
Keyword Search in Spatial Databases: Towards
Searching by Document

Dongxiang Zhang #1, Yeow Meng Chee †2, Anirban Mondal ∗3, Anthony K. H. Tung #4, Masaru Kitsuregawa ∗5

#School of Computing, National University of Singapore, {1zhang do,4at}@comp.nus.edu.sg
†Div. of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Tech. University, 2ymchee@ntu.edu.sg

∗Institute of Industrial Science, University of Tokyo, {3anirban@,5kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract— This work addresses a novel spatial keyword query
called the m-closest keywords (mCK) query. Given a database
of spatial objects, each tuple is associated with some descriptive
information represented in the form of keywords. The mCK
query aims to find the spatially closest tuples which match
m user-specified keywords. Given a set of keywords from
a document, mCK query can be very useful in geotagging
the document by comparing the keywords to other geotagged
documents in a database.

To answer mCK queries efficiently, we introduce a new index
called the bR*-tree, which is an extension of the R*-tree. Based on
bR*-tree, we exploit a priori-based search strategies to effectively
reduce the search space. We also propose two monotone con-
straints, namely the distance mutex and keyword mutex, as our a
priori properties to facilitate effective pruning. Our performance
study demonstrates that our search strategy is indeed efficient
in reducing query response time and demonstrates remarkable
scalability in terms of the number of query keywords which is
essential for our main application of searching by document.

I. INTRODUCTION

With the ever-increasing popularity of services such as
Google Earth and Yahoo Maps, as well as other geographic
applications, queries in spatial databases have become increas-
ingly important in recent years. Current research on queries
goes well beyond pure spatial queries such as nearest neighbor
queries [21], range queries [16], and spatial joins [7], [19],
[15], [17]. Queries on spatial objects associated with textual
information represented by sets of keywords are beginning to
receive significant attention from the spatial database research
community and the industry.

This paper focuses on a novel type of query called the m-
closest keywords (mCK) query: given m keywords provided
by the user, the mCK query aims at finding the closest tuples
(in space) that match these keywords. While such a query has
various applications, our main interest lie in that of a search
by document.

As an example, Fig. 1 shows the spatial distribution of three
keywords that are obtained from placemarks in some mapping
application. Given a blog that contains these three keywords,
the user is interested to find a spatial location that the blog is
likely to be relevant to 1. This can be done by issuing a mCK
query on the three keywords. The measure of closeness for a

1This is relevant in an application scenario like the MarcoPolo
project(http://langg.com.cn) where blogs need to be geotagged.

Fig. 1. mCK query for three keywords obtained from placemarks

set of m tuples is defined as the maximum distance between
any two of the tuples:

Definition 1 (Diameter): Let S be a tuple set endowed with
a distance metric dist(·, ·). The diameter of a subset T ⊆ S
is defined by

diam(T) = max
T,T ′∈T

dist(T, T ′).

Different distance metric will give rise to different geometry
of the query response:
• If dist(·, ·) is the `1-distance metric, then the response

containing all the key words of the query is a square
oriented at a 45◦ angle to the coordinate axes.

• If dist(·, ·) is the `2-distance (Euclidean distance) metric,
then the response containing all the key words of the
query is a circle of minimum diameter.

• If dist(·, ·) is the `∞-distance metric, then the response
containing all the key words of the query is a minimum
bounding square.

In the example (with `2-distance as the distance metric,) the
diameter for the three keywords is precisely the diameter of
the circle drawn in Fig. 1. Users can specify their respective
mCK queries according to their requirements.

A spatial tuple can be associated with one or multiple
keywords. Therefore, the number of response tuples for the
mCK query is at most m. To facilitate our statement of the
problem, we make the simple assumption that each tuple is
associated with only one keyword2, although our algorithm
can be naturally extended without any modification to work
efficiently in the case of multiple keywords. The mCK query

2Tuples with multiple keywords can be treated as multiple tuples, each with
a single keyword and located in the same position.

returns m tuples matching the query keywords: each tuple in
the result corresponds to a unique query keyword. Finding m
closest keywords is essentially finding m tuples of minimum
diameter matching these keywords. The problem can be for-
mally defined as follows.

Definition 2 (mCK Query Problem): Given a spatial
database with d-dimensional tuples represented in the
form (l1, l2, . . . , ld−1, w) and a set of m query keywords
Q = {wq1 , wq2 , . . . , wqm

}, the mCK Query Problem is to find
m tuples T = {T1, T2, . . . , Tm}, Ti.w ∈ Q and Ti.w 6= Tj .w
if i 6= j, and diam(T) is minimum.

While our initial example involved only three keywords,
a search by document is likely to involve a search for many
keywords i.e. the value of m is likely to be large. This will give
problem to a naive mCK query processing approach which
is to exhaustively examine all possible sets of m tuples of
objects matching the query keywords. By building m inverted
lists for each of the m keywords with each list having only
spatial objects that contain the corresponding keyword, the
exhaustive algorithm can be implemented in a multiple nested
loop fashion. If the number of objects matching keyword i is
D(i), then the number of sets of m tuples to be examined is∏m

i=1 D(i). This is prohibitively expensive when the number
of objects and/or m is large.

Spatial data is almost always indexed to facilitate fast
retrieval. We can adopt the idea of Papadias et al. [19] to
answer the mCK query. Given N R*-trees, one for each
keyword, candidate spatial windows for the mCK query result
can be identified by executing multiway spatial joins (MWSJ)
among the R*-trees. The join condition here becomes “closest
in space” instead of “overlapping in space” [19]. When m is
very small, this approach accesses only a small portion of the
data and returns the result relatively quickly. However, as m
increases, this approach suffers from two serious drawbacks.
First, it incurs high disk I/O cost for identifying the candidate
windows (due to synchronous multiway traversal of R*-trees)
since it does not inherently support effective summarization
of keyword locations. Second, it may not be able to identify a
“tight” set of candidate windows since it determines candidate
windows in an approximate manner based on the leaf-node
MBRs of R*-trees without considering the actual objects. To
process mCK queries in a more scalable manner, we propose
to use one R*-tree to index all the spatial objects as well
as their keywords. Integrating all the information in a single
R*-tree provides more opportunities for efficient search and
pruning.

The main contributions of this work are as follows.

• We propose a novel spatio-keyword query, called the
mCK query, which has a large number of diverse and
important applications in spatial databases.

• We propose a new index, called bR*-tree, for query pro-
cessing. The bR*-tree extends the R*-tree to effectively
summarize keywords and their spatial information.

• We incorporate efficient a priori-based search strate-

gies, which significantly reduce the combinatorial search
space.

• We define two monotone constraints, namely the distance
mutex and keyword mutex, as the a priori properties for
pruning. We also provide low-cost implementations for
the examination of these constraints.

• We conduct extensive experiments to demonstrate that our
algorithm is not only effective in reducing mCK query
response time, but also exhibits good scalability in terms
of the number of query keywords.

The remainder of this paper is organized as follows. Section
II discusses existing work. Section III introduces bR*-tree.
Section IV proposes a priori-based mCK query processing
strategies and two monotone constraints used as a priori
properties to facilitate pruning. Efficient implementations for
the examination of these two constraints are also provided.
Section V reports our performance study. Finally, we conclude
our paper in Section VI.

II. RELATED WORK

Various spatial queries using R-tree [10] and R*-tree [5]
have been extensively studied. Besides the popular nearest
neighbor query [21] and range query [16], closest-pair queries
for spatial data using R-trees have also been investigated
[12], [8], [23]. Nonincremental recursive and iterative branch-
and-bound algorithms for k-closest pairs queries have been
discussed by Corral et al. [8]. An incremental algorithm
based on priority queues for the distance join query has been
discussed by Hjaltason and Samet [12]. The work of Shin et
al. [23] uses adaptive multistage and plane-sweep techniques
for the K-distance join query and incremental distance join
query. Studies have also been done on extending R-tree to
strings [13]. Our problem can be seen as extending the R-tree
to handle mixed types; our query being a set of keywords to
be matched by combining the keyword sets of spatial objects
that are close to each other.

MWSJ queries have been widely researched [19], [15], [17].
Given N R*-trees, one per keyword, the MWSJ technique of
Papadias et al. [19] (later extended by Mamoulis and Papadias
[15]) draws upon the synchronous R*-tree traversal (SRT)
approach [7] and the window reduction (WR) approach [18].
Given two R*-tree-indexed relations, SRT performs two-way
spatial join via synchronous traversal of the two R*-trees based
on the property that if two intermediate R*-tree nodes do not
satisfy the spatial join predicate, then the MBRs below them
will not satisfy the spatial join predicate also. WR uses window
queries to identify spatial regions which may contribute to
MWSJ results. Local and evolutionary search are used by
Papadias and Arkoumanis [17] to process MWSJ queries.

The work of Aref and Samet [4] discusses window-based
query processing using a variant of the pyramid data structure.
The proposal by Aref et al. [3] addresses retrieval of objects
that are related by a distance metric (i.e., proximity queries),
but it does not consider the “closest” criteria. Papadias et al.
[20] examines the problem of finding a nearest neighbour that
is spatially close to the center of a group of points. Unlike our

work, the points there are not associated with any keywords.
Moreover, their queries specify a set of spatial locations, while
our queries specify keywords with no specific spatial location.
Various studies have also been done on finding association
rules and co-location patterns in spatial databases [14], [22],
[27], the aim being to find objects that frequently occur near to
each other. Objects are judged to be near to each other if they
are within a specified threshold distance of each other. Our
study here is a useful alternative which foregoes the distance
threshold, but instead allows users to verify their hypothesis
through spatial discovery.

Recently, queries on spatial objects which are associated
with textual information represented by a set of keywords,
have received significant attention. Different spatial keyword
queries on spatial databases have been proposed [11], [9]. Har-
iharan et al. [11] introduced a type of query combining range
query and keyword search. The objects returned are required
to intersect with the query MBR and contain all the user-
specified keywords. A hybrid index of R*-tree and inverted
index, called the KR*-tree, is used for query processing. Felipe
et al. [9] proposed another similar query combining k-NN
query and keyword search, and uses a hybrid index of R-tree
and signature file, called the IR2. Our mCK query differs from
these two queries. First, our query specifies keywords with no
specific location. Second, all the user-specified keywords do
not necessarily appear in one result tuple. They can appear in
multiple tuples as long as the tuples are closest in space.

III. BR*-TREE: R*-TREE WITH
BITMAPS AND KEYWORD MBRS

To process mCK queries in a more scalable manner, we
propose to use one R*-tree to index all the spatial objects and
their keywords. In this section, we discuss the proposed index
structure called the bR*-tree.

The bR*-tree is an extension of the R*-tree. Besides the
node MBR, each node is augmented with additional in-
formation. A straightforward extension is to summarize the
keywords in the node. With this information, it becomes easy
to decide whether m query keywords can be found in this
node. If there are N keywords in the database, the keywords
for each node can be represented using a bitmap of size N ,
with a “1” indicating its existence in the node and a “0”
otherwise. For example, a bitmap B = 01001 reveals that
there are five keywords in the database and the current node
can only be associated with the keywords in the second and
fifth positions of the bitmap. This representation incurs little
storage overhead. Moreover, it can accelerate the checking
process of keyword constraints due to the relatively high speed
of binary operations. Given a query Q = 00110, if we have
B AND Q = 0, it implies that the given node does not have any
query keywords and thus, this node can be eliminated from
the search space.

Besides the keyword bitmap, we also store the keyword
MBR in the node to set up more powerful pruning rules. The
keyword MBR of keyword wi is the MBR for all the objects
in the nodes that are associated with wi. It summarizes the

spatial locations of wi in the node. Using this information, we
know the approximate area in the node which each keyword
is distributed. If M is the node MBR and Mi is the keyword
MBR for wi, we have Mi ⊆ M .

When N is a large number, the cost for storing the keyword
MBR is very high. For example, suppose there are a total
of 100 keywords in the database and the objects are three-
dimensional data. Spatial coordinates are usually stored in
double precision, which occupies eight bytes per coordinate.
It would therefore take 100× 3× 8× 2 = 4800 bytes to store
the keyword MBRs in one node. To reduce the storage cost,
we split the node MBR into segments along each dimension.
Each keyword MBR is represented approximately by the start
and end offsets of the segments along each dimension. The
range of an offset that occupies n bits is [0, 2n − 1]. In our
implementation, we set n = 8 (resulting in 256 segments) and
found that it provided satisfactory approximation.

After being augmented with the bitmap and keyword MBR,
non-leaf nodes of the bR*-tree contain entries of the form
(ptrs, mbr, bmp, kwd mbr), where
• ptrs are pointers to child nodes;
• mbr is the node MBR that covers all the MBRs in the

child nodes;
• bmp is a keyword bitmap, each bit of which corresponds

to a specific keyword, and is marked as “1” if the MBR
of the node contains the keyword and “0” otherwise;

• kwd mbr is the vector of keyword MBR for all the
keywords contained in the node.

Fig. 2 depicts an example of an internal node containing three
keywords w1, w2, w3 represented as 111. It also maintains the
keyword MBRs of w1, w2 and w3. The keyword MBR of wi

is a spatial bound of all the objects with keyword wi. Leaf
nodes contain entries of the form (oid, loc, bmp), where
• oid is a pointer to an object in the database;
• loc represents the coordinates of the object;
• bmp is the keyword bitmap.

w1

w1

w2

w2

w3

w3

w2

w3

w3

w3w2
w1

w1C3

w1
w2

2C

w1

W2

w3

w2

C1

3

W1

W

11 Node Bitmap

Keyword MBR

1

Fig. 2. Node information of the bR*-tree

In R*-tree, insertion works as follows: new tuples are added
to leaves, overflowing nodes are split and the changes are
propagated upward in the tree. The propagation process is
called AdjustTree and the parent node is updated based on
the property that its MBR is tightly bound to the MBRs of
its child. The bitmap and keyword MBR also have similar
properties for convenient information update in the parent
node. The set of keywords of the parent node is the union

of the sets of keywords in the child nodes. If wi appears in a
child node, it must also appear in the parent node. On the other
hand, the keyword MBR of wi in the parent node is actually
the minimum bound of the corresponding keyword MBRs in
the child nodes. If the parent node’s MBR does not tightly
enclose all its child MBRs, or its keywords or keyword MBRs
are not consistent with those in the child nodes, AdjustTree
is invoked. Hence, we can construct our bR*-tree by means
of the original R*-tree algorithm [5] by adding the operations
of updating keywords and keyword MBR when AdjustTree is
invoked. In a similar vein, the operations of update and delete
in bR*-tree can also be naturally extended from the original
implementations.

IV. SEARCH ALGORITHMS

Suppose a hierarchical bR*-tree has been built on all the
data objects. The mCK query aims at finding m closest
keywords in the leaf entries matching the query keywords.
Our search algorithm starts from the root node. The target
keywords may be located within one child node or across
multiple child nodes of the root. Hence, we need to check
all possible subsets of the child nodes. The candidate search
space consists of two parts:
• the space within one child node;
• the space across multiple (> 1) child nodes.

If a child node contains all the m query keywords, we treat it
as a candidate search space. Similarly, if multiple child nodes
together can contribute all the query keywords and they are
close to each other, then they are also included in the search
space.

1c

C : 1010

C : 1111

C : 0011

2c
3c

1

2

3

Fig. 3. An illustration of search in one node

To give an intuition of how the search space looks like, let us
look at Fig. 3. The node has three child nodes C1, C2, and C3,
and they are close to each other. C1 is associated with w2 and
w4, C2 with all the keywords, and C3 with w1 and w2. Their
bitmap representations are as shown in the figure. If the query
is 1111, our candidate search space includes the subsets {C2},
{C1, C2}, {C2, C3} and {C1, C2, C3}. The target keywords
may be located in these nodes. {C1}, {C3} and {C1, C3} are
pruned because they lack certain query keywords.

After exploring the root node, we obtain a list of candidate
subsets of its child nodes. In order to find the m closest
keywords located at the leaf entries, we need to further explore
these candidates and traverse down the bR*-tree. For example,
C2 will be processed in a similar manner to the root node.
Subsets of child nodes of C2 are checked and all those that
may possibly contribute a closer result is preserved. The search
space for multiple nodes, such as {C1, C2}, is also turned into
combinations of subsets of their child nodes. Each combination

consists of child nodes from both C1 and C2. We can consider
this process as node set {C1, C2} being replaced by subsets of
their child nodes and spawn a larger number of new node sets.
The number of nodes in the new node set is nondecreasing
and their nodes are one level lower in the bR*-tree. If we
meet a set of leaf nodes, we retrieve all the combinations of
m tuples from the leaf entries and calculate the closest m
keywords that match the query keywords to see if a closer
result can be found. Note that during the whole search process,
the number of nodes in a node set will never exceed m because
our target m tuples can only reside in at most m child nodes.
This provides an additional constraint to reduce the search
space.

Algorithms 1 and 2 summarize our approach for finding m
closest keywords. The first step is to find a relatively small
diameter for branch-and-bound pruning before we start the
search. We start from the root node and choose a child node
with the smallest MBR that contains all the query keywords
and traverse down that node. The process is repeated until we
reach the leaf level or until we are unable to find any child
node with all the query keywords. Then we perform exhaustive
search within the node we found and use the diameter of the
result as our initial diameter for searching. Our experiments
show that we can find a result of relatively small diameter in
a very short time in this manner. We shall henceforth use δ∗

to denote the smallest diameter of a result that has been found
so far.

With this initial δ∗, we start our search from the root node.
Since we are dealing with search in one node or multiple
nodes, for the sake of uniformity, we use NodeSet to denote
a set of nodes as candidate search space, regardless of the
number of nodes in it. The function SubsetSearch traverses
the tree in a depth-first manner so as to visit the data objects
in leaf entries as soon as possible. This increases the chance
of finding a small δ∗ at an early stage for better pruning. If
NodeSet contains leaf nodes, we retrieve all the objects in the
leaf entries and exhaustively search for the closest keywords.
Otherwise, we apply search strategies according to the number
of nodes contained in NodeSet. In the following subsection,
we discuss these strategies.

Algorithm 1 — Finding m Closest Keywords
Input: m query keywords, bR*-tree
Output: Distance of m closest keywords

1. Find an initial δ∗

2. return SubsetSearch(root)

A. Searching In One Node

When searching in one node, our task is to enumerate all
the subsets of its child nodes in which it is possible to find
m closer tuples matching the query keywords. The subsets
which contain all the m keywords and whose child nodes are
close to each other are considered as candidates. There is also
a constraint that the number of nodes in a subset should not
exceed m. Therefore, the number of candidate subsets that

Algorithm 2 — SubsetSearch: Searching in a Subset of
Nodes
Input: current subset curSet
Output: Distance of m closest keywords

1. if curSet contains leaf nodes then
2. δ = ExhaustiveSearch(curSet)
3. if δ < δ∗ then
4. return δ
5. else
6. if curSet has only one node then
7. setList = SearchInOneNode(curSet)
8. for each S ∈ setList do
9. δ∗ = SubsetSearch(S)

10. if curSet has multiple nodes then
11. setList = SearchInMultiNodes(curSet)
12. for each S ∈ setList do
13. δ∗ = SubsetSearch(S)

may get further explored could reach
∑m

i=1

(
n
i

)
for a node

with n child nodes.
An effective strategy for reducing the number of candidate

subsets is of paramount importance as each subset will later
spawn an exponential number of new subsets. Incidentally,
the a priori algorithm of Agrawal and Srikant [1] has been an
influential algorithm for reducing search space for combina-
torial problems. It was designed for finding frequent itemsets
using candidate generation via a lattice structure and has the
following advantages:

1) Each candidate itemset is generated once because the
way of generating new candidates is fixed and ordered.
The k-itemset is joined by two (k−1)-itemsets with the
same (k−2)-length prefix. Therefore, given a candidate
itemset, such as {a, b, c, d}, we can infer that it is joined
by {a, b, c} and {a, b, d}.

2) For a k-itemset, we only need to check whether all its
(k − 1)-itemset subsets are frequent in level k − 1. The
cost is O(n). This is due to the a priori property that
all nonempty subsets of a frequent itemset must also be
frequent. It is not necessary to check all its subsets at
lower levels, the cost of which would be exponential.

In order to take advantage of the a priori algorithm, we
define two monotonic constraints called distance mutex and
keyword mutex. If a node set N = {N1, N2, . . . , Nn} is
distance mutex or keyword mutex, then any superset of N is
also distance mutex or keyword mutex and can be pruned.

Definition 3 (Distance Mutex): A node set N is distance
mutex if there exist two nodes N, N ′ ∈ N such that
dist(N, N ′) > δ∗.

The definition of distance mutex is based on the observation
that if the minimum distance between two node MBRs of N
and N ′ is larger than δ∗, then the node set {N, N ′} does not
give a result with diameter better than δ∗. This is obvious
because the distance between any two tuples from N and N ′

must be larger than δ∗. Hence, we have the following lemma.

Lemma 4.1: If a node set N is distance mutex, then it can
be pruned.

Proof: If N is distance mutex, then there exist two
nodes N, N ′ ∈ N with dist(N,N ′) > δ∗. For any m tuples
T1, T2, . . . , Tm found in this node set that match the m query
keywords , we can find at least one Tu from N and Tv from N ′

because each node has to contribute at least one tuple for the
result. Since the distance between Tu and Tv must be larger
than δ∗, any candidate set of m tuples has diameter larger than
δ∗.

Lemma 4.2: Distance mutex is a monotone property.
Proof: Suppose N is distance mutex. Then there exist

two nodes N,N ′ ∈ N with dist(N, N ′) > δ∗. Any superset
of N must also contain N and N ′ and hence must have
diameter exceeding δ∗.

If all the nodes in node set N are close to each other, we can
still take advantage of the stored keyword MBR for pruning.
Here, we consider the problem from the perspective of con-
tribution of keywords. Each node in the set must contribute
a distinct subset of query keywords and all the contributed
keywords constitute a complete set of query keywords. For
example, given a set of two nodes N and N ′ and a query
of three keywords 0111, if the closest keywords exist in this
set, there are six cases of different contributions of query
keywords by N and N ′. N contributes one of the query key-
words and N ′ contributes the other two. This generates three
cases: (w1, w2w3), (w2, w1w3), (w3, w1w2). If N contributes
two and N ′ contributes one, there are another three cases:
(w1w2, w3), (w1w3, w2), (w2w3, w1). If the distance of any
two different keywords (wi, wj) is larger than δ∗, where wi

is from N and wj is from N ′, then the diameters of the six
cases above are all larger than δ∗. We say that the node set
is keyword mutex. The distance of (wi, wj) can be measured
by the minimum distance of the two corresponding keyword
MBRs. More generally, the concept of keyword mutex is
defined as follows:

Definition 4 (Keyword Mutex): Given a node set N =
{N1, N2, . . . , Nn}, for any n different query keywords
(wq1 , wq2 , . . . , wqn) in which wqi is uniquely contributed by
node Ni, there always exist two different keywords wqi and
wqj such that dist(wqi , wqj) > δ∗, then N is called keyword
mutex.

Keyword mutex has properties similar to distance mutex.

Lemma 4.3: If a node set {N1, N2, . . . , Nn} is keyword
mutex, then it can be pruned.

Proof: For any candidate of m tuples T =
{T1, T2, . . . , Tm} matching the query keywords, we want
to prove diam(T) > δ∗. Since each node is required to
contribute at least one tuple and m ≥ n, we can extract
n different keywords {ws1 , ws2 , . . . , wsn}, each wsj coming

from node Nj . According to our definition of keyword mutex,
there exist two keywords wsi and wsj whose distance is larger
than δ∗. Two tuples Tu and Tv in candidate T , associated with
wsi and wsj respectively, can be found to be located within
the two corresponding keyword MBRs with distance larger
than δ∗. Therefore, diam(T) > δ∗ and the node set can be
pruned.

Lemma 4.4: Keyword mutex is a monotone property.
Proof: Suppose N is keyword mutex and N ′ is

its superset with t nodes. For any t different keywords
{ws1 , ws2 , . . . , wst} where wsi is contributed by node Ni,
we can find two keywords wsj

and wsk
from nodes Nj and

Nk(Nj , Nk ∈ N), such that dist(wsj , wsk
) > δ∗. Hence N ′

is also keyword mutex.

Algorithm 3 — SearchInOneNode: Searching in One Node
Input: A node N in bR*-tree
Output: A list of new NodeSets

1. L1 = all the child nodes in N
2. for i from 2 to m do
3. for each NodeSet C1 ∈ Li−1 do
4. for each NodeSet C2 ∈ Li−1 do
5. if C1 and C2 share the first i− 1 nodes then
6. C = NodeSet(C1, C2)
7. if C has subset not appear in Li−1 then
8. continue
9. if C is not distance mutex then

10. if C is not keyword mutex then
11. Li = Li ∪ C
12. for each NodeSet S ∈ ∪m

i=1Li do
13. if S contains all the query keywords then
14. add S to cList
15. return cList

The method for searching in one node is shown in Algo-
rithm 3. First (in line 1), we put all the child nodes in the
bottom level of the lattice. The lattice is built level by level
with increasing number of child nodes in the NodeSet. In
level i, each NodeSet contains exactly i child nodes. For a
query with m keywords, we only need to check NodeSet
with at most m nodes, leading to a lattice with at most m
levels. Lines 5–6 show two sets C1 and C2 in level i − 1
being joined, they must have i − 2 nodes in common. Lines
7–14 check if any of its subsets in level i−1 is pruned due to
distance mutex or keyword mutex. If all the subsets are legal,
we check whether this new candidate itself is distance mutex
or keyword mutex for pruning. If it is not pruned, we add it
to level i. In lines 19–22, after all the candidates have been
generated, we check each one to see if it contains all the query
keywords. Those missing any keywords are eliminated. We do
not check this constraint while building the lattice because if
a node does not contain all the query keywords, it can still
combine with other nodes to cover the missing keywords. As

long as it is neither distance mutex nor keyword mutex, we
keep it in the lattice.

B. Searching In Multiple Nodes

Given a node set N = {N1, N2, . . . , Nn}, the search in N
needs to check all the possible combinations of child nodes
from each Ni to explore the search space in the lower level.
The number of child nodes in the newly derived sets should
not exceed m. For example, given a node set {A,B, C} where
A = {A1, A2}, B = {B1, B2} and C = {C1}. Ai, Bi and
Ci are child nodes in A,B, and C, respectively. Assume all
the pair distances of child nodes are less than δ∗. All the
candidate combinations of child nodes are shown in Fig. 4.
Every new node set contains child nodes from all the three
nodes. If m = 3, the candidates are those in the first column.
Each query keyword is contributed by exactly one of the child
nodes. If m = 5, the search space includes all the node sets
listed in the figure.

3 nodes 4 nodes 5 nodes
A1B1C1 A1A2B1C1 A1A2B1B2C1

A1B2C1 A1A2B2C1

A2B1C1 A1B1B2C1

A2B2C1 A2B1B2C1

Fig. 4. Possible sets of {A1, A2}, {B1, B2}, and {C1}

The a priori algorithm can still be applied to this situation.
Fig. 5 shows the lattice to generate candidates for the above
node set {A,B, C}. The sets with child nodes from all three
nodes are marked with bold lines. The nonbold nodes cannot
be candidates. Given m query keywords, only the bottom m
levels of the lattice is built. The properties of distance mutex
and keyword mutex are also applicable during generation of
the new candidates. The algorithm returns those candidates in
the bold nodes, which are neither distance mutex nor keyword
mutex. However, this approach creates many unnecessary can-
didates and incurs additional cost in checking these candidates.
For example, if m = 3, we know from Fig. 4 that there are
only four candidate sets that need to be generated. But the a
priori algorithm will create a whole level for candidates with
three nodes, thereby resulting in ten candidates.

Alternatively, we propose a new algorithm which does
not generate any unnecessary candidates, but still keeps the
advantages of the a priori algorithm. For a node set N =
{N1, N2, . . . , Nn}, we reuse the n lists of candidate node sets
generated by applying the a priori algorithm to search in each
node. The ith list contains the sets of child nodes in Ni. The
sets are ordered from lower levels in the lattice to higher levels.
For example, if Ni has three child nodes {C1, C2, C3}, the sets
of child nodes in the corresponding list may be ordered in
the following way: {C1}, {C2}, . . . , {C1, C2, C3}. An initial
filtering is done on Ni’s list by only considering the child
nodes that are close to all the other Nj . If Ck in Ni is far away
from any other node Nj , all the sets in the ith list containing
Ck is pruned.

A A C1 2 1A A B 1 2 1 B B C1 122 2 1A B C A B C2 111 2A A B 2

......

1 2 1 2 1

A A A B B B B C

A A B B C

1 2 1 1 2 2 1B C1 1A B1 1 2

A A B B C1 2 1 12

1A A B C2 11 1 2 A B B C1 1 12 2 1 11 2 2A A B B1
A A B C2 1 A B B C2

Fig. 5. a priori algorithm applied to search in multiple nodes

To generate new candidates, we enumerate all the possible
combinations of child node subsets from these n lists. Fig. 6 il-
lustrates our approach. At the bottom level, we have three lists
of child node subsets from nodes A, B, and C. Combinations
of the subsets from these three lists are enumerated to retrieve
new candidate sets. As shown in Fig. 6, all the nine candidate
sets are directly retrieved from the subsets in the bottom level.
In this manner, our algorithm does not generate unnecessary
candidates. Moreover, the enumeration process is ordered, as
shown by the dashed arrows. A new candidate is enumerated
only after all of its subsets have been generated. For example,
A1A2B1C1 must be generated after A1B1C1 and A2B1C1

because the subsets of child nodes in each list are ordered
by the node number. As a consequence, we can efficiently
generate the candidates and still preserve the advantages of
the a priori algorithm:

1) Each candidate item is generated once. For example,
given a candidate item {A1A2B1C1}, we know that it
is combined by {A1, A2}, {B1} and {C1}. No duplicate
candidates will appear in the results.

2) For a k-item, we only need to check its (k − 1)-item
subsets. Since the candidates in each Ni generated by
the a priori algorithm are ordered, all its subsets must
have been examined when we are processing the current
k-item.

A 1 A 2 A A 1 2 B1 B B 1 2 C1B2

1 1 1 1 2 1A B B C A B B C

1 1

1 1

A A B B C1 2 2 1

2A B C12 11 1A B C1 A B C2 A B C1 2

2 A A B C2 1 1

1

A A B C1 2 2 2

Fig. 6. Extended a priori algorithm

Algorithm 4 shows how a set of n nodes {N1, . . . , Nn}
is explored. First, n lists of ordered subsets of child nodes
are obtained. Then Algorithm 5 is invoked to enumerate all

the candidate sets. It is implemented in a recursive manner.
Each time an enumerated candidate is generated, we check if
it contains all the query keywords to decide whether to prune
it or to put it in the candidate list(see Lines 1–4). Lines 5–8
indicate the beginning of the recursion process. It starts from
each child node subset in list Ln and makes it as our current
partial node set curSet. curSet recursively combines with
other child node subsets until it finally contains child nodes
from {N1, . . . , Nn}. In each recursion, we iterate the child
node sets in list Li to combine with curSet and generate a
new set denoted as newSet. Lines 12–13 show that if newSet
already has more than m child nodes, we stop the iteration
because the list is ordered. The child node subsets which are
not checked could only have more child nodes and will result
in even more nodes in newSet. Otherwise, we check if any
subsets of newSet have been pruned due to distance mutex or
keyword mutex. If not, we go on checking whether this new
NodeSet itself is distance mutex or keyword mutex. All these
checking processes are shown in Lines 14–17. If newSet is
not pruned, we set it as curSet and continue the recursion.
Finally, the algorithm returns all the candidates that were not
pruned away. In the following subsections, we propose two
novel methods to efficiently check whether a set is distance
mutex or keyword mutex.

Algorithm 4 — SearchInMultiNodes: Search In Multiple
Nodes
Input: A set of {N1, . . . , Nn} in bR*-tree
Output: A list of new NodeSets

1. for each node Ni do
2. Li = SearchInOneNode(Ni)
3. perform an initial filtering on Li

4. return Enumerate(L1, . . . , Ln, n, NULL)

C. Pruning via Distance Mutex

The diameter of a candidate of m tuples matching the query
keywords is determined by the maximum distance between
any two tuples. The candidate can be discarded if we found
two tuples in it with distance larger than δ∗. Similarly, as we
are traversing down the tree, we can eliminate the node sets in
which the minimum distance between two nodes is larger than
δ∗. A candidate which is not distance mutex requires each pair
of nodes to be close. It takes O(n2) time to check the distance
between all pairs of a set of n nodes.

To facilitate more efficient checking, we introduce a concept
called active MBR. Fig. 7(a) illustrates this concept with a
set of two nodes {N1, N2}. First, we enlarge these two MBRs
by a distance of δ∗, and their intersection is marked by the
shaded area M in the figure. We can restrict our search area
within area M because any tuple outside M cannot possibly
combine with tuples of the other node to achieve a smaller
diameter than δ∗. In this example, the child node C1 does not
participate because it does not intersect with M . The objects
in C2 but outside M need not be taken into account as well.
We call M the active MBR of N1 and N2 because a candidate

Algorithm 5 — Enumerate: Enumerate All Possible Can-
didates
Input: n lists of sets of child nodes L1, . . . , Ln, count and

curSet
Output: A list of new NodeSets

1. if count = 0 then
2. if curSet contains all the query keywords then
3. push curSet into the candidate list cList
4. return
5. if count = n then
6. for each NodeSet S ∈ Ln do
7. curSet = S
8. Enumerate(L1, . . . , Ln, count−1, curSet)
9. else

10. for each NodeSet S ∈ Ln do
11. newSet = NodeSet(curSet, S)
12. if newSet contains more than m nodes then
13. break
14. if newSet has any illegal subset candidate then
15. continue
16. if newSet is not distance mutex then
17. if newSet is not keyword mutex then
18. Enumerate(L1, . . . , Ln, count−1, newSet)
19. return cList

of m tuples can only reside within the area covered by M .
However, we should also check for false intersections, which is
shown in Fig. 7(b). The intersection actually lies outside both
N1 and N2. If this happens, the set does not have an active
MBR and becomes distance mutex. Hence, we can prune it
away.

N1

N2

C1

C2
δ∗

M

(a) True intersection

N1

N2

δ∗M

(b) False intersection
Fig. 7. Example of active MBR

When a third node N3 combines with N1 and N2, we only
need to check whether N3 intersects with M , without having
to calculate the distance from N3 to N2 and N1. Any tuple
outside M is either far away from N1 or far away from N2.
Therefore, if N3 does not intersect with M , we can conclude
that the set {N1, N2, N3} is distance mutex. Otherwise, we
update the active MBR for this new set to be its intersection
with the enlarged N3. This property greatly facilitates the
checking of distance mutex. When we are checking a new
candidate “joined” by two sets C1 and C2 in the a priori
algorithm, we only need to check whether the active MBR
of C1 intersects with that of C2. Moreover, as more nodes
participate in the set, the active MBR becomes smaller and

smaller, and is likely to be pruned. This helps to reduce the
cost of search by avoiding the enumeration of large number
of nodes.

D. Pruning via Keyword Mutex

A set of n nodes is said to be keyword mutex if for any
n different keywords, each from one node, we can always
find two keywords whose distance is larger than δ∗. We use
the keyword MBR stored in each node to check for keyword
mutex. We present a simple example by considering a set of
two nodes {A,B}. Given four query keywords, we construct
a 4 × 4 matrix M(A,B) = (m)ij to describe the keyword
relationship between A and B: mij indicates whether tuples
with keyword wi in A can be combined with tuples with
keyword wj in B. If the minimum distance between these two
keyword MBRs is smaller than δ∗, then mij = 1; otherwise,
mij = 0. If wi does not appear in A, or wj does not appear in
B, then also mij = 0. Moreover, mii = 0 since each keyword
in the mCK result can only be contributed by one node. If
M(A, B) is the zero matrix, we can conclude that the set is
keyword mutex. For any two different keywords wi and wj

from A and B, its distance must be larger than δ∗.
Generally, for a set of n ≥ 3 nodes {N1, N2, . . . , Nn}, we

define M(N1, . . . , Nn) recursively as follows: for n ≥ 3,

M(N1, . . . , Nn) =(M(N1, N2)×M(N2, . . . , Nn))⊗
(M(N1, . . . , Nn−1)×M(Nn−1, Nn))⊗
M(N1, Nn),

where × is the ordinary matrix multiplication, and ⊗ is
elementwise multiplication. The base case when n = 2 has
already been defined in the paragraph above.

As the lemma below shows, we need only check whether
M(N1, . . . , Nn) = 0 to determine if {N1, . . . , Nn} is keyword
mutex.

Lemma 4.5: If M(N1, . . . , Nn) = 0, then the set of nodes
{N1, N2, . . . , Nn} is keyword mutex.

Proof: Suppose M(N1, . . . , Nn) = 0 but {N1, . . . , Nn}
is not keyword mutex. Then there must exist n different
keywords k1, . . . , kn from nodes N1, . . . , Nn, respectively,
such that all pairs of keywords are at distance less than δ∗.
We have M(Ni, Nj)kikj = 1 for 1 ≤ i < j ≤ n. First, we
prove

M(Nu, . . . , Nv)kukv
≥

∏

u≤i<j≤v

M(Ni, Nj)kikj
(1)

by induction on v − u
When v − u = 1, (1) clearly holds. For v − u > 1, consider
the inequalities:

M(Nu, . . . , Nv−1)kukv−1
≥

∏

u≤i<j≤v−1

M(Ni, Nj)kikj

and

M(Nu+1, . . . , Nv)ku+1kv
≥

∏

u+1≤i<j≤v

M(Ni, Nj)kikj
,

which hold by the induction hypothesis. Since the matrix
entries are all nonnegative, we have

M(Nu, . . . , Nv)kukv

≥

M(Nu, Nu+1)kuku+1

·

 ∏

u+1≤i<j≤v

M(Ni, Nj)kikj

 ·

 ∏

u≤i<j≤v−1

M(Ni, Nj)kikj

 ·M(Nv−1Nv)kv−1kv

·M(Nu, Nv)kukv

≥
∏

u≤i<j≤v−1

M(Ni, Nj)kikj
.

Therefore,

M(N1, . . . , Nn)k1kn
≥

∏

1≤i<j≤n

M(Ni, Nj)kikj
= 1,

which is nonzero. This is a contradiction.

The advantage of the matrix implementation is that it can
be naturally integrated into our a priori-based search strategy.
When dealing with set {N1, . . . , Nn}, the matrices involved in
the above formula will already have materialized in most cases.
Therefore, checking for keyword mutex requires only two
matrix multiplications and two matrix elementwise products,
which can be achieved at low cost.

V. EMPIRICAL STUDY

This section provides an extensive performance study of
our query strategy using one bR*-tree to integrate all the
spatial and keyword information. We use the MWSJ approach
[19] as reference. If there are N keywords existing in the
spatial database, N separate R*-trees are built. Given m query
keywords, we pick m corresponding R*-trees T1, T2, . . . , Tm.
The trees are ordered by the number of objects in the tree.
The search process starts from the smallest R*-tree T1 with
the fewest objects. For any leaf MBR M1 in T1, we search in
T2 the leaf MBRs that are close enough to M1. The idea of
active MBR can be applied to speed up the search. In T3, the
search space has been shrunk to the active MBR of M1 and
M2. Only the MBRs intersecting with this active MBR will be
taken into account. This process lasts until all the leaf MBRs
near M1 in the other R*-trees have been explored. Then, we
move to other leaf MBRs in T1 until all the combinations of
objects in each R*-tree have been explored completely. We
found that such an implementation outperforms the traditional
top-down strategy used in answering closest-pair queries [8].

We implemented both algorithms in C++ using
its standard template library. The bR*-tree is
implemented by extending the R*-tree code from
http://research.att.com/∼marioh/spatialindex/. All the
experiments are conducted on a server with Intel Xeon
2.6GHz CPU, 8GB memory, running Ubuntu 7.10. Both
synthetic and real life data sets are used for performance
testing. We use average response time (ART) as our

performance metric: ART = (1/NQ)
∑NQ

i=1(Tf − Ti), where
Ti is the time of query issuing, Tf is time of query completion,
and NQ is the total number of times the given mCK query
was issued. Note that ART is equivalent to the elapsed time
including disk I/O and CPU-time.

A. Experiments on Synthetic Data Sets

The synthetic data generator generates spatial data points
in a random manner. Each point is randomly distributed in d-
dimensional space [0, 1]d and assigned with a fixed number
of random keywords. We fix the number of keywords on
each data point so that it is more convenient to analyze the
performance when a data point is associated with multiple
keywords. In our implementation of the bR*-tree, the page
size is set as 4K bytes and the maximum number of entries
in internal nodes is set at 30. However, the number of entries
in leaf nodes is set to be the same with the total number of
keywords to allow flexibility in handling different number of
keywords. In the implementation of MWSJ, we also use a
page size of 4K and set the maximum number of entries in
all nodes at 30. The bR*-tree takes more time than MWSJ
in building the index for two reasons. First, in MWSJ, each
tuple is inserted into a small R*-tree with the same keyword
as the tuple. In bR*-tree, each tuple is inserted into the whole
tree. This results in much higher cost for each insertion,
including choosing a leaf, invoking more split and AdjustTree
operations. Second, bR*-tree maintains additional information,
such as keywords and keyword MBR, which need to be
updated during insertions.

In the following experiments, we adjust four parameters to
generate different data sets. The parameters are
• TK, the total number of keywords in the database;
• DS, the data size;
• DM , the dimension;
• KD, the number of keywords associated with each data.

In each experiment, we compare the performance of bR*-tree
with MWSJ on different synthetic data sets using ART as the
performance metric.

1) Effect of TK: We ran the first experiment on four data
sets to test scalability in terms of the number m of query
keywords. We generated the data sets with total number of
keywords 50, 100, 200 and 400, respectively. Each data is
two-dimensional and associated with one keyword. In each
data set, there are 3,000 data points associated with the same
keyword.

Fig. 8 shows the ART of two algorithms with respect to
the number of query keywords. When m is small, we can
see that MWSJ outperforms the bR*-tree and this advantage
becomes clearer as the total number of keywords increases. It
only accesses m of the total N R*-trees that occupy a small
portion of the whole data set. The query can be processed
relatively quickly. However, our search process needs to access
all the nodes in the entire bR*-tree because the data with
different keywords are randomly distributed in the leaf nodes.
This results in relatively poor performance as compared to that
of MWSJ.

As m increases to large values, the performance of MWSJ
starts to degrade dramatically. The search space is expanded
exponentially and MWSJ incurs high disk I/O cost for identify-
ing the candidate windows since it does not inherently support
effective summarization of keyword locations. However, our
algorithm demonstrates remarkable scalability as m increases3.
The bR*-tree summarizes the keywords and their locations
in each node, and this plays an important role in effectively
pruning the search space. The a priori-based search strategy
also restricts the candidate search space from growing too
quickly.

Note that the overall performance trend of MWSJ across the
four data sets is similar. The reason is that the data sets have
the same number of data points associated with each keyword
and the size of R*-tree is the same. However, the performance
of bR*-tree degrades slightly with the increase of data size and
the total number of keywords. It integrates all the data points
in one tree, leading to higher access cost.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) 50 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) 100 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(c) 200 keywords in total

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(d) 400 keywords in total
Fig. 8. Performance on increasing TK

2) Effect of DS: In the above experiment, the number
of data points associated with each keyword is fixed. In this
experiment, we fix the total number of keywords at 100 and
increase the data size from 100,000 to 3,000,000 to examine
the performance of bR*-tree and MWSJ.

Fig. 9 shows how ART increases with the data size in
answering the same number of query keywords. When m is
small, e.g. m = 3 and m = 5, both algorithms demonstrate
similar rate of increase in ART. The spatial index and the
pruning using active MBR did take effect to suppress the
expansion of search space caused by the increase of data size.
However, when m becomes large, e.g. m = 7 and m = 8, a

3Note that this make our algorithm particularly useful for purpose like
geotagging of documents where a mCK query with large number of keywords
are issued by an automatic search algorithm. In addition, for systems in which
the number of keywords in a submitted query can varies greatly, our approach
will provide very stable performance compared to MWSJ.

small amount of increase in the size of the R*-tree in MWSJ
can lead to a remarkable increase in the search space. We
can observe from Fig. 9 that MWSJ becomes sensitive to the
increase of data size and the performance declines dramatically
especially when the data size is large. In contrast, bR*-tree
scales smoothly in a stable manner, thereby validating the
effectiveness of our search strategy.

 0

 2

 4

 6

 8

 10

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(a) m=3

 0

 5

 10

 15

 20

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(b) m=5

 0

 10

 20

 30

 40

 50

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(c) m=7

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0.1 0.5 1 1.5 2 2.5 3

A
R

T
(s

ec
on

ds
)

data size(106)

bR*tree
MWSJ

(d) m=8
Fig. 9. Performance on increasing DS

3) Effect of KD: In many applications, a spatial object
is associated with a set of keywords rather than only one
keyword. Under a fixed data size, if we increase the number
of keywords associated with each data point, the search space
increases as well. For each keyword, there are more data points
associated with it, and hence, a larger R*-tree is needed for
indexing in the case of MWSJ. However, the size of bR*-tree
is not affected because the bitmap in the node only gets more
bits set, but still incurs a fixed storage cost.

In this experiment, we generate 1,000,000 two-dimensional
data points. There are a total of 100 keywords in the data set.
We increase the value of KD from one to six. The results,
depicted in Fig. 10, show that bR*-tree always demonstrates
good stability when KD increases. However, MWSJ suffers
from serious performance degradation as KD increases be-
cause it does not inherently support effective summarization
of keyword locations. Note that when m = 3, the performance
of MWSJ has a sudden improvement when KD = 3, i.e. each
object is associated with three keywords. An object with all
three query keywords is very likely to be found in the data
set giving δ∗ = 0. This greatly facilitates the pruning in the
unexplored search space. When m = 5, this improvement is
not shown clearly because the probability of finding an object
with all the query keywords in the early search stage is low.

4) Effect of DM: In the above experiments, we only handle
two-dimensional data. In some applications, the data may
have multiple attributes and are mapped to higher-dimensional
space. For example, a notebook may be mapped to a five-

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(a) m = 3

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(b) m = 5

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(c) m = 7

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

A
R

T
(s

ec
on

ds
)

#keywords per object

bR*tree
MWSJ

(d) m = 8
Fig. 10. Performance on increasing KD

dimensional value arising from attributes such as CPU, mem-
ory, hard disk, weight and price. The closest notebooks from
different manufacturers may be serious competitors in the
market. Therefore, it is meaningful to test how the algorithms
perform on higher dimensional spaces.

We test the performance on three- and four-dimensional data
with a small data size of 50,000. There are 100 keywords in
total and each data is associated with one keyword. The ART
results are shown in Fig. 11. It is clear that MWSJ performs
poorly on higher dimensional data because its pruning is based
on only the distance constraint. Our bR*-tree takes advantage
of both distance and keyword constraints of the mCK query
for pruning and shows much better scalability. As m increases,
the performance of MWSJ rapidly declines and can be orders
of magnitude worse than bR*-tree.

 0

 10

 20

 30

 40

 50

 60

 70

2 3 4 5 6 7 8 9

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) dimension = 3

 0

 50

 100

 150

 200

2 3 4 5 6

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) dimension = 4
Fig. 11. Performance on increasing DM

B. Experiments on Real Data Set

We use TIGER (Topologically Integrated Geographic
Encoding and Referencing system) (downloadable from
http://www.census.gov/geo/www/tiger) as our real data set. The
database consists of numerous complicated geographic and
cartographic information of the entire United States. Since
we are concerned with point data in our mCK query, we
simply extract the landmark data, which can be custodial

facility (hospitals, orphanages, federal penitentiaries, etc.),
educational, cultural or religious institutions, etc. Each point
in the data set is associated with a census feature class code
to identify its noticeable characteristic. For example, D85 is
the class code for keyword Park.

D1 4 D28 206 D43 1956 D71 75
D10 3 D29 1 D44 6092 D73 1
D20 23 D31 266 D51 364 D81 177
D21 872 D32 3 D53 2 D82 3291
D22 2 D33 34 D61 929 D83 21
D23 167 D35 6 D62 21 D84 1
D24 2 D36 17 D63 21 D85 295
D25 20 D37 5 D64 21 D90 78
D26 26 D41 2 D65 120
D27 44 D42 2 D66 9

Fig. 12. Keyword distribution on Texas data set

After cleaning and format transformation on the raw data,
we extracted two data sets, Texas and California, with 15,179
and 13,863 data points, respectively. Both data sets have
dozens of keywords. The distribution for each keyword is
highly skewed. Fig. 12 shows the keyword distribution in
Texas. Some landmark may get thousands of points while
others may have only one data point. For example, D43
represents educational institutions, including academy, school,
college and university. These institutions are widely distributed
and are well recorded in the raw data set. However, landmarks
like water tower (D71) are a rarity and only one such landmark
appears in our extracted data set.

In our experiments, we ignore infrequent keywords and
submit queries with the most frequent keywords. Fig. 13 shows
the ART with respect to the number of query keywords in
both data sets. We can see that bR*-tree outperforms MWSJ
even when m is small. The reason is that the number data
associated with each keyword is highly skewed. When a query
has frequent keywords, MWSJ loses the advantage of having to
access only a small portion of the data set. When m increases
to large values, its performance still degrades dramatically.
Our bR*-tree not only answers the frequent keywords query
in a shorter time, but also exhibits good scalability. Therefore,
the bR*-tree performs significantly better than MWSJ in
answering queries with frequent keywords.

 0.01

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(a) Texas

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7

A
R

T
(s

ec
on

ds
)

m

bR*tree
MWSJ

(b) California
Fig. 13. Performance on two real data sets

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we took a step towards searching by docu-
ment by addressing the mCK query. We use the bR*-tree to

effectively summarize keyword locations, thereby facilitating
pruning. We proposed effective a priori-based search strategies
for mCK query processing. Two monotone constraints and
their efficient implementations are also discussed. Our perfor-
mance study on both synthetic and real data sets demonstrates
that the proposed bR*-tree answers mCK queries efficiently
within relatively short query response time. Furthermore, it
demonstrates remarkable scalability in terms of the number
of query keywords and significantly outperforms the existing
MWSJ approach when m is large.

While handling large number of keywords is an important
step towards searching by document, there are still much room
for future research.

First, we planned to investigate the use of our method for
graph based keyword search [6], [2], [26], [24] by embedding
a graph into a multi-dimensional space such that path distance
between nodes in the graph are still approximately captured.
This can be done by applying the graph mapping method that
was adopted in [25]. With such a mapping, keywords that
are close on the graph will also be near to each other in the
multi-dimensional space and thus our method can be use to
process graph-based keyword search as well. Such an approach
will however require the processing of spatial data with high
dimensionality and provide new technical challenges.

Second, we plan to scale up our method to the total number
of keywords by investigating various alternatives. A possible
solution is to use a single bR*-tree for most frequent keywords
and multiple R*-trees for infrequent keywords. Alternatively,
multiple bR*-tree with one for each group of highly correlated
keywords within queries is also feasible.

Finally, given that the number of query keywords from a
search by document operation might be large, it might not
be possible to match all the keywords in a search result. A
look at partial or fuzzy keyword search might be necessary to
overcome this problem.

As a first piece of work on this topic, we believe there are
possibly many other directions for future research as well.

ACKNOWLEDGMENT

The research of Dongxiang Zhang and Anthony K. H. Tung
is supported in part by a grant from the Singapore National
Research Foundation under the project entitled “Structure-
Aware Data and Query Modeling for Effective Information
Retrieval over Heterogeneous Data Sources in Co-Space”.

The research of Y. M. Chee is supported in part by the
National Research Foundation of Singapore under Research
Grant NRF-CRP2-2007-03, and by the Nanyang Technological
University under Research Grant M58110040.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499,
1994.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In Proceedings of
ICDE, 2002.

[3] W. Aref, D. Barbara, S. Johnson, and S. Mehrotra. Efficient processing
of proximity queries for large databases. Proc. ICDE, pages 147–154,
1995.

[4] W. Aref and H. Samet. Efficient processing of window queries in the
pyramid data structure. Proc. PODS, pages 265–272, 1990.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
an efficient and robust access method for points and rectangles. Proc.
SIGMOD, pages 322–331, 1990.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In Proceed-
ings of ICDE, 2002.

[7] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of spatial
joins using R-trees. Proc. SIGMOD, pages 237–246, 1993.

[8] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos.
Closest pair queries in spatial databases. Proc. SIGMOD, pages 189–
200, 2000.

[9] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In Proc. ICDE International Conference on Data Engineer-
ing, 2008.

[10] A. Guttman. R-trees: A dynamic index structure for spatial searching.
Proc. SIGMOD, pages 47–57, 1984.

[11] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-
keyword (sk) queries in geographic information retrieval (gir) systems.
In SSDBM, page 16, 2007.

[12] G. Hjaltason and H. Samet. Incremental distance join algorithms for
spatial databases. Proc. SIGMOD, pages 237–248, 1998.

[13] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-
dimensional indexing for strings. Proc. SIGMOD, pages 403–414, 2000.

[14] K. Koperski and J. Han. Discovery of spatial association rules in
geographic information databases. Proc. SSD, pages 47–66, 1995.

[15] N. Mamoulis and D. Papadias. Multiway spatial joins. Proc. TODS,
26(4):424–475, 2001.

[16] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis
of range query performance in spatial data structures. In PODS, pages
214–221, New York, NY, USA, 1993. ACM.

[17] D. Papadias and D. Arkoumanis. Approximate processing of multiway
spatial joins in very large databases. Proc. EDBT, pages 179–196, 2002.

[18] D. Papadias, N. Mamoulis, and B. Delis. Algorithms for querying by
spatial structure. Proc. VLDB, pages 546–557, 1998.

[19] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing and opti-
mization of multiway spatial joins using R-trees. Proc. PODS, pages
44–55, 1999.

[20] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor
queries. Proc. ICDE, pages 301–312, 2004.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
Proc. SIGMOD, pages 71–79, 1995.

[22] S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A
summary of results. Proc. SSTD, pages 236–256, 2001.

[23] H. Shin, B. Moon, and S. Lee. Adaptive multi-stage distance join
processing. Proc. SIGMOD, pages 343–354, 2000.

[24] Q. Vu, B. Ooi, D. Papadias, and A. Tung. A graph method for keyword-
based selection of the top-K databases. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 915–
926. ACM New York, NY, USA, 2008.

[25] N. Wang, S. Parthasarathy, K. Tan, and A. Tung. CSV: visualizing and
mining cohesive subgraphs. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 445–458. ACM
New York, NY, USA, 2008.

[26] B. Yu, G. Li, K. Sollins, and A. K. H. Tung. Effective keyword-based
selection of relational databases. In Proceedings of SIGMOD, 2007.

[27] X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou. Fast mining of
spatial collocations. Proc. KDD, pages 384–393, 2004.

