Load-balancing Remote Spatial Join Queries in a
Spatial GRID

Anirban Mondal Masaru Kitsuregawa

Institute of Industrial Science
University of Tokyo, Japan
{anirban,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The explosive growth of spatial data worldwide coupled with
the emergence of GRID computing provides a strong motivation for de-
signing a spatial GRID which allows transparent access to geographically
distributed data. While different types of queries may be issued from any
node in such a spatial GRID for retrieving the data stored at other (re-
mote) nodes in the GRID, this paper specifically addresses spatial join
queries. Incidentally, skewed user access patterns may cause a dispropor-
tionately large number of spatial join queries to be directed to a few ‘hot’
nodes, thereby resulting in severe load imbalance and consequently in-
creased user response times. This paper focusses on load-balanced spatial
join processing in a spatial GRID.

1 Introduction

The explosive growth of spatial data worldwide coupled with the prevalence of
spatial applications has made efficient management of geographically distributed
spatial data a necessity. Spatial applications often arise in town planning, car-
tography, resource management, GIS (Geographic Information Systems), CAD
(Computer-Aided Design) and computer vision. Incidentally, the emergence of
GRID computing [4], which is associated with the massive integration and vir-
tualization of geographically distributed computing resources, provides a strong
motivation for designing a spatial GRID [11] which allows transparent access
to geographically distributed data. While different types of queries (e.g., spatial
select queries!, nearest neighbour queries, similarity search queries and spatial
join queries) may be issued from any node in the GRID for retrieving the data
stored at other (remote) nodes of the GRID, this paper specifically addresses
spatial joins on remote data since such queries constitute a typically expensive
as well as popular class of query in spatial databases. Incidentally, a spatial join
query retrieves from two spatial relations all the tuple pairs satisfying a given
spatial predicate.

Now let us understand the importance of optimizing remote spatial joins with
the help of an example. This year’s Olympic Games is expected to attract tens of

! Our previous work [11] studied load-balancing of spatial select queries in a spatial
GRID.

thousands of visitors to Athens and many of these visitors would possibly wish
to find a hotel near a bus station for the purpose of convenient transportation.
Such visitors may issue the following query from their respective home countries
which may be quite far away from Athens: Find all the hotels in Athens which are
near to any bus station. Assuming there are two relations ‘Hotels’ (containing
details, such as location, rental charges, of all the hotels in Athens) and ‘Bus
Stations’ (containing information concerning all the bus stations in Athens), this
translates to a remote spatial join operation. Interestingly, the above scenario
is also equally applicable to any major international event that attracts people
from various countries. Notably, the recent trend of increased globalization has
significantly increased the importance as well as the performance demands of
such global applications. Unfortunately, the current state-of-the-art does not
allow a user to perform this kind of operation efficiently.

Skews in initial data distributions, skewed user access patterns and chang-
ing popularities of data regions may cause a disproportionately large number
of spatial join queries to be directed to a few ‘hot’ nodes, thereby resulting in
severe load imbalance and consequently increased user response times. From our
example, given the huge number of queries from potential visitors to Athens, the
nodes containing the data of Athens would quickly become overloaded, thereby
necessitating a load-balancing mechanism for processing remote spatial joins ef-
ficiently. Several factors such as wide-area communication overheads, node het-
erogeneity and lack of centralization make the problem of load-balanced spatial
join processing in GRIDs significantly more complex than that of load-balanced
spatial join processing in traditional distributed environments such as clusters.
However, we believe that the time has come to deal head-on with this problem.
The main contributions of our proposal are as follows.

— We present a dynamic data placement strategy involving online data repli-
cation in GRIDs, the objective being to bring the data closer to the node
from which it is frequently queried.

— We propose a novel load-balancing strategy for speeding up spatial joins in
GRID environments.

Our performance evaluation demonstrates the effectiveness of our proposed ap-
proach in reducing the response times of spatial joins in GRIDs. To our knowl-
edge, this work is one of the earliest attempts at addressing the load-balancing
of remote spatial joins via online data replication in GRID environments. The
remainder of this paper is organized as follows. Section 2 discusses related work,
while Section 3 presents the system overview. Issues concerning load-balancing
in spatial GRIDs are presented in Section 4. The proposed strategy for load-
balancing spatial joins in GRIDs is discussed in Section 5, while Section 6 reports
our performance evaluation. Finally, we conclude in Section 7.

2 Related Work

Important ongoing GRID computing projects such as the European DataGrid
[2], the Grid Physics Network (GriPhyN) [13] and the Earth Systems Grid (ESG)

[6] aim at efficient distributed handling of huge amounts of data (in terabyte or
petabyte range).

Issues concerning spatial databases with GIS applications can be found in
[15], while a comprehensive survey on spatial indexes has been presented in [5].
Parallel spatial join processing has been extensively researched in the traditional
domain. The proposals in [7] and [1] discuss synchronous traversal of gener-
alization trees and R*-trees respectively. The work in [1] investigates parallel
load-balanced spatial join processing using R*-trees on a shared-virtual-memory
architecture. The PBSM (Partition Based Spatial-Merge) algorithm [12] first
partitions the inputs into smaller chunks and uses a computational geometry
based plane-sweeping technique to obtain a set of candidate pairs and then the
tuples corresponding to the candidate set are fetched from disk to determine
whether the join condition is actually satisfied. The work in [10] proposes a
parallel non-blocking spatial join algorithm which uses duplicate avoidance and
addresses main memory issues. Several dynamic [16] load-balancing techniques
for clusters have also been proposed specifically for clusters. Notably, neither the
the existing spatial join techniques nor the existing load-balancing strategies con-
sider GRID-related issues such as heterogeneity and wide-area communication
overheads essentially because these issues do not arise in traditional environ-
ments.

Incidentally, our proposal amounts to some form of caching of the results.
Recent works on caching include [9,14]. The work in [9] analyzes the effects of
different design choices involving cache structure, cache capacity, and timeouts
for caching previously discovered routes in demand routing protocols for wireless
ad hoc networks. In [14], a semantic caching scheme has been proposed for
accessing location-dependent data in mobile environments.

3 System Overview

We envisage the spatial GRID as comprising several clusters, where each cluster
comprises nodes that belong to the same Local Area Network (LAN) [11]. This
facilitates the separation of concerns between intra-cluster and inter-cluster load-
balancing issues. Given that intra-cluster issues have been extensively researched,
this paper specifically focusses on inter-cluster issues. For each cluster, the most
reliable and best administered node is selected as the cluster leader, any ties
being resolved arbitrarily. A cluster leader’s job is to coordinate the activities
(e.g., load-balancing, searching) of the nodes in its cluster. We define distance
between two clusters as the communication time 7 between the cluster leaders
and if the value of 7 for two clusters is less than a pre-defined threshold, the
clusters are regarded as neighbours. A cluster C; is considered to be relevant to
a query @; if C; contains at least a non-empty subset of the answers to Q). Given
that the number of queries waiting in node N;’s job queue is W; and taking the
heterogeneity in node processing capacities into account, we define Ly, the load
of N;, as follows:

Ly, =W; x (C’PUNi = CPUToml) (1)

where CPUy;, denotes the CPU power of V; and C'PUrotq stands for the total
CPU power of the cluster in which N; is located. The load of a cluster is calcu-
lated as) Ly, i.e, the sum of the loads of its individual members. Given that
the loads of two clusters C; and C} are L¢, and L, respectively and assuming
without loss of generality that Lo, > Lg;, the normalized load difference A
between C; and C} is computed as follows:

A= ((Lg; xTC;) — (Lg; x TCy))/(TCi 4+ TCy) (2)

where T'C; is the sum of the CPU power of all the members of C;. Similarly,
T'Cj is the sum of the CPU power of all the members of Cj.

Spatial indexing mechanisms may vary across clusters. Hence, we propose
a generalized indexing scheme which is built on top of the existing index at a
cluster node. The indexing scheme in each cluster comprises three index struc-
tures, namely IID (Index structure for Internal Data), IED (Index structure for
External Data) and TRD (Index structure for Replicated Data). Note that we
distinguish between a cluster’s internal data (the data which is originally stored
at a cluster) and its replicated data because it may not be possible to integrate
the replicated data smoothly into the existing index structure (for the internal
data) of the cluster as the replicated data may be far apart in space from the
cluster’s internal data. Such separation of concerns between internal data and
replicated data also makes it easier to periodically delete infrequently accessed
replicas for optimizing disk space usage. IID is a generalized two-tier indexing
mechanism, the first-tier of which resides at the cluster leader C; and is essen-
tially a list, each entry of which is of the form (region,node_id), where region
represents a specific region and mnode_id stands for the node in the cluster at
which the region is located. At the second tier, every node has its own indepen-
dent index structure for the data allocated to it. For example, in case of R-trees
[8], rectangular-shaped regions would be stored in the first-tier at C;, while the
second-tier would comprise R-trees at the individual nodes. IED and IRD are
hierarchical tree-based index structures, which reside at the cluster leader. In
our example, IED/IRD would be R-tree-like structures except that their leaf
nodes would contain cluster IDs of neighbouring clusters’ data regions instead
of pointers to objects in the database. Updates to IED/IRD are periodically ex-
changed between neighbouring cluster leaders preferably via piggybacking onto
other messages. Notably, in this paper, we have used the R-tree as an example,
but our proposed technique may also be applicable to other spatial indexing
structures albeit with certain modifications. Hence, in the near future, we also
plan to investigate the use of other spatial indexing structures for performing
spatial joins in GRIDs.

When a cluster leader C; receives a query @), it first checks its IID and IRD to
ascertain whether any of its cluster nodes is relevant to Q. If C; finds that none
of its nodes is relevant to @, it checks its IED and sends @ to its neighbouring
cluster leaders which are relevant to Q. In case none of its neighbouring cluster
leaders contain the answers to), C; broadcasts @@ to all of them. This process
continues till either the answers to () are retrieved or () is timed-out. Assume

the existence of n clusters in the GRID, C1, Cs, (s,Cy,. Now suppose cluster
C; issues a spatial join query @); for the data in cluster C;. A straightforward
solution would be for C; to process @; and return the results to Cj, but this
solution would not be efficient in scenarios where many spatial join queries, which
attempt to retrieve data from the same regions in C}, are issued from C; to Cj.
Our primary focus is to reduce the response times of such spatial join queries on
remote data via replication.

4 Issues concerning Load-balancing of Spatial Joins via
Replication in GRIDs

This section addresses important issues which need to be addressed when sup-
porting load-balancing of spatial joins via replication in GRIDs.

Hotspot detection

The heat of data regions should be defined with respect to clusters which issue
queries for these regions. For example, if cluster Cg issues a large number of
queries pertaining to data region D, of cluster Cr, but cluster Cp issues no
queries for D;, D; will be considered a ‘hot’ region only w.r.t. Cs (but not
w.r.t. Cp). Understandably, many different clusters accessing D; infrequently
would make D; a ‘hot’ region in the conventional sense, but replicating D; at
any of these clusters may not necessarily be useful for reducing response times
and may indeed be counter-productive owing to replication-related overheads.
For hotspot detection purposes, every node within a cluster maintains its own
access statistics comprising a list HotList, each entry of which is of the form
(data,ptraccess)- Here data represents a specific data region and ptraceess is a
pointer to a three-dimensional array of the form (cluster_id,num,avgtime), where
cluster_id stands for the ID of the particular cluster which accessed data, num
indicates the number of times that cluster accessed data and avgtime represents
the average processing time it took for a node to perform spatial join on data.
The value of avgtime is used in ascertaining the benefit of replicating a specific
data region as we shall see in Section 5. This information is periodically sent by
every node to its cluster leader, thereby enabling the cluster leader to determine
the ‘popularity’ of different data regions with respect to different clusters.

For reflecting current hotspots accurately in dynamic GRID environments,
we propose that HotList should be initialized periodically i.e., the information
in HotList should be deleted periodically and then Hot List should be populated
with fresh access information. Additionally, whenever an overloaded source clus-
ter node N; has completed offloading some part of its load to a node at another
cluster, N; refreshes its own HotList by deleting those entries in Hot List which
triggered the replication so that HotList reflects hotspots concerning which ac-
tion has not yet been taken. Moreover, we maintain access statistics information
at the granularity of the respective leaf node levels of the index structures at the
nodes. Throughout this paper, we shall use the term data region to indicate

the spatial region corresponding to the Minimum Bounding Rectangle (MBR)
of the data stored at a leaf node of the IID at a particular node. An interesting
question which arises here is: Given that several different kinds of queries can be
issued to a real system, how do we know whether the leaf node accesses are being
made specifically for a spatial join query? Incidentally, at the leaf node level, it
is not feasible to determine the type of query for which the leaf node is being
accessed, but this information can be found at the query engine level.

What to replicate?

Once a ‘popular’ region D; w.r.t. a specific cluster C; has been detected, our
strategy is to replicate the results of the spatial join operation on D; at C;. Note
that replicating the results (as opposed to replicating the data itself) can signifi-
cantly benefit those subsequent spatial join queries whose spatial select windows
have considerable overlap with D; since C; will not need to do any processing at
all for a significant part of these queries. Additionally, replicating the results can
reduce communication cost significantly if join selectivity of D; is low. Even in
case of high join selectivity of D;, intuitively we can understand that the commu-
nication cost of replicating the result tuples can never exceed that of replicating
the data itself. Our strategy assumes that the datasets are relatively static. Note
that we use ‘data replication” and ‘replication of result tuples’ interchangeably
throughout this paper to imply replication of result tuples.

Exploiting overlap between different spatial join queries

Interestingly, every spatial join query has an associated MBR associated with it
either explicitly or implicitly. We shall designate this MBR as SPJMBR (Spatial
Join’s Minimum Bounding Rectangle). For example, the join query “Find a
hotel near a station in Athens within a 5 km radius of X, where X is a certain
landmark in Athens” explicitly specifies the SPJMBR associated with the join
query, while the query “Find a hotel near a bus station in Athens” implicitly
specifies that the SPJMBR for this query corresponds to the MBR of Athens.
Intuitively, efficient exploitation of overlaps between different spatial join queries
requires a mechanism for storing the replicas in a manner which enables quick
identification of overlap between spatial join queries and existing replicas.

In our proposed system, whenever a replica of result tuples is stored at a
cluster, the cluster leader also stores the SPJMBR corresponding to that replica.
Identification of overlap between an SPJMBR and a spatial join query) can
be classified into 3 cases: (a) @’s MBR does not intersect with SPJMBR: This
implies that there is no overlap between the query and the existing replica.
(b) @’s MBR is fully contained within the SPJMBR: This means that all the
results tuples requested by) are already in the stored replica and only a spatial
select query using Q’s MBR as the spatial select condition should be run on
the replicated data to obtain the answers to). We propose to run this spatial
select condition on the replicated data at the cluster Cr., where the replicated
data exists (if Crep is not overloaded and has sufficient disk space) to save

communication costs. However, if Cr.p is overloaded and/or Crep has insufficient
available disk space, the replica is sent to the cluster Crgssye Which issued @
and Crgsye needs to run Q’'s MBR as the spatial select query on the replica
to obtain the query results. (¢) @Q’s MBR partially intersects with SPTJMBR:
The implication is that the results of @ already exist for the intersecting part
between @@’'s MBR and SPJMBR, but for the non-intersecting parts, the results
need to be computed. In this case, the tuples in the intersecting part are sent
to the query issuing peer, while a spatial join operation needs to be run to get
the result tuples in the non-intersecting parts between @Q’s MBR and SPJMBR.
This spatial join operation involving the non-intersecting parts of Q’s MBR and
SPJMBR should be run at Cgep if Crep’s load is low, otherwise it should be
executed at Crssue-

Whenever a spatial join query @ arrives at a cluster leader, the cluster leader
traverses its list of SPJMBRs and identifies and exploits overlaps (if any) in the
manner stated above. Additionally, in order to optimize disk space usage, each
cluster leader keeps track of the replicas in its cluster nodes as well as the number
of accesses made to each of the replicas during recent time intervals. Replicas
whose access frequency during recent time intervals falls below a pre-defined
threshold are deleted because the valuable disk space consumed by such unused
replicas can be put to better use by storing ‘hot’ data, thereby improving system
performance.

5 Load-balancing Strategy for Spatial Joins in GRIDs

In our proposed strategy, a cluster leader determines itself to be overloaded if
its load exceeds the average loads of its neighbouring clusters by more than y%.
(The value of y is application-dependent and in our case, we assume y = 15%.)
When a cluster leader determines itself to be overloaded, it periodically checks
the frequency with which its data regions? are being queried by other cluster
leaders during the recent time intervals. Based on this information, the cluster
leader C}; creates a set i comprising all cluster leaders which have issued more
than n queries for any of its regions. (7 is a threshold parameter which influences
the sensitivity of load-balancing.) C; sends a message to each member of set 9
informing its own disk space requirement (i.e., the amount of disk space required
to store the replicated data) and requesting information concerning their load
status, list of neighbours and whether their available disk space is sufficient to
store the replicated data. After receiving the necessary status information of ¢’s
members, C; evaluates their replies one-by-one. Members of ¢ whose available
disk space is too low to store the replicated data or whose normalized load
difference with C; (A) falls below a pre-specified threshold are deleted from .
For such members, C; adds their list of neighbouring clusters to 1. For these
neighbouring clusters, clusters with low disk space or those with low normalized
load difference with C; are deleted from . The remaining members of i) are

2 Recall that ‘data region’ refers to the spatial region corresponding to the MBR of
the data stored at a leaf node of the IID at a particular node.

candidates for replication. For each member « of ¢, C; traverses each hot data
region H that has been queried by « and decides whether to replicate the spatial
join result tuples associated with H on a case-by-case basis. Now let us see how
C; makes this decision.

The total cost C'y of replicating H from C; at « consists of the cost Extry
of extracting H from IID at C;, the communication cost C'mg of transferring H
and the bulkloading cost Bulky of integrating H into the IRD of a. Hence, Cg
is given by the following formula:

Cy = Extrg + Cmyg + Bulky (3)

Recall that every cluster leader maintains information concerning the average
processing time and the accesses made to each data region from each of the
clusters in the system. Let ngy denote the number of times H has been accessed
by a and avgtimep represents the average processing time of H. Hence, the
benefit By of replicating H at a can be estimated as follows:

By = (ng x avgtimep) (4)
From (3) and (4), we have the following formula:
Deciderr = (Bg — Cgr > THpin) (5)

where T'H iy, is a pre-defined threshold parameter which is essentially application-
dependent and on which the degree of load-balancing depends and Decidey is
a boolean variable. Every member « of ¢ for which Decidey returns ‘TRUE’
is put into a temporary list data structure which we shall designate as ‘temp’.
The data structure of ‘temp’ is essentially a list structure where for each ‘hot’
data region H, the corresponding destination candidates (those members of v
for which Decidey had returned ‘TRUE’) for H are stored in a linked list.
Using the ‘temp’ data structure, the overloaded cluster leader uses a function
Select_dest_from_temp() which selects (as the destination cluster) the least
loaded member in ‘temp’ (corresponding to each H) for each H. The load-
balancing algorithm executed by an overloaded source cluster leader is depicted
in Figure 1, while the load-balancing algorithm executed by a potential destina-
tion cluster leader is presented in Figure 2.

Observe that in contrast with existing works in traditional environments, our
strategy does not use the value of normalized load difference when deciding upon
the amount of data to replicate. This is because in our scenario, the increase in
load at « owing to spatial join queries on H is negligible (even in case of spatial
select conditions) as compared to the decrease in load for C; especially since
the join has already been computed. Moreover, note that replication is initiated
from C; to a whenever the normalized load difference between C; and «a exceeds
a given threshold, irrespective of whether C; is really overloaded or not. Even
if C; is mot overloaded, we believe it is still reasonable to replicate at « since
bringing the data closer to the cluster from where the data are being frequently
queried implies a reduction in network overheads (as well as response times) for
future spatial joins on the same data.

Algorithm LB_OverloadedSource()
Create a set 1 comprising cluster leaders that issued more than 7 queries for any of its regions
if (¢ is an empty set) {
exit
} else {
for each element o in set ¥ {
Send message to a and asking a’s disk space, load and neighbours’ list
Receive reply from «
if ((«’s disk space is NOT sufficient) OR (A < LOAD_THRESHOLD)) {
/* A is the normalized load difference between itself and o */
Delete o from set ¢ and Add members of Listneighbours tO ¢
for each member NG of Listneighbours {
Send message to NG asking NG’s disk space availability and current load
Receive reply from NG
if ((NG’s disk space is NOT sufficient) OR (A < LOAD_THRESHOLD)) {
Delete NG from
}

}
}
}

for each element o in ¥ {
for each data region H queried by a {
if (Decidey = = TRUE) {
Put « into a temporary list designated as ‘temp’

}
}
}
Select_dest_from_temp()
}
end

Fig. 1. Load-balancing Algorithm executed by an overloaded source cluster leader

6 Performance Study

This section reports the performance evaluation of our proposed inter-cluster
load-balancing technique via replication of result tuples of spatial join queries.
Note that we consider performance issues associated only with inter-cluster load-
balancing since a significant body of research work pertaining to efficient intra-
cluster load-balancing algorithms already exists. Hence, for our experiments, we
use a cluster size of 1. The machine used for the experiments had processing
capacity of 1.7 GHz (Pentium-4), main memory of 768 Mbytes and disk space
of 40GB. We ran the experiments under the Redhat Linux (version 7.3) oper-
ating system using LAM-MPI (version 7.00) for message-passing. In order to
model inter-cluster communication in a wide area network environment, we as-
signed transfer rates for communication between cluster leaders randomly in the
range of 0.8 Megabit/second to 1.2 Megabit/second. We used a maximum of 3
neighbouring cluster leaders corresponding to each cluster leader. The number

Algorithm LB_PotentialDestination()
Receive message from overloaded source cluster leader SRC
/* The message contains disk space requirement of SRC */
Send a Broadcast message to all the nodes in its cluster asking each node for its current
load and disk space
Receive replies concerning current load and disk space of each node
Nodes with sufficient available disk space and load below a pre-defined threshold A are
put into a set Candidate
if (Candidate is an empty set) {
Send message to SRC' stating that its disk space is insufficient and informing SRC'
about its list of neighbours
} else {
Send message to SRC informing SRC about its sufficient disk space, its current load
and its list of neighbours

}

Receive reply from SRC

if (SRC has selected it as the destination cluster) {
Send a Broadcast message to the nodes in Candidate for their current load status
Receive the corresponding replies and select the least loaded node MIN from Candidate
Send a message to SRC' to replicate the data at MIN

}

end

Fig. 2. Load-balancing algorithm executed by each potential destination cluster leader

of clusters simulated in our experiments was 24. The interarrival time between
queries arriving at a cluster was fixed at 10 milliseconds and the value of T'H,,;,,
was set to 5 seconds. We have used two real-life datasets [3] for our experiments.
The first dataset is the set of roads in Germany, while the second one is a dataset
of railway lines in Germany. The first dataset comprises MBRs of 30,674 streets
of Germany, while the second one consists of MBRs of 36,334 railroad lines in
Germany. We had enlarged each of these datasets by translating and mapping
the data for the purpose of our experiments. For our experiments, each of the
clusters had more than 200000 rectangles for each of the relations. We used two
R-trees at each cluster, one for each dataset. We assumed that one R-tree node
fits in a disk page (page size = 4096 bytes). Hence, R-tree node capacity is the
same as page size in our case. The height of each of the R-trees was 3 and the
fan-out was 64. We generated queries for each cluster by using a spatial select
(window query) condition in conjunction with the spatial join. Note that this is
in consonance with real-world scenarios where spatial joins may be quite often
accompanied by certain select conditions. The selectivity of each spatial join
query was fixed at 40%. Assuming n queries for a particular cluster C;, let us
designate the queries as Q1, Q2,QQ,,. We generated the n queries for C; such
that the queries had at least 75% overlap with each other. This overlap was gen-
erated by shifting the respective spatial select query windows in such a manner
that each query had 2% (where x > 75%) overlap with the other queries.

For performing the spatial join operation at each cluster, we use an existing
approach where the data from the smaller fragment is extracted and used to
probe the index structure corresponding to the larger fragment. For the sake of
convenience, we shall refer to our proposed technique as LBREP (Load-balancing
via replication). Since no work on load-balanced processing of remote spatial
joins in GRIDs exists, we shall compare the performance of LBREP with a
technique which performs spatial join without load-balancing. We designate this
reference technique as NOLB (No load-balancing). For all our experiments, we
had run the system for an initial period of time to obtain access statistics infor-
mation and once the system had reached a stable state (after the replication of
result tuples have been performed), we noted down the results. We only present
results associated with the stable state of the system. The replications that have

CSource CDestination N|Cg CQ(f) N|Cg CQ(f)
1 21, 15 16 1 [24(9),15(7) 16/ 1 [15(10), 24(6)
2 23,17 12| 2 [23(6), 17(6) 12] 2 [17(4), 23(8)
3 22, 14 12| 3 [22(6), 14(6) 12] 3 [14(3), 22(9)
1 21, 18 1] 4]21(3), 18(D) 14]18(3), 21(0)
6 20, 15 116 (20(3),15(1) 106]15(3), 20(0)
8 19, 14 1] 8 [19(3), 14(1) 1] 8 [14(3), 19(1)
9 18, 10 119 [18(3), 10(1) 119 [1003), 18(1)
11 17,15 I[11]17(3),15(1) 111 15(3), 17(1)
12 16, 14 1[12[16(3), 14(1) 1[12]14(3), 16(1)
13 14, 10 1[13[14(3), 10(1) 1[13]10(3), 14(1)
(a) Table indicat- (b) @D1 (c) QD2

ing replication

Fig. 3. Replication table and QD1 and QD2 for a 24-cluster GRID

already been performed (based on access statistics information) prior to the sys-
tem reaching stable state are depicted in Figure 3(a). In Figure 3(a), Csource
represents the IDs of the source cluster whose data (spatial join result tuples)
have been replicated, while Cpestination stands for the IDs of the destination
clusters where Cgouree’s data has been replicated. For example, the first row
of the table indicates that a portion of cluster 1’s data has been replicated at
clusters 24 and 15. Similarly, a part of cluster 2’s data has been replicated at
clusters 23 and 17 and so on. Note that the portions of cluster 1’s data that have
been replicated at clusters 24 and 15 need not necessarily be the same, even
though overlap is possible between the replicated data of cluster 1 at cluster 24
and cluster 15. This is because the replication performed was based on previous
access statistics, thereby implying that the replicated data at different clusters
depends upon the queries that these clusters had issued during the past. Now we
shall evaluate the relative performance of LBREP and NOLB by using different
query distributions. Even though we had used several query distributions to test

5 50

) 2 4 R %
g § 0 g
§ 2 PO . p 3
$ | e e S g i
E NOLB) NOLB 2
a o e F . LR ¥
1234689100213 0 4 8 2 16
Cluster 1D Query
(a) Average Re- (b) Aver- (c) Disk I/Os in- (d) Kbytes trans-
sponse Times age Response curred by cluster mitted by cluster
Time(cluster 1) 1 1
Fig. 4. Results on QD1 for a 24-cluster GRID
50 5
O 7w . %
4 £ 0 2
§ 0 § 1 = 5
| B S 1 2 §
E 10 NOLB T NOLB 2
o e F . LR ¥
1234689110213 0 4 8 2 16
Cluster 1D Query
(a) Average Re- (b) Aver- (c) Disk I/Os in- (d) Kbytes trans-
sponse Times age Response curred by cluster mitted by cluster
Time(cluster 1) 1 1

Fig. 5. Results on QD2 for a 24-cluster GRID

the robustness of LBREP, in the interest of space, here we present only two such
distributions. For the sake of convenience, we shall refer to these query distri-
butions as QD1 and QD2 respectively. Figures 3b and 3¢ summarize QD1 and
QD2. In Figure 3b, N denotes the number of queries, Cg indicates the ID of the
cluster which processed the queries, Cq represents the IDs of the clusters which
issued those queries and f stands for the number of queries issued by a cluster.
Note that the sequence of the queries arriving at each cluster is also specified by
Figure 3b. For example, the first row of the table in Figure 3b indicates that 16
queries (let us designate them as Q1 to Q16) were processed by cluster 1. Q1 to
Q9 were issued by cluster 24, Q10 to Q16 were issued by cluster 15. In contrast,
the first row in Figure 3c indicates that Q1 to Q10 were issued by cluster 15,
while cluster 24 issued Q11 to @Q16. Owing to space constraints, we are not able
to present the detailed results concerning all the queries in the system. Note that
the selectivity of each spatial join query in case of both QD1 and QD2 was fixed
at 40%. In all our experiments, cluster 1 is the most overloaded (hot) cluster

and also it was the last cluster in the GRID to complete processing. Hence, we
shall examine details concerning the processing of queries that were directed to
cluster 1.

Figures 4 and 5 depict the results corresponding to QD1 and QD2 respec-
tively. Figure 4a indicates the average response times of all the queries directed
to each cluster. The results demonstrate that LBREP is indeed able to decrease
the average response times for each of the clusters significantly, especially de-
creasing the average response time of cluster 1 by upto 48%. The reduction in
average response times occurs because of the reduction in disk I/O overhead at
the query executing clusters as well as the reduction in communication over-
head arising from transmission of result tuples to the clusters which issued the
respective queries. To put things into perspective, we take a closer look at the
processing of the 16 queries that were directed to cluster 1. Figure 4b depicts the
individual response times of each of the 16 queries that were directed to cluster
1 for QD1, while Figure 4c shows the corresponding disk I/Os incurred for each
query at cluster 1 for the same experiment. Figure 4d indicates the number of
KBytes for each query that cluster 1 had to transmit to the cluster which had
issued the query.

Observe that Figure 4b indicates that for all the queries directed to cluster 1,
LBREP’s performance is superior to that of NOLB in terms of response times.
Such reductions occur because part of the results of the spatial join have already
been replicated at clusters which issued these queries (clusters 24 and 15 in this
case). The implication is that cluster 1 did not need to process a significant part
of each of these queries, thereby resulting in reduction of disk I/O cost incurred
by cluster 1. Moreover, since clusters 24 and 15 already had a part of the results
associated with the queries that they issued, the number of result tuples that
cluster 1 had to transmit to such clusters was also reduced, thereby reducing
the communication overhead. Detailed investigation of the experimental results
revealed that the reduction in disk I/O cost varied between 45% to 54%, while
reduction in the total size of result tuples transmitted to the querying clusters
varied between 46% to 52%. However, note that the price LBREP pays for
improvements in response time is additional disk space usage since replication
causes redundant usage of disk space. We believe that the overhead of additional
disk space usage is justifiable because of the significant improvement in response
times of spatial joins that LBREP provides.

The explanations for Figure 4 also hold good for the results in Figure 5.
Observe that the performance of NOLB remains same in case of Figures 4 and 5
because in case of NOLB, no data has been replicated at the querying clusters,
thereby implying that every query is completely processed at the query executing
cluster and then the results are sent back to the querying clusters. We also find
that the results in Figures 4 and 5 differ to some extent for LBREP. This is
because the portions of cluster 1’s data replicated at clusters 24 and 15 were not
exactly the same, even though there was overlap between those portions.

7 Conclusion

Huge amounts of available spatial data worldwide and the prevalence of spatial
applications, coupled with the emergence of GRID computing, provides a strong
motivation for designing a spatial GRID. Skewed user access patterns may cause
severe load imbalance in the system, thereby degrading system performance sig-
nificantly. Our proposal has specifically focussed on speeding up remote spatial
joins in this environment via a novel dynamic load-balancing strategy which de-
ploys online replication. In the near future, we plan to address issues concerning
dynamic data. Incidentally, for dynamic data, query results may change, thereby
requiring updates to be propagated to the clusters containing the old replicated
result tuples. Moreover, we shall investigate scalability issues concerning larger
number of clusters. Additionally, we also plan to examine the use of other spatial
index structures for performing spatial joins in GRIDs.

Acknowledgements: We wish to express our sincere thanks to the JSPS (Japanese
Society for the Promotion of Science) for supporting this work.

References

1. T. Brinkhoff, H.P. Kriegel, and B. Seeger. Efficient processing of spatial joins using
R-trees. Proc. ACM SIGMOD, pages 237-246, 1993.

2. European DataGRID. http://eu-datagrid.web.cern.ch/eu-datagrid/.

3. Datasets. http://dias.cti.gr/~ytheod/research/datasets/spatial.html.

4. 1. Foster and C. Kesselman. The GRID: Blueprint for a new computing infrastruc-
ture. Morgan-Kaufmann, 1999.

5. V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170 231, 1998.

6. Earth Systems GRID. http://www.earthsystemgrid.org/.

7. O. Gunther. Efficient computation of spatial joins. Proc. ICDE, pages 50 59, 1993.

8. A. Guttman. R-trees: A dynamic index structure for spatial searching. Proc. ACM
SIGMOD, pages 47-57, 1984.

9. Y.C. Hu and D.B. Johnson. Caching strategies in on-demand routing protocols for
wireless Ad Hoc networks. Proc. MOBICOM, pages 231-242, 2000.

10. G. Luo, J. F. Naughton, and C. Ellmann. A non-blocking parallel spatial join
algorithm. Proc. ICDE, 2002.

11. A. Mondal, K. Goda, and M. Kitsuregawa. Effective load-balancing via migration
and replication in spatial GRIDs. Proc. DEXA, 2003.

12. J. Patel and D. DeWitt. Partition based spatial-merge join. Proc. ACM SIGMOD,
pages 259-270, 1996.

13. GriPhyN Project. http://www.griphyn.org/index.php.

14. Q. Ren and M.H. Dunham. Using semantic caching to manage location dependent
data in mobile computing. Proc. MOBICOM, pages 210-221, 2000.

15. P. Rigaux, M. Scholl, and A. Voisard. Spatial databases with application to GIS.
Morgan Kaufmann ISBN 1-55860-588-6, 2001.

16. P. Scheuermann, G. Weikum, and P. Zabback. Disk cooling in parallel disk systems.
IEEE Bulletin of the Technical Committee on Data Engineering, 17(3):29 40, 1994.

