
論文 ＃＃これはあくまでサンプルです＃＃ DBSJ Letters Vol.3, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.3, No.2 1

複数入力を持つ拡張 R-tree 検索

アルゴリズムを用いた PUB/SUB
システムの平均応答時間の改善
Adaptively Improving Average Response
Time of Pub/Sub System Based on
Extended R-Tree Search Algorithm with
Multiple Inputs

王 波涛♠ 張 旺♦ 喜連川 優♠

Botao WANG♠ Wang ZHANG♦
Masaru Kitsuregaw♠

Publish/subscribeシステムはユーザに対して興味があるイ

ベントを随時送信している。イベントが起こる確率は時間に

よって変化し、予測ができない。一定の時間内にイベントが

何も起こらなかったり、複数のイベントが同時に発生するこ

とは良く起こる。複数のイベントが同時に発生した時、その

平均レスポンスタイムは作業の処理順序に依存する。本論文

は始に R-tree を用いた複数イベントのためのフィルタリン

グアルゴリズムを提案する。各々のイベントの負荷に関する

情報を用いることで、処理時間が短いイベントから処理を行

い、平均レスポンス時間を向上させる。さらに、インデック

スが動的に変化する環境下で、サイズの異なるイベント集合

のための自己適応モデルの提案と評価を行う。

Publish/subscribe system captures the dynamic aspect of
the specified information by notifying users of
interesting events as soon as possible. The rate of event
arriving is time varying and unpredictable. It is very
possible that no event arrives in an unit time and
multiple events arrive in another unit time. When
multiple events arrive at same time, the average
response time of events filtering depends on the
sequence of filtering events which have different
workloads. In this paper, we first propose an event
filtering algorithm with multiple inputs (multiple
events) based on R-tree. With information of relative
workload of each event, event by event filtering can be
executed with short-job first policy to improve average
response time of multiple jobs. Further a self-adaptive

♠ 正会員 東京大学生産技術研究所

{botaow,kitsure}@tkl.iis.u-tokyo.ac.jp
♦ 学生会員 東京大学情報理工学系研究科博士後期課程

zhangw@dblab.is.ocha.ac.jp

♠ 正会員 東京大学生産技術研究所

{botaow,kitsure}@tkl.iis.u-tokyo.ac.jp
♦ 学生会員 東京大学情報理工学系研究科博士後期課程

zhangw@dblab.is.ocha.ac.jp

model is proposed and evaluated to filter set of events
with different sizes on dynamically changing index.

1. Introduction
Efficient event filtering with a faster response time is

very important for event processing with multiple steps
like event join, and is one of important factors to
provide good service for subscribers. Generally the rate of
event arriving is time varying and unpredicatable. For
example, traffic monitoring, ticket reservation, internet
access, stock price, etc. In contrast to stable rate, it's
very possible that a batch of events arrive in one unit time
and no event arrives during another unit time.1

In the context of publish/subscribe system, even many
index techniques such as multiple one-dimensional
indexes based [1], [2], [3], [4], [5] and multidimensional
index based [6], [7] have been proposed for event filtering,
all these techniques are designed to filter events one by
one. They can not deal directly with batch events in a
fast average response time if those events arrive at
same time with different workloads. Meanwhile, we found
that event filtering based on multidimensional index
[6] [7] is more efficient and flexible than that based on
multiple one-dimensional indexes. In order to improve
average response time of event filtering in the case that
multiple events arriving at the same time, in this paper,
we first propose a R-tree based event filtering algorithm
to improve average response time of filtering multiple
events arriving at same time. There a cost model to
estimate relative workloads of these events is built to
arrange the filter order of these events with Short-Job
First (SJF) policy. Further, because the number of
events arriving at the same time and index size change
dynamically, an adaptive model is proposed to filter
events with average response time always same as or
close to the possible best time.

The rest of this paper is organized as follows. Section 2
introduces the background and motivation. Section 3
introduces the algorithm to improve average response
time. Section 4 proposes the adaptive model. In Section 5,
the event filtering algorithm and the adaptive model are
evaluated and analyzed in a simulated environment.
Section 6 discusses the related work. Finally, conclusion
and future work are given out in Section 7.

2. Background and Motivation

As introduced in [6], [7], multidimensional index
(R-tree or UB-tree) based event filtering is feasible2 and
is much efficient and flexible than that based on the
popular multiple one-dimensional indexes based
technique -count algorithm [3], [4]. Meanwhile, SJF is one
well-known policy used to improve average response time
while scheduling multiple jobs. The critical thing is to
estimate workloads correctly.

1 Even logically for most of the events, there exist absolutely
different arriving times, in this paper, we regards the events
arriving in the same unit time as the events arriving at same
time.
2 For details, please refer to [6], [7].

論文 ＃＃これはあくまでサンプルです＃＃ DBSJ Letters Vol.3, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.3, No.2 2

Because UB-tree partitions space with space filling
curve, original UB-tree's search algorithm is depth-first
and no Minimum Bounding Rectangle (MBR) information
is required and kept inside its nodes, it's not easy to use
MBR of event to calculate the number of multiple search
paths at specified middle levels of original UB-tree
without accessing leaf nodes. The structure of R-tree
doesn't have this problem. For this reason, we choose
R-tree as the basis of our proposal in this paper.

3. Improve Average Response Time
3.1 Basic Idea

The basic idea is that for the multiple events arriving
at same time, the relative workloads are estimated
respectively. The workload is defined as the number of
search at a specified level.

There are two steps for the multiple events filtering
algorithm (called BatchSearch later) 1) first based on
their different numbers of search paths on R-tree by
search R-tree to a specified level 2) and then do filtering
(R-tree search from the specified level) event by event
with SJF policy with assumption that the more the
number is, the higher the workload is.
Because the algorithm used at step 2 is similar to original
R-tree search algorithm, we introduce only the data
structure and algorithm to estimate the workload in
step 1. We assume the reader has enough background
about R-tree.
3.2 Data Structures to Estimate Workload

WorkloadTable is an array of items with structure
shown in Fig.1. Each item corresponds to one event.
The Workload in Fig.1 is the number of nodes located at
the ending of search paths stopped at the specified level.
WorkloadTable is filled and sorted by function
EstimateWorkload as introduced as Fig.2

A data structure named IntersectBuffer Fig.2 is used
to record events whose MBRs intersect with those of items
of one R-tree node which is located in the paths from
root to the specified level.

Event Workload List of nodes

Item

Workload Table

Fig.1 Data Structure used to Estimate Workload

The number of items in one intersect buffer is same as
that of one R-tree node. The 1st item of intersect buffer
corresponds the 1st item of R-tree node. The content of
the 1st item of IntersectBuffer is the list of eventIDs
whose MBRs intersect with that of the 1st item of the
R-tree node. The others items have similar contents.

The algorithm to fill WorkloadTable is shown in Fig2.
In function EstimateWorkload, line 1 initializes the
IntersectBuffer of level 0 where there is only one item
with one pointer pointing to the bf Root node and all
events are assumed to intersect with MBR of this item.
The SJF can not be benefited by the main algorithm
BatchSearch with f Level valued 0, because all workloads

have same value 1.Line 2 call a recursive function
BatchIntersect to fill WorkloadTable, level 1 means
checking from root node. Line 3 sorts WorkloadTable
according to the number of search paths in ascending
order.

Fig.2 Algorithm to Estimate Workload

In function BatchIntersect, line 1-2, read one item

from IntersectBuffer of last level (the level nearer to
root) and gets all event IDs kept in the item. That item
corresponds to the item of R-tree node at last level which
includes the pointer pointing to CurrentNode. Line 3
checks the ending condition of recursive search and line
4 adds the WorkloadTable with the event IDs gotten at
line 1-2 and CurrentNode. Line 6-15 fill intersect buffer
of CurrentLevel. Line 16-18 search next level by
accessing subnodes of CurrentNode.

4. Model of Adaptive Search
For same batch events, the performance changes with
different possible values of R-tree Level. At the same time,
the number of events arriving at same time is not fixed,
the size of index changes dynamically also. In this section,
we will propose a self-adaptive model in order to filter
kinds of events with average response time same as or
close to the possible best time.
4.1 Performance Analysis

While filtering multiple events arriving at same time,
time cost to estimate workloads is overhead compared to
the processing with original R-tree search algorithm event
by event without the workload estimation. The overhead
becomes larger with the value increment of Level. At the
same time, because the higher the Level is, the more
accurate of workload estimation is, the efficiency of SJF
become more and more better with the value increment of
Level also. For the same batch events, the average
response time based on the BatchSearch is a function of
Level L. Their relationships can be described in the left
part of Fig.3 Because it has shape of concave as shown

論文 ＃＃これはあくまでサンプルです＃＃ DBSJ Letters Vol.3, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.3, No.2 3

on the leaf of Fig.3 with mark "Ideal and logical”. The
best level exits for the batch events with same event
number and it should be located between level 0 to level
TreeHeight-1. The best level changes for different number
of input events and size of index.

Fig.3 Changing of Average Response Time and Adaptive

Model

In order to get best average response time, the

BatchSearch should run with Level valued best level.

4.2 Adjust Best Level Dynamically According to
Statistic Information

The adaptive model is shown on the right of Fig.3, it is
built for filtering of batch events with same event number
arriving at same time. For events with different sizes
(numbers), their statuses will be kept in different buffers,
for example, entries of a status buffer array for batch
events with different sizes. The main function of the
model is to adjust best level dynamically for filtering of
different batch events with different numbers and sizes of
index.

If the current level is best level, we call the system is
stable. In stable status, the BatchSearch is executed with
Level valued best level. The number of update operations
(insert and delete) is monitored in stable status. After
some update operations, the height of index tree or data
distribution of index maybe be changed, it is necessary to
check the best level or adjust it if it changes. The system
becomes unstable then. The Threshold shown in Fig.3 is
the number to determine the time when the system enters
unstable status from stable status.

In unstable status, the best level can be checked by trying
all levels with same events naively, but it's not acceptable
for an dynamic system in practice. This overhead is not
neglected for a higher index tree or batch events with
larger number.Our model is that check current level and
its upper and lower levels (totally 3 levels) based on the
"Ideal and logical" changes of performance.

In unstable status, for events arriving batch by batch with
same size at different time, BatchSearch process these
batches of events with value changed in a way of
round-robin loop.

The input contents of BatchSearch change in the
sequence of arriving time like

(EventArrayNo1, CurrentLevel),
(EventArrayNo2, CurrentLevel -1),
(EventArrayNo3, CurrentLevel+1),
...,

(EventArrayNo3N, CurrentLevel+1)
N is the counter of loop.So in unstable status,system does
events filtering with Level} values same as or close to the
best level.

The average response times of three different levels
(called CTime, UTime, LTime in Fig.3 which correspond
to the average response time of current level, upper
level,lower level) are summed up and checked when the
loop ends. If CTime < UTime && CTime < Dtime) is true,
the system will enter stable status, because the current
level is the best level. Otherwise, moves the current level
towards to the direction of best level according to the
"Ideal and logical}" changes of BatchSearch performance
and restarts a new loop.

Because for every events filtering ,the input EventArray
of BatchSearch is different, so it's possible that the time
gotten at different levels doesn't change "ideally and
logically" when the loop counter N is very small, for
example 1. In this case as the line of " Unideal and
practical" shown in Fig.3, it is possible for system to
enter stable status, even the current level(A) is not best
level(B). It is also possible that
 CTime > UTime) && CTime > LTime
is true as shown at level(C). The adaptive model can not
work well in this case. But, if the value of loop counter N
is bigger enough, the "Unideal and practical" line will
change in the same concave shape or close up to " Ideal
and logical" line statistically. The adaptive model is
expected to work well if the loop number is big enough. It's
managable for a long time running pub/sub system.
5. Results of Evaluation
5.1 Environment
The algorithm is designed for main memory structure and
evaluated in a 12D space. Both subscriptions and events
are created randomly as unsigned short. The algorithm is
implemented on R*-tree3 with index node capacity 10 and
leaf node capacity 20 which are default values. The
hardware platform is Sun Fire 4800 with 4900MHz CPUs
and 16G memory. The OS is Solaris 8.
5.2 Evaluation of BatchSearch

The evaluation results are shown in Fig.4. Fig.4-a
shows that the best level changes slowly with increment
of index size. Fig.4-b compares the average response time
of BatchSearch algorithm to that which just inputs events
to original R*-tree in a random sequence. Further, it
shows that the cost to estimate workload (algorithms
shown in Fig.1 can be neglected compared to average
response time. It also shows that the larger the size of
input is, the more the average response time can be
improved. The maximum is nearly up to 50% in our
evaluation.

Fig.4-c and Fig.4-d show the changing of response time
which are calculated with same and different events
gotten at different levels. There the index size is 1.5
million and the height of tree is 7。It shows that with
increment of loop counter, the trembling of response time
marked "Unideal and practical" in Fig.3, iscaptured

3 Version 0.62b. http://www.cs.ucr.edu/~marioh/spatialindex

論文 ＃＃これはあくまでサンプルです＃＃ DBSJ Letters Vol.3, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.3, No.2 4

clearly in Fig.4-c (loop=4 or loop=16, Different events),
becomes more and more stable with shape of ideal concave
and merge into the line gotten with the same events at
each level.

(a)Best Level (b)Effectiveness

(c) Loop counter and best (d)Loop Number and best

 level(intput size=4) level(input size=64)

Fig.4 Evaluation Results of the BatchSearch

The l Fig.4-d shows the performance of unstable status
compared to the performance without using the adaptive
model (same as the "No BatchSearch" performances
shown in Fig.4-b) and the possible best performance.
There, the size of index changes from 0.5 million to 2.6
millions, the Threshold is 300,000, and the loop counter is
64. When the system becomes stable, 300,000 objects
(subscriptions) are inserted into the index.
So the left part of Fig.5 shows the performance of unstable
status.

We can find that performance with the adaptive model is
much better than the performance without the adaptive
model, the performance differences are almost at same
level as those shown in Fig.4-b which are gotten at
stable status. The performance of the adaptive model even
in unstable status is very close to the possible best
performance as shown in Fig.5-d. We can say that with
the adaptive model, the arrays of events can be filtered
with response time close to the possible best time. The
difference can be neglected compared to the performance
without adaptive model.
6. Related Work
A lot of algorithms related to event filtering have been
proposed. They are proposed for publish/subscribe
systems [2], [4], [5], [6], for continuous queries [1] [8] [9]
and for active database [3].

Predicate indexing techniques have been widely applied.
There,a set of one-dimensional index structures are used
to index the predicates in the subscriptions, the
representive algorithm is called counting algorithm [4]
and Hanson algorithm[4]. They differ from each other by
whether or not all predicates in subscriptions are placed

in the index structures.
In [6] and [7], multidimensional index based event

filtering is proved to be feasible and efficient. It's the basis
of this paper.

Event filtering is one critical step of continuous queries.
In [1], predicate index is built based on Red-Black tree,
there algorithm is similar to bruteforce that scans the
Red-Black tree for event filtering each time. Count
algorithm was used in [8], [9].

[9] implemented routing policies to let faster operators
filter out some tuples before they reach the slower
operators. In [10], queries are optimized based on rate of
input.

The problem of multiple events arriving at same time
with different workloads is not considered in above
techniques.
7. Conclusion
In this paper, for pub/sub system, we first proposed an
event filtering algorithm with multiple events as input
based on R-tree. Further an adaptive model is designed
to filter multiple events for different event numbers and
changing index size. According to the evaluation results,
the average response time can be improved maximally up
to nearly 50% with our algorithm and the adaptive model
can work well with average response time same as or close
to the possible best time in both stable and unstable
statuses.
[文献］
[1] S. Chandrasekaran and M. J. Franklin: “Streaming

queries over streaming data”, VLDB, pp.203-214(2002)
[2] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A.

Ross, and D. Shasha: “Filtering algorithms and
implementation for very fast publish/subscribe
systems”, SIGMOD, pp.115-126(2001)

[3] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park, and A.
Vernon: “Scalable trigger processing”, ICDE,
pp.266-275(1999)

[4] T.W.Yan and H.Garcia-Molina: “The shift information
dissemination system”. ACM Trans. Database Syst.,
24(4), pp.529-565(1999)

 [5] B.Wang, W. Zhang, and M. Kitsuregawa: “Design of
 b+tree-based predicate index for efficient event
 matching”, APWEB, pp.537-547(2003)
[6] B.Wang, W. Zhang, and M. Kitsuregawa: ” UB-Tree
 based effcient predicate index with dimension
 transform for pub/sub system”, DASFAA,

pp63-74.(2004)
[7]W.Zhang. Performance analysis of Ub-tree indexed

publish/subscribe system. Master’s thesis, Department
of Information and Communication Engineer, The
University of Tokyo, 2004

[8] J. Chen, D. J. DeWitt, F. Tian, and Y.Wang: ”
Niagaracq: a scalable continuous query system for
internet databases”, SIGMOD, pp. 379-390(2000)

[9] S. Madden, M. Shah, J. M. Hellerstein, and
 V. Raman: ”Continuously adaptive continuous queries
 over streams”, SIGMOD, pp.49-60 (2002)
[10] S. Viglas and J. F. Naughton: “ Rate-based query
 optimization for streaming information sources”,

SIGMOD, pp.37-48(2002)

論文 ＃＃これはあくまでサンプルです＃＃ DBSJ Letters Vol.3, No.2

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.3, No.2 5

王 波涛 Botao WANG
Research Fellow at Institute of Industrial Science, the
University of Tokyo. He received the Ph.D degree in
computer science in 2000 from Kyushu University. His
research interests include spatial-temporal database,
parallel processing and data stream. He is a member of
DBSJ.
張 旺 Wang ZHANG
Ph.D student of Graduate School of Information Science
and Technology, the University of Tokyo. He received the
Master degree in information engineering in the above
gradate school. His research interests include data
clustering and data stream. He is a student member of
DBSJ.
喜連川 優 Masaru KITSUREGAWA
Professor and the director of center for information at
Institute of Industrial Science, the University of Tokyo．
He received the Ph.D degree in information engineering in
1983 from the University of Tokyo. His research interests
include parallel processing and database engineering. He
is a member of steering committee of IEEE ICDE, PAKDD
and WAIM, and has been a trustee of the VLDB
Endowment. Now he servers as general chair of
ICDE2005. He was the chair of data engineering special
interest group of Institute of Electronic, Information,
Communication, Engineering, Japan, the chair of ACM
SIGMOD Japan, Chapter. He is currently a trustee of
DBSJ.

