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H-mine はスパースなデータセットに対して高性能と知られているメモリベースマイニングアルゴリズムで

あるが、動的 H-struct リンク調整という H-mine 特有の処理は並列化を困難にする。本論文では H-struct リ

ンク調整を一切必要としない改善されたアルゴリズムを提案する。提案アルゴリズムは、オリジナルバージ

ョンと匹敵する性能を持ちながら、並列処理に容易に拡張することが可能となる。 
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H-mine is a frequent pattern mining algorithm that takes advantage of a hyper-linked H-struct data structure, runs fast 

in memory-based setting, and is known to have high performance in a sparse data set. However, H-mine's inherent 

necessity to dynamically adjust H-struct links in the middle of mining process makes it difficult to do any 

parallelization effort on the algorithm. In this study, we propose a revised algorithm of H-mine that does not need any 

adjustment of H-struct links by modifying link structure and reversing the order of processing data. The revised 

algorithm has comparable performance with the original version and can be easily extended to use in parallel 

environment. 

 

1. Introduction 
 
One of the most researched field in the data mining 

area is frequent pattern mining algorithm due to 
difficulties of doing it efficiently. Apriori algorithms 
[1] that can significantly reduce mining time by 
generating pattern candidates had successfully brought 

many researchers attention. Then, FP-growth 
algorithm [2] for dense data set and H-mine algorithm 
[3] for sparse data set that scans data set only twice by 
utilizing in-memory data structures had changed the 
main stream of frequent pattern mining algorithm from 
Apriori-like to pattern-growth algorithm. 

Today, parallel computing technology provides 
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many possibilities to do frequent pattern mining more 
efficiently by combining many CPUs power to work 
together. For example, there is already a parallel 
version [4] of FP-growth algorithm that is known to 
work efficiently for dense data set. However, H-mine 
algorithm that is known to work efficiently on sparse 
data set has no parallel version up to now due to its 
inherent problem, i.e. H-struct link adjustment during 
the middle of mining process. 

In this research we have developed a modified 
version of H-mine that can be easily extended to its 
parallel version. First we modify H-struct link 
structure and reverse the order to process data set, and 
we called the new algorithm “Hmine-rev” (reversed 
H-mine). Next we apply parallelization techniques to 
Hmine-rev algorithm using MPICH [5] as 
parallelization interface, and performed some 
experiments on artificial data set to test the 
performance of new algorithm and its parallel version. 

In section 2 related works on the topic will be 
described briefly. Section 3 and 4 will be dedicated to 
explain H-mine algorithm and its difficulties to do 
parallelization. In section 5 and 6 we will explain 
Hmine-rev algorithm and its parallelization effort. 
Section 7 shows the experimental results and section 8 
describes the conclusions and future works. 
 
2. Related Works 
 

In 2001 J. Pei et. al [3] proposed an algorithm to 
mine frequent patterns efficiently on a sparse data set. 
This algorithm utilizes H-struct data structure that has 
very limited and predictable space overhead, and runs 
very fast in memory setting. We describe H-mine in 
detail in chapter 3 in order to understand our proposed 
algorithm that modifies the algorithm. 

P. Iko et. al. in 2003 [4] proposed a parallel version 
of FP-growth algorithm that is known to work very 
efficient on a dense data set. The parallel algorithm 
makes use the property in FP-growth that is processing 
of a conditional pattern base is independent from other 
conditional pattern base. Utilizing this property the 
algorithm dynamically assigns which node should 
process which conditional pattern base in parallel. 

 
3. H-mine Algorithm 
 

Table 1. Data set, fitems: a,c,d,e,g. 

Trans ID Items Fitem projection 
100 c,d,e,f,g,i c,d,e,g 
200 a,c,d,e,m a,c,d,e 
300 a,b,d,e,g,k a,d,e,g 
400 a,c,d,h a,c,d 

For example, we have a data set as shown in Table 1 
below, and want to find all frequent patterns that 
satisfies minimum support of 2. H-mine algorithm to 
find frequent patterns can be divided in two phases, 
building data structures that involved two times 
scanning of data set and mining the in-memory data 
structures built. 
 
3.1. Building the data structures 
 

Figure 1. H-header with H-struct (left) and 
Ha-header (right) 

1. Scan the data set once for all transactions and 
items to find all frequent items (fitem) and store it in 
an array of data structure called H-header (Figure 1 
left) ordered alphabetically by item. H-header has 
three data slots, fitem, its counts and a link to H-struct. 
Fitems found are a,c,d,e,g. At this stage we have 
already found five frequent patterns, those are fitems 



 3 

itself in H-header. 
2. Scan the data set once more to project all 
transactions into fitems and store it in arrays of data 
structure called H-struct (Figure 1 left). H-struct has 
two data slots, item and a link to next H-struct. In this 
stage, the initial H-header and H-struct links (level 1 
queues) that connect all the same items in the first 
position, are built. The rest of mining is then 
performed on these in-memory data structures. 
 
3.2. Mining the data structures 
 

Mining process in H-mine must be done in 
alphabetical order of frequent items as stated in 
H-header: a-c-d-e-g. For example, first we will mine 
all patterns containing ‘a’, then all patterns containing 
‘c’ (without ‘a’), and so on. 

To find all patterns containing ‘a’: 
1. From H-header follow level 1 a-queue (the link of 
item a), find all frequent items appearing after ‘a’ and 
store it in conditional H-header called Ha-header 
(Figure 1 right). In the same time, build the next links 
in H-struct (level 2 queues), i.e. ac-queue and 
ad-queue that connect all the same items following ‘a’. 
Here we found another three frequent patterns, ‘ac’, 
‘ad’, ‘ae’ as stated in Ha-header. 
2. Similarly, from Ha-header follow level 2 
ac-queue and find all frequent items appearing after ‘c’ 
and store it in conditional H-header called Hac-header 
(Figure 2 left). In the same time, build the next links 
in H-struct (level 3 queues), i.e. acd-queue that 
connects all the same items following ‘ac’. Here we 
found another frequent pattern, ‘acd’ as stated in 
Hac-header. 
3. Repeat this process recursively until there is no 
more level of queue can be built, and then return to the 
previous level of H-header and continue to mine the 
next queue for all queues. 
4. When the algorithm return to the previous level of 
H-header it needs to adjust some links in H-struct that 
has been built so far. For example, because there is no 
more level of queue can be built after ‘acd’, algorithm 
will return to the previous level of H-header (e.g. 
Ha-header) and continue to mine the next queue, 

ad-queue. Before continuing mining process, the 
algorithm needs to insert acd-queue into ad-queue to 
get the full ad-queue in H-struct (Figure 2 right). 

Figure 2. Hac-header (left) and  
Adjusted ad-queue (right) 

 
4. H-mine Parallelization Problem 
 

When trying to parallel H-mine one will soon 
realizes that there is a problem inherent to the 
algorithm itself which greatly increases the difficulties 
of parallelization efforts. The problem is H-struct link 
adjustment that is performed dynamically in the 
middle of mining process, i.e. when returning to the 
previous level of H-header after finished mining a 
queue. Therefore, the algorithm cannot proceed to 
mine the next queue before finishing the current queue 
to get information to adjust the links. 

Link adjustment is absolutely required in the 
algorithm in order to mine all frequent patterns from 
data set completely, else the mined patterns will be 
incomplete. Thus the mining process in each queue of 
H-mine is dependent on its previous queue. This 
property makes parallelization is impossible unless we 
can take away this queue dependency from the 
algorithm. 
 
5. Hmine-rev Algorithm 
 

Hmine-rev differs from H-mine algorithm in two 
aspects: link structure and data processing order. 
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Hmine-rev’s link structure is designed in such a way 
that it does not need any kinds of link adjustment. And 
the data is processed in the reversed way compared to 
that of H-mine algorithm. This two modifications has 
successfully removed any queue dependencies in the 
algorithm, and thus made it possible to do 
parallelization. 

The algorithm of Hmine-rev in general is similar to 
that of H-mine, the complexity and performance is 
also about the same order. Again we will use data set 
in Table 1 above for example, and find all frequent 
patterns that satisfies minimum support of 2. Similar 
to H-mine, the algorithm of Hmine-rev can be divided 
in two phases, building data structures that involved 
two times scanning of data set and mining the data 
structures built in memory. 

 Figure 3. H-header and H-struct (Hmine-rev) 

 
5.1. Building the data structures 
 
1. Scan the data set once for all transactions and 
items to find all frequent items and store it in an array 
of H-header (same as H-mine) ordered alphabetically 
by item. Fitems found are a,c,d,e,g. At this stage we 
have already found five frequent patterns, those are 
fitems itself in H-header. 
2. Scan the data set once more to project all 

transactions into fitems and store it in arrays of 
H-struct ( Figure 3). In this stage, the initial H-header 
and H-struct links are built. Note that differ to H-mine, 
initial link structure in Hmine-rev are built completely 
for all queues, not only for items in the first position. 
The rest of mining is then performed on these data 
structures. 
 
5.2. Mining the data structures 
 

Differ to H-mine, data mining process in Hmine-rev 
algorithm must be done in reversed alphabetical order 
of frequent items as stated in H-header: a-c-d-e-g 
(from backward). For example, first we will mine all 
patterns containing ‘g’ (without a,c,d,e), then all 
patterns containing ‘e’ (without a,c,d), and so on. 

Finding all patterns containing ‘g’ (without a,c,d,e) 
is not needed, because we have already found them 
just as stated in H-header (2 patterns). To find all 
patterns containing ‘e’ (without a,c,d): from H-header 
follow e-queue, find all frequent items appearing after 
‘e’ and store it in conditional H-header called 
He-header (Figure 4 right). Here we found a frequent 
pattern, ‘eg’ as stated in He-header. 

To find all patterns containing ‘d’ (without a,c): 
1. From H-header follow d-queue, find all frequent 
items appearing after ‘d’ and store it in conditional 
H-header called Hd-header (Figure 4 left). Here we 
found another two frequent patterns, ‘de’ and ‘dg’ as 
stated in Hd-header. 
2. Similarly, from Hd-header follow dg-queue and 
find all frequent items appearing after ‘g’ and we 
found nothing. So we go to the next queue ‘de’, find 
all frequent items appearing after ‘e’ and store it in 
conditional H-header called Hde-header (Figure 4 
right). As counting items we link all same items 
together and build new links in H-struct for the next 
level queues. Here we found another frequent pattern, 
‘deg’ as stated in Hde-header. Note that when we 
move from dg-queue to de-queue, we do nothing to the 
H-struct link structure. There is no link adjustment 
between queues as required in H-mine. 



 5 

3. Repeat this process recursively until there is no 
more level of queue can be built, and then return to the 
previous H-header and continue to mine the next 
queue for all queues. 

Figure 4. Hd-header (left) and 
He-header/Hde-header (right) 

Note that we must perform mining process in the 
reversed alphabetical order to get proper results. The 
reason is that in the step 2 above we are building new 
links in H-struct while counting items in each queue. 
This process alters link structure for queues in the next 
proper alphabetical order. Therefore, we need to do 
mining process in reversed alphabetical order, such 
that link structure altered in the process will belong to 
the queues that is already mined. 
 
6. Hmine-rev Parallelization 
 

Since there is no link adjustment in Hmine-rev 
algorithm, the parallelization is possible and quite 
straight-forward. Here we will describe Hmine-rev 
parallelization techniques on shared-disk and 
shared-nothing environment. 
 
6.1. Pre-assigned Parallelization in 

Shared-Disk / SAN Environment 
 

An example of a shared-disk parallel environment is 

a PC cluster that consists of several nodes of CPU that 
are connected to the same logical storage device or 
storage area network (SAN). One way to do 
parallelization in this environment is by pre-assigning 
in advance each level 1 queue to different nodes as 
shown in Figure 5. 

Figure 5. Pre-assigned parallelization 

The advantage of pre-assigning every level 1 queue 
to every node in advance is that there is no need to 
check for available idle nodes during the mining and 
thus may avoid any communications between each 
node. Moreover, since Hmine-rev has no link 
adjustment, each node can mine its own assigned 
queue independently without requiring any data 
exchanges in the middle of mining. Therefore, this 
parallelization technique is ideal and the most efficient 
method possible regarding the number of data 
exchange and inter-node communication. 

Algorithm of pre-assigning technique is: 
1. Each node builds H-header and H-struct in local 
memory using the same data from shared disk. The 
constructed H-header and H-struct in all nodes should 
be identical.  
2. Assign each level 1 queue to different nodes in 
advance (Figure 5). For example, g and c-queue are 
assigned to node 1, e and a-queue to node 2, and 
d-queue to node 3. Each node then perform data 
mining on assigned queue independently without even 
doing any data-exchange nor communication during 
the mining process. After completing mining process, 
each node writes its results separately to the shared 
disk. 
 
6.2. Pre-assigned Paralellization in 

Shared-Nothing Environment 
 

Real-world distributed system is often sharing 
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nothing between each node. It is usually a group of 
several computers, each having its own CPU, memory 
and hard disk with its own data and connected together 
via a network cable. Therefore, it is needed to build a 
parallelization algorithm that is capable to process data 
set that is distributed in several computers. 

Below is a parallel algorithm to process a data set 
that is distributed in several nodes. 
1. Each node builds local H-header and H-struct 
using its own local data and then exchanges to each 
other to build global H-header and H-struct (Figure 6). 

Figure 6. H-header and H-struct exchange 

2. After exchange process finished all nodes should 
have identical global H-header and H-struct, therefore 
parallel mining in pre-assigned manner as in previous 
algorithm can be performed. 
 
7. Experimental Result 
 

We have done several experiments to assess the 
performance of our proposed Hmine-rev algorithm and 
its parallel version. First we compared performance of 
H-mine algorithm and our proposed modification, 
Hmine-rev, and show that Hmine-rev does not suffer 
any degradation in its performance. Then we did 
experiments on its parallel version and show that 
parallel Hmine-rev can significantly increase mining 
performance. 

The data used in all experiments is the following 
synthetic data generated by Almaden data generator 
program. 
Data: T10I2D100kL2kN1k.  
T (avg length of transaction): 10 
I (avg length of max. freq. pattern): 2 
D (number of transaction): 100,000 
L (number of max. freq. pattern): 2,000 
N (number of item): 1,000 

Resulted H-struct and pattern number is: 
H-struct Number: 995,850 
L(1): 755 
L(2): 115,162 
L(3): 159,446 

L(4): 42,142 
L(5): 9,061 
L(6): 1,689 

L(7): 258 
L(8): 27 
L(9): 3 

Total patterns: 328,543 
 
7.1. Performance Comparison 

 
Here we did performance comparison between 

Apriori, FP-Tree, H-mine and Hmine-rev algorithms 
to mine frequent patterns on artificial sparse data set 
above. The main objective of this experiment is to 
compare performance of H-mine and our proposed 
modification, Hmine-rev. The rest of algorithms are 
included only as reference. The time needed for each 
algorithm to complete mining in various minimum 
support is shown in Figure 7 (time in seconds). 

From the result we can see that our proposed 
Hmine-rev algorithm has comparable performance 
with original H-mine algorithm in all cases of 
minimum support. There is no performance loss by 
removing link adjustment from the algorithm. 

 
7.2. Performance of Parallel Hmine-rev 
7.2.1. Pre-assigned Parallelization in Shared-disk 

Environment 
First we did parallel experiment on shared-disk 

using pre-assigned parallelization technique. However, 
due to several technical reasons we did not perform 
experiment in truly shared-disk environment, instead 
we simulated it using shared-nothing environment 
with 4 nodes of CPU and only one node is connected 
to storage device and MPICH is used as parallelization 
interface. First node that has the access to data set is 
responsible to build H-header and H-struct and then 
broadcasting it to all other nodes. Then, after 
completing mining their assigned queues 
independently, all other nodes reduces (sends) their 
results back to first node. Speedup ratio to mine 
frequent patterns using above data in this way with 
minimum support 0.5% (500) on different number of 
nodes is shown in Figure 8. 

1 

2 3 

H-header 
H-struct 
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Figure 7. Hmine-rev performance comparison 

Figure 8. Shared-disk simulated environment 

Speedup ratio is the ratio of consumed time between 
one node and multiple nodes. Mining time is the time 
needed to mine H-header and H-struct after they are 
completely constructed in memory. Total time is the 
sum of H-header and H-struct creation and broadcast 
time, mining time and results reducing time.  

Figure 9. Consumed time comparison 

We can see that speedup ratio of our proposed 
Hmine-rev algorithm is ideal regarding the mining 
process, i.e. speedup ratio is equal to number of nodes. 
However, the overall performance is not ideal due to 
time consumed in broadcasting and reducing process. 
Consumed time comparison in Figure 9 shows that 
H-struct broadcasting time become comparable to 
mining time as node number increases.  

Therefore, in truly shared-disk environment where 
broadcasting and reducing process are not needed, our 
proposed parallel algorithm can do parallel mining in a 
very efficient way with speedup ratio near to ideal. 
 
7.2.2. Pre-assigned Parallelization in 

Shared-nothing Environment 
 
In this experiment the parallel environment is 

shared-nothing with 8 nodes of CPU and MPICH is 
used as parallelization interface. We distribute the data 
above to all nodes such that each node has 12,500 
transactions and we use minimum support of 0.01% 
(10). Each node builds local H-header and H-struct 
using its own local data, and exchange to each other to 
construct global ones. The time consumed to mine 
frequent patterns on above data using non-parallel and 
parallel algorithm is shown in Table 2 below (time in 
seconds). 

Table 2. Shared-nothing distributed data 

 Non-parallel Parallel (8 CPU) 
H-header creation 
time (& exchange) 

2.01668 0.150526 

H-struct creation 
time (& exchange) 

5.87495 8.87469 

Mining time 43.4081 (max) 6.16498 
Total time 51.2997 15.1594 

Time difference between the fastest node and the 
slowest node is about 2 seconds. Mining speedup ratio 
is about 7 times, and overall speedup ratio is about 3.4 
times. Consumed time comparison for each process in  
Figure 10 shows that for parallel version the time 
consumed in H-struct creation and exchange process 
exceeds the time consumed in mining process itself.  
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 Figure 10. Shared-nothing distributed data 

8. Conclusions and Future 
Works 

 
Hmine-rev that modified link structure and 

processing order of H-mine algorithm has successfully 
removed link adjustment from H-mine without any 
loss in performance and thus make it possible to do 
parallelization on the algorithm efficiently. 

Pre-assigned parallelization technique in a 
shared-disk environment together with Hmine-rev 
algorithm that has no link adjustment made it possible 
to build parallel algorithm that requires no 
data-exchange nor any communications between each 
node in the middle of mining process. This allows us 
to build ideal parallel algorithm in shared-disk 
environment and further to design parallel algorithm 
that exchanges data and communicates between each 
node in an efficient way in shared-nothing 
environment. 

As the future work we plan to compare performance 
of pre-assigned parallelization technique with a 
technique that is dynamically assigning unprocessed 
queue to available idle node in the middle of mining 
process in round-robin fashion. On the other hand, in 
shared-nothing distributed-data environment we plan 
to remove the exchange process of H-header and 
H-struct between all nodes that took significant time 
by utilizing some ‘external linking’ method that 
connects some parts of data structures between each 
node. This ‘external links’ will provide Hmine-rev 
algorithm with information on where to find the next 
link of current H-header or H-struct during the mining 

process. 
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