paid by the store-MPs to a given replace-MP k, we compute
the difference between the lost revenues of MP k (due to replacing i) and the revenues gained
by MP k due to making available new items.

Computation of lost revenue of a replace-MP k due to deallocating i: First, we esti-
mate the future access frequency of i during the next reallocation period. (The reallocation
period is the period of time after which MB periodically checks whether any duplicate re-
moval is necessary, and it is application-dependent.) Suppose Pi,k is the running probability
of accesses to data item i at MP k during the previous r reallocation periods (r = 4 was
found to be a reasonable value for our applications), t is the time of latest access to i, and
ti was the time when i was accessed during the previous set of time periods. The running
probability P ′

i,k of the data item i being accessed at a replace-MP k during the next periodic
interval is computed as follows:

P ′

i,k = (C/(t − ti)) + (1 − C) × Pi,k (6)

where C is a constant quantifying how much emphasis is given to the previous probability
of accesses to i when computing P ′

i,k . Preliminary experiments revealed that C=0.5 is a
reasonable value for our applications, hence we use C = 0.5 for this work. Thus, we compute
the predicted access frequency S′

i,k of i at MP k as (P ′

i,k × prevacci,k ), where prevacci,k is
the access frequency of i at MP k during the previous period.

Given that ρi,j,k is the price of the jth access to i at MP k, the lost revenue of k (for
the next period) due to replacing i for each (future) access is ρi,j,k. Hence, for future S′

i,k

accesses, the lost revenue of k (for the next period) due to replacing i is ( Σ
S′

i,k

j=1
ρi,j,k ). For

the next τ periods, MP k’s total lost revenue LR due to replacing i is computed as follows:

LR = Στ
t=1 ( Σ

S′

i,k

j=1
(ρi,j,k) ) (1 + λ)−t (7)

where λ is the percentage increase or decrease in the access frequency of the data item i (in
the most recent period) as compared to the moving average of the previous set of reallocation
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periods. λ adjusts the royalty payment based on the predicted increase or decrease in access
frequency in the next τ reallocation periods. Preliminary experiments showed that τ = 4 is a
reasonable value for our application scenarios.

Computation of revenue gained by a replace-MP k due to making available some
data items from its set of unshared data items: A given replace-MP k makes available
some of its unshared data items to fill up the available memory space due to replacing i. MP
k selects data items, which it wants to make available, by examining past access statistics to
determine items on which queries had failed. First, MP k sorts all its unshared data items in
descending order of the revenues lost (due to failed queries) into a list Lf . Then it fills up
its available memory space with data items from Lf (starting from the item with the highest
value of lost revenue) until it has no available memory space. While traversing Lf , if MP k

encounters a data item, whose size is larger than its available memory space, it simply skips
to the next item in Lf .

Given that ρi,j,k is the price of the jth (failed) access to an unshared data item i at MP k,
the lost revenue of the replace-MP k due to a failed query on i is ρi,j,k . For each (previously
unshared) data item i now made available by MP k, k computes its future access frequency
F ′

i,k during the next reallocation period based on Equation 6, which can be used in this case
because i was missed, which implies that i was accessed. Hence, for F ′

i,k accesses to i, the

revenue gained by k would be ( Σ
F ′

i,k

j=1
ρi,j,k ). Observe that now replace-MP k would gain

this revenue for accesses to i due to making i available. For the next τ periods, MP k’s total
predicted gain in revenue GR due to making available p new data items (i.e., those items
which were previously unshared) is computed as follows:

GR = Σp
i=1

( Στ
t=1 ( Σ

F ′

i,k

j=1
(ρi,j,k) ) × (1 + λ)−t ) (8)

where the significance of τ and λ are same as in Equation 7.
Computation of the royalty to be paid to replace-MP k by the store-MPs: Using

Equations 7 and 8, the royalty revenue RYi that must be paid by the store-MPs making i

available to the replace-MP k, which replaced i, is computed. RYi = (LR − GR). Since
access frequency increases in i at each store-MP cannot be predicted in advance, RYi is
equally divided among the store-MPs. Thus, if K ′

i store-MPs make i available, each of these
store MPs will pay (RYi/K

′

i) to a given replace-MP k.

6.3 Royalty-based CAN (Care-About-Neighbours) and CAG (Care-About-Group) methods

Based on the royalty-based revenue sharing method discussed above, we devise two meth-
ods, namely CAN (Care-About-Neighbours) and CAG (Care-About-Groups). Both CAN
and CAG use the royalty-based revenue sharing method for improving data availability and
MP revenues.

Under the CAN method, MPs perform royalty-based revenue sharing only with their
one-hop neighbours for improving data availability. For example, suppose MP A is a one-
hop neighbour of MP B, which in turn, is a one-hop neighbour of MP C. In this case, A and
B will collaboratively reallocate data using royalties, and B and C will also collaboratively
reallocate data. Thus, one-hop neighbours iteratively reallocate data collaboratively among
each other using the royalty-based method. Observe that CAN has a ‘myopic’ view in that it
only takes its one-hop neighbours into account for collaboratively improving data availabil-
ity, hence it cannot effectively remove duplicates existing beyond one-hop neighbours.
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To remedy the ‘myopic’ view of CAN, we propose the CAG method, which goes beyond
collaboration with one-hop neighbours to collaboration with MPs in a group. A group may
be formed by MPs with similar interests such as movies and songs. In contrast with CAN,
the groups in CAG comprise MPs, which can be beyond one-hop neighbours. Thus, in CAG,
MPs use the royalty-based method for revenue sharing with other MPs in their group, which
may comprise MPs that are physically further apart in space. Hence, CAG has a broader
view of the data availability situation in the network. For forming peer groups, we adopt
the proposal in [46], which performs peer clustering in M-P2P networks by modelling the
clustered layout based on the Pareto distribution. We use the Bounded Pareto distribution to
bound the minimum and maximum number of nodes in each sub-area to produce a connected
network.

For effectively facilitating MPs in the group to make available the required number
of copies of hot data items, CAG deploys a super-peer architecture in the group with the
Master broker (MB) as the leader of the group to facilitate effective collaboration within
the group. (We have discussed the selection of MB in Section 6.2.) Periodically, all brokers
in the group send access frequency information and failed query statistics to MB. MB uses
this information to advise MPs about the objects to be reallocated periodically, while also
making available less hot data items, thereby minimizing query failures and improving MP
revenues. CAG also ensures better data quality since MPs remove excess low quality copies
in favour of higher quality copies.

7 Performance Evaluation

This section reports our performance evaluation using simulation. For the simulation, we
have used our own implementation.

The parameter values used in our performance evaluation have been selected carefully
based on other works such as [20], where a similar environment has been considered for
the performance. Additionally, some of the parameter values have been selected according
to our environment and our application scenarios. As a single instance, observe that our
application scenarios typically concern situations, where the number of MPs is not large. For
example, recall our application scenario of car-pooling among car-users, who follow similar
paths and timings. In such applications, generally not more than 100 users would be a part of
the network. Similarly, for the cab-sharing application scenario, the number of mobile users
would typically be less than 100. In a similar vein, for the application scenario involving
an M-P2P user looking for like-minded individuals at a conference or social gathering, the
number of mobile users would usually be less than 100. Hence, in our experiments, we have
set the number of MPs to 100.

The bandwidth range of 28-100 Kbps is in consonance with the available bandwidth
ranges, which could be reasonably expected in our application scenarios. Note that our ap-
plication scenarios involve the transfer of small-sized data items such as text messages and
thumbnails of images. Furthermore, we have set the size of a data item in the range of 50-
750 Kb because our data items are generally in that range e.g., data about names of songs,
data about cheapest available Levis jeans and car-pooling information. In particular, we do
not consider big-sized data such as movies. Additionally, we have set relocation period to
200 seconds since it is a reasonable value for our application scenarios. In general, reloca-
tion period is tied to replication (analogous to allocation and deallocation of data items in
our case), and it is essentially application-dependent, hence nobody knows what is a good
relocation period.
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We ran each experiment 10 times, hence the experiment result values are the average of
10 runs of each experiment. The respective confidence intervals for our experiments ranged
from 92% to 95%, depending upon the experiment. As we present each experiment, we will
also point out the confidence interval for that experiment.

MPs move according to the Random Waypoint Model [4] within a region of area 1000
metres ×1000 metres. The Random Waypoint Model is appropriate for our application sce-
narios, which involve random movement of users. Each MP owns 4 shared data items and
4 unshared data items. (Unshared data items play a role only for CAG and CAN during
reallocation.) Among the total of 400 shared data items, the number of unique items is 40.
(Also, for the unshared data items, the number of unique items is 40.) Hence, there are 10
copies per data item and these copies are assigned different constraint values of data quality
and trust as follows. Given y different copies of the same data item, we generate the data
quality mix of high, medium and low by using the Zipf distribution with zipf factor of 0.7
over 3 buckets with y as the input number. The number generated for the first, second and
third buckets are for low,medium and high quality respectively. We also generate the data
trust mix in the same manner using zipf factor of 0.7 over 3 buckets, corresponding to high,
medium and low. Then these constraint values of data quality and trust are assigned ran-
domly to the 10 copies of the same data item. Thus, the proportion of low quality and low
trust data items is initially higher, which is in consonance with practice.

In all our experiments, 20 queries/second are issued in the network, the number of
queries directed to each MP being determined by the Zipf distribution (zipf factor (ZF)
= 0.7). Data item(s) to be queried are selected randomly from the entire set of items in the
M-P2P network, the Zipf distribution being used for determining the number of queries cor-
responding to each of the data items (ZF = 0.7). Recall that data quality and trust are in the
range (0,1). We normalized price values to be in the range of (0,1) by dividing all prices with
the price of the highest item in the network. For each query, the constraints were generated
by selecting a random number between 0 and 1 corresponding to each constraint. Response
time constraint for each query was determined by a random number generator to be between
40 seconds and 150 seconds. Communication range of all MPs is a circle of 100 metre ra-
dius. Periodically, every 200 seconds, the master broker MB decides whether to perform
reallocation. Table 1 summarizes performance study parameters.

Parameter Default value Variations

No. of MPs (NMP ) 100 20, 40, 60, 80

Zipf factor (ZF) 0.7

Bandwidth between MPs 28 Kbps to 100 Kbps

Probability of MP availability 50% to 85%

Size of a data item 50 Kb to 750 Kb

Memory space of each MP 2 MB to 5 MB

Speed of an MP 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Table 1 Performance Study Parameters

In our simulation model, we have also considered the probability of interruption during
data transfer as a parameter during data transfer with the chances of interruption/failure
(during data transfer) being 10% to 20%. However, our simulation model does not consider
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complete disconnections. In particular, the occurrence of complete interruptions during data
transfer is in the realm of networking, which is not our primary focus in this paper. However,
we do acknowledge the importance of this issue and leave this issue open to further research.
Furthermore, the overhead introduced by the Master Broker is negligible in comparison to
the traffic for allocation and reallocation of data items. Notably, the overhead introduced by
the Master Broker and the replicas reallocation is part of the communication delay.

Performance metrics are average response time (ART) of queries, query success rate
(SR) and query hop-count (HC). ART = (1/NQ)

∑NQ

i=1
(Tf − Ti), where Ti is the time

of query issuing, Tf is time of the query result reaching the query-issuing MP, and NQ is
the total number of queries. ART includes the download time, and is computed only for
the successful queries. (Unsuccessful queries are not considered for ART computations.)
SR = (NS/NQ)×100, where NS is the number of queries that were answered successfully
and NQ is the total number of queries. In ConQuer, queries can fail due to their constraints
not being satisfied or due to MPs being unavailable or due to network partitioning, or due to
exceeding the TTL. (Each query has a TTL of 8 hops.) We define the query hop-count HC
as the hop-count incurred by the query in the successful query path, hence HC is measured
only for successful queries.

Performance comparison w.r.t. existing approaches: Incidentally, none of the exist-
ing proposals for M-P2P networks addresses peer group-based incentive models. Our work
cannot be directly compared with incentive schemes for M-P2P networks [43,42] due to the
differences that we have highlighted in Section 3. In particular, the works in [43,42] con-
sider a data dissemination model, while we consider a querying-based model. The “push-
based” data dissemination model in [43,42] will increase traffic significantly as compared
to our “pull-based” querying model, thereby resulting in significantly higher battery power
consumption of MPs, and consequently, making it unsuitable for our M-P2P application
scenarios, where the battery power of devices is generally limited. Hence, there is no point
comparing our work with that of [43,42].

Our work also cannot be meaningfully compared with incentive schemes for static P2P
networks [15,18,22,25,2] because these incentive schemes do not consider peer mobility
and limited battery power resources of the peers, which are characteristic of M-P2P envi-
ronments. Moreover, schemes for static P2P networks are too static to be deployed in M-P2P
environments because they assume peers’ availability and fixed topology.

Thus, for purposes of meaningful performance comparison, we adapt the E-DCG+ ap-
proach [20] to our scenario and compare our work against the E-DCG+ approach since it
is the closest to our proposed CAG and CAN methods. E-DCG+ is executed at every real-
location period. Notably, E-DCG+ allocates replicas based on data item access frequencies,
and as such, it is not an economy-based incentive scheme. We also compare CAG and CAN
with the CAM method to indicate the performance gain due to royalty model-based peer
collaboration among MPs in a group. For CAM, the three approaches of computing the
revenue-earning potential γ of a given data item (see Section 6.1) exhibited similar trends,
hence here we present the results corresponding to CAM’s memory-space-constrained ap-
proach. Note that CAG, CAN and CAM use CR*-tree indexes to facilitate efficient direction
of queries to target data-providing MPs.

7.1 Improvement in data quality

We define average data quality as ( ( ΣDi)/ni ), where Di is the value of data quality for
the ith copy of a data item i, and ni is the total number of copies of i in the network. For this
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experiment, we randomly selected a data item whose average data quality was initially low
i.e., 0.3. This experiment was run a total of 10 times, each time a data item being randomly
selected from the set of items, whose average value of data quality was 0.3. The confidence
interval for the results of this experiment is 95%.

CAG’s peer group collaboration using the royalty-based revenue-sharing method fa-
cilitates MPs in improving their revenues by collaboratively removing excess low-quality
copies during the reallocation of data items. Hence, the average data quality for CAG im-
proves over time as indicated by the results in Figure 3. Similarly, for CAN, the average
data quality improves due to royalty-based revenue-sharing, but the improvement is less
than that of CAG since in CAN, only one-hop neighbours collaborate for data reallocations.
Since CAM does not perform such collaborative reallocation of data items, its average data
quality remains relatively constant over time. This experiment does not consider E-DCG+,
which does not address data quality issues.
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7.2 Performance of ConQuer

Figure 4 depicts the results of our experiment using default parameter values of Table 1. The
confidence interval for the results of this experiment is 93%.

The first 4000 queries were used to obtain access statistics, and then the three approaches
were deployed. ART decreases for each approach and eventually plateaus due to each ap-
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proach creating its own optimal number of copies of items in response to the given access
pattern. CAG, CAN and CAM outperform E-DCG+ as their incentive-based models en-
courage MP participation, hence their total available memory space and total bandwidth are
higher. The CR*-tree index enables CAG, CAN and CAM to find target MPs efficiently, so
they incur lower HC, and hence lower ART than E-DCG+. Furthermore, the index selling
mechanism in CAG, CAN and CAM incentivizes MPs to create multiple copies of indexes,
thereby further improving HC and ART.

CAG and CAN outperform CAM as royalty-based revenue-sharing ensures better data
allocation, which leads to higher SR. In contrast, CAM encourages MPs to make available
only hot data items, hence less hot items become unavailable, thereby reducing SR. Unlike
CAM, CAG and CAN decide the number of copies for a given item based on response time
constraints posed by queries, which further optimizes their ART. CAG outperforms CAN
because CAG considers data allocation across peer groups, hence it has better view of the
network situation than CAN, which performs allocation only among one-hop neighbours.
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7.3 Effect of incentive-based revenue model

We define threshold revenue THR as the ratio of the total revenue of the system to the total
number of MPs. The results in Figure 5 indicate that when the number NTHR

of MPs above
THR increases, ART, SR and HC improve for CAG, CAN and CAM. This is due to more
MPs providing service as their revenues increase, which implies more memory space, higher
bandwidth and multiple paths for answering constraint queries. E-DCG+ shows constant
performance as it is independent of revenue. CAG outperforms both CAN and CAM due to
the reasons explained for Figure 4. The confidence interval for the results of this experiment
is 92%.

7.4 Effect of variations in the number of MPs

Figure 6 depicts the results for varying the number of MPs. The confidence interval for the
results of this experiment is 93%.

With increasing number of MPs, HC increases due to larger network size, hence ART
increases for all approaches. However, the increase in ART for CAG and CAN is less than
that of CAM since CAG and CAN determine the number of copies of any item based on
response time constraints posed by queries. SR increases for all the approaches since more
MPs imply more opportunities for making available copies of data items. For CAG and
CAN, SR eventually plateaus due to network partitioning and unavailability of some MPs.
CAG outperforms the other three approaches due to the reasons explained for Figure 4.

8 Discussion

This section discusses a few other important issues, which are relevant to our proposal.
Issues concerning fairness are central to the implementation of incentive mechanisms

in M-P2P environments. The work in [28] addresses fairness issues concerning scenarios
such as how to ensure that intermediate nodes get their commission and how to guarantee
that source nodes get their desired service after they have made their payments. Some other
works like [27] address issues, where nodes cannot lie about the cost and stability infor-
mation. In [47], a security scheme has been presented to provide tamper-proof payment in
Mobile Ad hoc networks.

In the context of virtual currency payments, there are coupon-based systems such as
adPASS [39]. The works in [10,12,48] discuss how to ensure secure payments using a vir-
tual currency. Another way proposed in [14] describes Coupons, an incentive scheme that
is inspired by the eNcentive framework [32], which allows mobile agents to spread digital
advertisements with embedded coupons among mobile users in a P2P manner.

Several non-repudiation [23,35] systems, which can be incorporated to control the de-
ceiving behaviour of peers, have been developed. In many applications such as content dis-
tribution, the price can also be controlled by the service-providers [13]. MoB [7] is an open
market collaborative wide-area wireless data services architecture, which can be used by
mobile users for opportunistically trading services with each other. MoB also handles incen-
tive management, user reputation management and accounting services. A bootstrap kind of
mechanism can also be used in many applications [11]. Symella is a Gnutella file-sharing
client for Symbian smartphones. It expects that illegal acts occur, such as interpolation or
destruction of the distribution history to get incentives. Therefore, the distribution history
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attached to the e-coupon [8] is enciphered with a public-key cryptographic system so that
users cannot peruse the distribution history. Furthermore, a message digest (MD) of the dis-
tribution history is embedded by digital-watermarking technology to check the validity of
the history. Tribler [21] is a first attempt towards turning bandwidth into a global currency.
Notably, the schemes discussed above are complementary to our proposal, but they can be
used in conjunction with our proposal.

In this paper, we only consider cost parameters which we discussed. Some other costs
that could be included in the future are the cost of maintaining virtual currency, encryption
cost and storage cost. Note that the bandwidth cost is same for all the participating peers
as they put aside some fixed bandwidth for collaboration and for their own benefit, and
therefore we do not consider that cost explicitly.

9 Conclusion

In M-P2P networks, peers may issue queries with varying constraints on query response
time, data quality of results and trustworthiness of the data source. For facilitating the effi-
cient processing of such constraint queries in M-P2P networks, we have proposed ConQuer,
which is an economic incentive model for M-P2P networks. ConQuer also provides incen-
tives for peer collaboration in order to improve data availability. The main contributions of
ConQuer can be summarized as follows. First, it uses a broker-based economic incentive
M-P2P model for processing constraint queries via a Vickrey auction mechanism. The in-
centive model effectively combats free-riding and encourages peer participation. Second, it
proposes the CR*-tree, a dynamic multidimensional R-tree-based index for constraints of
data quality, trust and price of data to determine target peers efficiently. The CR*-tree is
hosted by brokers, who can sell it to other peers, thereby encouraging the creation of mul-
tiple copies of the index for facilitating routing. Third, it provides incentives for peers to
form collaborative peer groups for maximizing data availability and revenues by mutually
allocating and deallocating data items using royalty-based revenue-sharing. Such realloca-
tions facilitate better data quality, thereby further increasing peer revenues. Our performance
study demonstrates that ConQuer is indeed effective in answering constraint queries with
improved response time, success rate and data quality, and querying hop-counts.
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