
 1

Hmine-rev: H-mine 並列化に向けて大容量データベースにおける

頻出パターンマイニングに関する研究

ボウォ プラスティョ イコ プラムディオノ 喜連川 優
praz@tkl.iis.u-tokyo.ac.jp iko.pramudiono@lab.ntt.co.jp kitsure@tkl.iis.u-tokyo.ac.jp

 東京大学 日本電信電話株式会社 東京大学生産研技術究所
NTT 情報流通プラットフォーム研究所

H-mine はスパースなデータセットに対して高性能と知られているメモリベースマイニングアルゴリズムで

あるが、動的 H-struct リンク調整という H-mine 特有の処理は並列化を困難にする。本論文では H-struct リ

ンク調整を一切必要としない改善されたアルゴリズムを提案する。提案アルゴリズムは、オリジナルバージ

ョンと匹敵する性能を持ちながら、並列処理に容易に拡張することが可能となる。

Hmine-rev: Toward H-mine Parallelization
on Mining Frequent Patterns in Large Databases

Bowo Prasetyo Iko Pramudiono Masaru Kitsuregawa
praz@tkl.iis.u-tokyo.ac.jp iko.pramudiono@lab.ntt.co.jp kitsure@tkl.iis.u-tokyo.ac.jp

 University of Tokyo NTT Information Sharing Institute of Industrial Science,
 Platform Laboratories University of Tokyo

NTT Corporation

H-mine is a frequent pattern mining algorithm that takes advantage of a hyper-linked H-struct data structure, runs fast

in memory-based setting, and is known to have high performance in a sparse data set. However, H-mine's inherent

necessity to dynamically adjust H-struct links in the middle of mining process makes it difficult to do any

parallelization effort on the algorithm. In this study, we propose a revised algorithm of H-mine that does not need any

adjustment of H-struct links by modifying link structure and reversing the order of processing data. The revised

algorithm has comparable performance with the original version and can be easily extended to use in parallel

environment.

1. Introduction

One of the most researched field in the data mining

area is frequent pattern mining algorithm due to
difficulties of doing it efficiently. Apriori algorithms
[1] that can significantly reduce mining time by
generating pattern candidates had successfully brought

many researchers attention. Then, FP-growth
algorithm [2] for dense data set and H-mine algorithm
[3] for sparse data set that scans data set only twice by
utilizing in-memory data structures had changed the
main stream of frequent pattern mining algorithm from
Apriori-like to pattern-growth algorithm.

Today, parallel computing technology provides

 2

many possibilities to do frequent pattern mining more
efficiently by combining many CPUs power to work
together. For example, there is already a parallel
version [4] of FP-growth algorithm that is known to
work efficiently for dense data set. However, H-mine
algorithm that is known to work efficiently on sparse
data set has no parallel version up to now due to its
inherent problem, i.e. H-struct link adjustment during
the middle of mining process.

In this research we have developed a modified
version of H-mine that can be easily extended to its
parallel version. First we modify H-struct link
structure and reverse the order to process data set, and
we called the new algorithm “Hmine-rev” (reversed
H-mine). Next we apply parallelization techniques to
Hmine-rev algorithm using MPICH [5] as
parallelization interface, and performed some
experiments on artificial data set to test the
performance of new algorithm and its parallel version.

In section 2 related works on the topic will be
described briefly. Section 3 and 4 will be dedicated to
explain H-mine algorithm and its difficulties to do
parallelization. In section 5 and 6 we will explain
Hmine-rev algorithm and its parallelization effort.
Section 7 shows the experimental results and section 8
describes the conclusions and future works.

2. Related Works

In 2001 J. Pei et. al [3] proposed an algorithm to
mine frequent patterns efficiently on a sparse data set.
This algorithm utilizes H-struct data structure that has
very limited and predictable space overhead, and runs
very fast in memory setting. We describe H-mine in
detail in chapter 3 in order to understand our proposed
algorithm that modifies the algorithm.

P. Iko et. al. in 2003 [4] proposed a parallel version
of FP-growth algorithm that is known to work very
efficient on a dense data set. The parallel algorithm
makes use the property in FP-growth that is processing
of a conditional pattern base is independent from other
conditional pattern base. Utilizing this property the
algorithm dynamically assigns which node should
process which conditional pattern base in parallel.

3. H-mine Algorithm

Table 1. Data set, fitems: a,c,d,e,g.

Trans ID Items Fitem projection
100 c,d,e,f,g,i c,d,e,g
200 a,c,d,e,m a,c,d,e
300 a,b,d,e,g,k a,d,e,g
400 a,c,d,h a,c,d

For example, we have a data set as shown in Table 1
below, and want to find all frequent patterns that
satisfies minimum support of 2. H-mine algorithm to
find frequent patterns can be divided in two phases,
building data structures that involved two times
scanning of data set and mining the in-memory data
structures built.

3.1. Building the data structures

Figure 1. H-header with H-struct (left) and
Ha-header (right)

1. Scan the data set once for all transactions and
items to find all frequent items (fitem) and store it in
an array of data structure called H-header (Figure 1
left) ordered alphabetically by item. H-header has
three data slots, fitem, its counts and a link to H-struct.
Fitems found are a,c,d,e,g. At this stage we have
already found five frequent patterns, those are fitems

 3

itself in H-header.
2. Scan the data set once more to project all
transactions into fitems and store it in arrays of data
structure called H-struct (Figure 1 left). H-struct has
two data slots, item and a link to next H-struct. In this
stage, the initial H-header and H-struct links (level 1
queues) that connect all the same items in the first
position, are built. The rest of mining is then
performed on these in-memory data structures.

3.2. Mining the data structures

Mining process in H-mine must be done in
alphabetical order of frequent items as stated in
H-header: a-c-d-e-g. For example, first we will mine
all patterns containing ‘a’, then all patterns containing
‘c’ (without ‘a’), and so on.

To find all patterns containing ‘a’:
1. From H-header follow level 1 a-queue (the link of
item a), find all frequent items appearing after ‘a’ and
store it in conditional H-header called Ha-header
(Figure 1 right). In the same time, build the next links
in H-struct (level 2 queues), i.e. ac-queue and
ad-queue that connect all the same items following ‘a’.
Here we found another three frequent patterns, ‘ac’,
‘ad’, ‘ae’ as stated in Ha-header.
2. Similarly, from Ha-header follow level 2
ac-queue and find all frequent items appearing after ‘c’
and store it in conditional H-header called Hac-header
(Figure 2 left). In the same time, build the next links
in H-struct (level 3 queues), i.e. acd-queue that
connects all the same items following ‘ac’. Here we
found another frequent pattern, ‘acd’ as stated in
Hac-header.
3. Repeat this process recursively until there is no
more level of queue can be built, and then return to the
previous level of H-header and continue to mine the
next queue for all queues.
4. When the algorithm return to the previous level of
H-header it needs to adjust some links in H-struct that
has been built so far. For example, because there is no
more level of queue can be built after ‘acd’, algorithm
will return to the previous level of H-header (e.g.
Ha-header) and continue to mine the next queue,

ad-queue. Before continuing mining process, the
algorithm needs to insert acd-queue into ad-queue to
get the full ad-queue in H-struct (Figure 2 right).

Figure 2. Hac-header (left) and
Adjusted ad-queue (right)

4. H-mine Parallelization Problem

When trying to parallel H-mine one will soon
realizes that there is a problem inherent to the
algorithm itself which greatly increases the difficulties
of parallelization efforts. The problem is H-struct link
adjustment that is performed dynamically in the
middle of mining process, i.e. when returning to the
previous level of H-header after finished mining a
queue. Therefore, the algorithm cannot proceed to
mine the next queue before finishing the current queue
to get information to adjust the links.

Link adjustment is absolutely required in the
algorithm in order to mine all frequent patterns from
data set completely, else the mined patterns will be
incomplete. Thus the mining process in each queue of
H-mine is dependent on its previous queue. This
property makes parallelization is impossible unless we
can take away this queue dependency from the
algorithm.

5. Hmine-rev Algorithm

Hmine-rev differs from H-mine algorithm in two
aspects: link structure and data processing order.

 4

Hmine-rev’s link structure is designed in such a way
that it does not need any kinds of link adjustment. And
the data is processed in the reversed way compared to
that of H-mine algorithm. This two modifications has
successfully removed any queue dependencies in the
algorithm, and thus made it possible to do
parallelization.

The algorithm of Hmine-rev in general is similar to
that of H-mine, the complexity and performance is
also about the same order. Again we will use data set
in Table 1 above for example, and find all frequent
patterns that satisfies minimum support of 2. Similar
to H-mine, the algorithm of Hmine-rev can be divided
in two phases, building data structures that involved
two times scanning of data set and mining the data
structures built in memory.

 Figure 3. H-header and H-struct (Hmine-rev)

5.1. Building the data structures

1. Scan the data set once for all transactions and
items to find all frequent items and store it in an array
of H-header (same as H-mine) ordered alphabetically
by item. Fitems found are a,c,d,e,g. At this stage we
have already found five frequent patterns, those are
fitems itself in H-header.
2. Scan the data set once more to project all

transactions into fitems and store it in arrays of
H-struct (Figure 3). In this stage, the initial H-header
and H-struct links are built. Note that differ to H-mine,
initial link structure in Hmine-rev are built completely
for all queues, not only for items in the first position.
The rest of mining is then performed on these data
structures.

5.2. Mining the data structures

Differ to H-mine, data mining process in Hmine-rev
algorithm must be done in reversed alphabetical order
of frequent items as stated in H-header: a-c-d-e-g
(from backward). For example, first we will mine all
patterns containing ‘g’ (without a,c,d,e), then all
patterns containing ‘e’ (without a,c,d), and so on.

Finding all patterns containing ‘g’ (without a,c,d,e)
is not needed, because we have already found them
just as stated in H-header (2 patterns). To find all
patterns containing ‘e’ (without a,c,d): from H-header
follow e-queue, find all frequent items appearing after
‘e’ and store it in conditional H-header called
He-header (Figure 4 right). Here we found a frequent
pattern, ‘eg’ as stated in He-header.

To find all patterns containing ‘d’ (without a,c):
1. From H-header follow d-queue, find all frequent
items appearing after ‘d’ and store it in conditional
H-header called Hd-header (Figure 4 left). Here we
found another two frequent patterns, ‘de’ and ‘dg’ as
stated in Hd-header.
2. Similarly, from Hd-header follow dg-queue and
find all frequent items appearing after ‘g’ and we
found nothing. So we go to the next queue ‘de’, find
all frequent items appearing after ‘e’ and store it in
conditional H-header called Hde-header (Figure 4
right). As counting items we link all same items
together and build new links in H-struct for the next
level queues. Here we found another frequent pattern,
‘deg’ as stated in Hde-header. Note that when we
move from dg-queue to de-queue, we do nothing to the
H-struct link structure. There is no link adjustment
between queues as required in H-mine.

 5

3. Repeat this process recursively until there is no
more level of queue can be built, and then return to the
previous H-header and continue to mine the next
queue for all queues.

Figure 4. Hd-header (left) and
He-header/Hde-header (right)

Note that we must perform mining process in the
reversed alphabetical order to get proper results. The
reason is that in the step 2 above we are building new
links in H-struct while counting items in each queue.
This process alters link structure for queues in the next
proper alphabetical order. Therefore, we need to do
mining process in reversed alphabetical order, such
that link structure altered in the process will belong to
the queues that is already mined.

6. Hmine-rev Parallelization

Since there is no link adjustment in Hmine-rev
algorithm, the parallelization is possible and quite
straight-forward. Here we will describe Hmine-rev
parallelization techniques on shared-disk and
shared-nothing environment.

6.1. Pre-assigned Parallelization in

Shared-Disk / SAN Environment

An example of a shared-disk parallel environment is

a PC cluster that consists of several nodes of CPU that
are connected to the same logical storage device or
storage area network (SAN). One way to do
parallelization in this environment is by pre-assigning
in advance each level 1 queue to different nodes as
shown in Figure 5.

Figure 5. Pre-assigned parallelization

The advantage of pre-assigning every level 1 queue
to every node in advance is that there is no need to
check for available idle nodes during the mining and
thus may avoid any communications between each
node. Moreover, since Hmine-rev has no link
adjustment, each node can mine its own assigned
queue independently without requiring any data
exchanges in the middle of mining. Therefore, this
parallelization technique is ideal and the most efficient
method possible regarding the number of data
exchange and inter-node communication.

Algorithm of pre-assigning technique is:
1. Each node builds H-header and H-struct in local
memory using the same data from shared disk. The
constructed H-header and H-struct in all nodes should
be identical.
2. Assign each level 1 queue to different nodes in
advance (Figure 5). For example, g and c-queue are
assigned to node 1, e and a-queue to node 2, and
d-queue to node 3. Each node then perform data
mining on assigned queue independently without even
doing any data-exchange nor communication during
the mining process. After completing mining process,
each node writes its results separately to the shared
disk.

6.2. Pre-assigned Paralellization in

Shared-Nothing Environment

Real-world distributed system is often sharing

a

2

c

1

d

3

e

2

g

1

level 1
queue

node

 6

nothing between each node. It is usually a group of
several computers, each having its own CPU, memory
and hard disk with its own data and connected together
via a network cable. Therefore, it is needed to build a
parallelization algorithm that is capable to process data
set that is distributed in several computers.

Below is a parallel algorithm to process a data set
that is distributed in several nodes.
1. Each node builds local H-header and H-struct
using its own local data and then exchanges to each
other to build global H-header and H-struct (Figure 6).

Figure 6. H-header and H-struct exchange

2. After exchange process finished all nodes should
have identical global H-header and H-struct, therefore
parallel mining in pre-assigned manner as in previous
algorithm can be performed.

7. Experimental Result

We have done several experiments to assess the
performance of our proposed Hmine-rev algorithm and
its parallel version. First we compared performance of
H-mine algorithm and our proposed modification,
Hmine-rev, and show that Hmine-rev does not suffer
any degradation in its performance. Then we did
experiments on its parallel version and show that
parallel Hmine-rev can significantly increase mining
performance.

The data used in all experiments is the following
synthetic data generated by Almaden data generator
program.
Data: T10I2D100kL2kN1k.
T (avg length of transaction): 10
I (avg length of max. freq. pattern): 2
D (number of transaction): 100,000
L (number of max. freq. pattern): 2,000
N (number of item): 1,000

Resulted H-struct and pattern number is:
H-struct Number: 995,850
L(1): 755
L(2): 115,162
L(3): 159,446

L(4): 42,142
L(5): 9,061
L(6): 1,689

L(7): 258
L(8): 27
L(9): 3

Total patterns: 328,543

7.1. Performance Comparison

Here we did performance comparison between

Apriori, FP-Tree, H-mine and Hmine-rev algorithms
to mine frequent patterns on artificial sparse data set
above. The main objective of this experiment is to
compare performance of H-mine and our proposed
modification, Hmine-rev. The rest of algorithms are
included only as reference. The time needed for each
algorithm to complete mining in various minimum
support is shown in Figure 7 (time in seconds).

From the result we can see that our proposed
Hmine-rev algorithm has comparable performance
with original H-mine algorithm in all cases of
minimum support. There is no performance loss by
removing link adjustment from the algorithm.

7.2. Performance of Parallel Hmine-rev
7.2.1. Pre-assigned Parallelization in Shared-disk

Environment
First we did parallel experiment on shared-disk

using pre-assigned parallelization technique. However,
due to several technical reasons we did not perform
experiment in truly shared-disk environment, instead
we simulated it using shared-nothing environment
with 4 nodes of CPU and only one node is connected
to storage device and MPICH is used as parallelization
interface. First node that has the access to data set is
responsible to build H-header and H-struct and then
broadcasting it to all other nodes. Then, after
completing mining their assigned queues
independently, all other nodes reduces (sends) their
results back to first node. Speedup ratio to mine
frequent patterns using above data in this way with
minimum support 0.5% (500) on different number of
nodes is shown in Figure 8.

1

2 3

H-header
H-struct

 7

Figure 7. Hmine-rev performance comparison

Figure 8. Shared-disk simulated environment

Speedup ratio is the ratio of consumed time between
one node and multiple nodes. Mining time is the time
needed to mine H-header and H-struct after they are
completely constructed in memory. Total time is the
sum of H-header and H-struct creation and broadcast
time, mining time and results reducing time.

Figure 9. Consumed time comparison

We can see that speedup ratio of our proposed
Hmine-rev algorithm is ideal regarding the mining
process, i.e. speedup ratio is equal to number of nodes.
However, the overall performance is not ideal due to
time consumed in broadcasting and reducing process.
Consumed time comparison in Figure 9 shows that
H-struct broadcasting time become comparable to
mining time as node number increases.

Therefore, in truly shared-disk environment where
broadcasting and reducing process are not needed, our
proposed parallel algorithm can do parallel mining in a
very efficient way with speedup ratio near to ideal.

7.2.2. Pre-assigned Parallelization in

Shared-nothing Environment

In this experiment the parallel environment is

shared-nothing with 8 nodes of CPU and MPICH is
used as parallelization interface. We distribute the data
above to all nodes such that each node has 12,500
transactions and we use minimum support of 0.01%
(10). Each node builds local H-header and H-struct
using its own local data, and exchange to each other to
construct global ones. The time consumed to mine
frequent patterns on above data using non-parallel and
parallel algorithm is shown in Table 2 below (time in
seconds).

Table 2. Shared-nothing distributed data

 Non-parallel Parallel (8 CPU)
H-header creation
time (& exchange)

2.01668 0.150526

H-struct creation
time (& exchange)

5.87495 8.87469

Mining time 43.4081 (max) 6.16498
Total time 51.2997 15.1594

Time difference between the fastest node and the
slowest node is about 2 seconds. Mining speedup ratio
is about 7 times, and overall speedup ratio is about 3.4
times. Consumed time comparison for each process in
Figure 10 shows that for parallel version the time
consumed in H-struct creation and exchange process
exceeds the time consumed in mining process itself.

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5

minsup

ti
m

e

apriori

fptree

hmine

hmine-rev

minsup: 0.5%

0

0.5

1

1.5

2
2.5

3

3.5

4

4.5

0 1 2 3 4 5

node number

sp
e
e
du

p
ra

ti
o

mining

total

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1 2 3 4

node number

ti
m

e

H-header broadcast

H-struct broadcast

Mining

Reduce

 8

 Figure 10. Shared-nothing distributed data

8. Conclusions and Future
Works

Hmine-rev that modified link structure and

processing order of H-mine algorithm has successfully
removed link adjustment from H-mine without any
loss in performance and thus make it possible to do
parallelization on the algorithm efficiently.

Pre-assigned parallelization technique in a
shared-disk environment together with Hmine-rev
algorithm that has no link adjustment made it possible
to build parallel algorithm that requires no
data-exchange nor any communications between each
node in the middle of mining process. This allows us
to build ideal parallel algorithm in shared-disk
environment and further to design parallel algorithm
that exchanges data and communicates between each
node in an efficient way in shared-nothing
environment.

As the future work we plan to compare performance
of pre-assigned parallelization technique with a
technique that is dynamically assigning unprocessed
queue to available idle node in the middle of mining
process in round-robin fashion. On the other hand, in
shared-nothing distributed-data environment we plan
to remove the exchange process of H-header and
H-struct between all nodes that took significant time
by utilizing some ‘external linking’ method that
connects some parts of data structures between each
node. This ‘external links’ will provide Hmine-rev
algorithm with information on where to find the next
link of current H-header or H-struct during the mining

process.

9. References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules”, Proc. 1994 Int. Conf. Very Large
Data Bases , pages 487499, Santiago, Chile, September
1994.

[2] J. Han, J. Pei and Y. Yin, “Mining Frequent Pattern
without Candidate Generation”, Proc. of the ACM
SIGMOD Conf. on Management of Data, 2000.

[3] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ''
H-Mine: Hyper-Structure Mining of Frequent Patterns
in Large Databases '', Proc. 2001 Int. Conf. on Data
Mining (ICDM'01)}, San Jose, CA, Nov. 2001.

[4] P. Iko, M. Kitsuregawa, “Parallel FP-growth on PC
cluster”, Proc. of Seventh Pacific-Asia Conference of
Knowledge Discovery and Data Mining (PAKDD03),
2003.

[5] William Gropp and Ewing Lusk, “User’s guide for
mpich, a portable implementation of MPI”, Technical
Report ANL-96/6, Argonne National Laboratory, 1994.

0

10

20

30

40

50

60

non-parallel parallel

ti
m

e

H-header

H-struct

Mining

Total

