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Abstract. The ever-increasing popularity of peer-to-peer (P2P) sys-
tems provides a strong motivation for designing a dependable P2P system.
Dependability in P2P systems can be viewed from two different perspec-
tives, namely system reliability (the availability of the individual peers)
and system performance (data availability). This paper looks at depend-
ability from the viewpoint of system performance and aims at enhancing
the dependability of unstructured P2P systems via dynamic replication,
while taking into account the disproportionately large number of ‘free
riders’ that characterize P2P systems. Notably, the sheer size of P2P
networks and the inherent heterogeneity and dynamism of the environ-
ment pose significant challenges to the improvement of dependability in
P2P systems. The main contributions of our proposal are two-fold. First,
we propose a dynamic data placement strategy involving data replica-
tion, the objective being to reduce the loads of the overloaded peers.
Second, we present a dynamic query redirection technique which aims at
reducing response times. Our performance evaluation demonstrates that
our proposed technique is indeed effective in improving user response
times significantly, thereby increasing the dependability of P2P systems.

1 Introduction

The ever-increasing popularity of peer-to-peer (P2P) systems provides a strong
motivation for designing a dependable P2P system. Dependability in P2P sys-
tems can be viewed from two different perspectives, namely system reliability
(the availability of the individual peers) and system performance (data availabil-
ity). Incidentally, the peers are typically distributively owned, thereby implying
that we do not have much control over the availability of the individual peers
and hence, this paper specifically addresses performance issues concerning data
availability. We define a performance-dependable P2P system as one that the
users can rely on for obtaining data files of their interest in real-time. In other
words, the data should largely remain available as well as easily accessible to
users. Hence, we shall use the term “dependability” throughout this paper to



imply “performance-dependability”. Moreover, we shall use the terms ‘peers’ and
‘nodes’ interchangeably throughout this paper.
Given the unprecedented growth of data in existing P2P systems such as

Gnutella[5] and Kazaa[7], efficient data management has become a necessity to
provide real-time response to user requests. Incidentally, it is now well-known
that most peers in a P2P system do not offer any data i.e., a majority of the
peers typically download data from a small percentage of peers that offer data[1].
As a result of such skews in the initial data distribution among the peers, a
disproportionately high number of queries need to be answered by a few ‘hot’
peers, thereby leading to severe load imbalance throughout the system. The
job queues of the ‘hot’ peers keep increasing, thereby resulting in significantly
increased waiting times and consequently high response times for queries directed
to them. This decreases the dependability of the system. The sheer size of P2P
networks and the inherent heterogeneity and dynamism of the environment pose
significant challenges to the improvement of dependability in P2P systems. This
paper focusses on improving the dependability of unstructured P2P systems via
dynamic data replication. The main contributions of our proposal are two-fold.

1. We propose a dynamic data placement strategy involving data replication,
the objective being to reduce the loads of the overloaded peers.

2. We present a dynamic query redirection technique which aims at reducing
response times.

Our performance evaluation demonstrates that our proposed technique is in-
deed effective in reducing user response times significantly, thereby increasing
the dependability of P2P systems. The remainder of this paper is organized as
follows. Section 2 discusses related work, while Section 3 presents an overview
of our proposed system. Section 4 presents the proposed replication and query
redirection strategy, while Section 5 reports our performance evaluation. Finally,
we conclude in Section 6 with directions for future work.

2 Related Work

Existing P2P systems such as Pastry [11] and Chord [12] emphasize specifically
on query routing, while the work in [3] proposes routing indices, the primary
objective being to forward a query only to those peers which are likely to con-
tain the answers to the query. Unlike broadcast approaches, routing indices at-
tempt to avoid flooding the network with queries. Replication has also been
studied in P2P systems primarily for improving search operations. The proposal
in [6] investigates optimal replication of content in P2P systems and develops
an adaptive, fully distributed algorithm which dynamically replicates content
in a near-optimal manner. Notably, replication strategies for P2P systems have
also been presented in [2, 8], but since the objective of replication in these works
is to facilitate search, these works do not specifically address issues concerning
dependability.



Dependability via load-balancing in structured P2P systems (using distributed
hash tables or ‘DHTs’) has been addressed in [4, 10]. Moreover, the work in [13]
discusses dependability via inter-cluster and intra-cluster load-balancing in a
P2P system which is divided into clusters based on semantic categories. Note
that our work differs from these works in that we address dependability issues in
unstructured P2P systems which neither impose a logical structure on the P2P
system (as in [13]) nor assume DHT abstraction (as in [4, 10]).
Incidentally, our previous work [9] concerning load-balancing in spatial GRIDs

has some similarity with this work in that they both aim at reduction of response
times in wide-area environments. However, there are several major differences.
First, in contrast to this work, the proposal in [9] imposes a structure on the
system by dividing the entire system into sets of clusters. Second, replicating one
tuple of a spatial database in a spatial GRID entails data movement at most
in the Kilobyte range, while P2P data movements are usually in the Megabyte
range (e.g., for music files) or even in the Gigabyte range (e.g., for video files),
the implication being that the communication cost of data movement can be
expected to be significantly higher in case of P2P systems. Third, for spatial
GRIDs, prevention of data scattering is a major concern, which is not really a
concern in case of P2P systems. Fourth, in case of spatial GRIDs, individual
nodes are usually dedicated and they may be expected to be available most of
the time, while for P2P systems, nodes may join or leave arbitrarily at any point
of time. Fifth, the work in [9] aims at load-balancing, while this work investigates
dynamic replication issues in detail without any explicit load-balancing aims.

3 System Overview

In our proposed system, each peer is assigned a globally unique identifier PID
and for search, we adopt a broadcast-based approach[5]. For detecting hotspots,
every peer maintains its own access statistics i.e., the number of accesses made
to each of its data files. Moreover, for each data file Di, each peer keeps track
of all the peers which have downloaded Di from itself. Additionally, every peer
provides a certain amount Spacei of its disk space to the P2P system for storing
the replicas of other peers’ ‘hot’ data files. In other words, Spacei is the available
disk space at each peer that can be used for replication purposes, whenever
the need arises. To optimize the usage of Spacei at each peer, we adopt the
commonly used LRU (Least Recently Used) scheme. To address dynamically
changing popularities of files in P2P systems, each peer checks the number of
accesses Nk (for recent time intervals) for each data file replicated at itself and
deletes files, for which Nk falls below a pre-specified threshold. Additionally, in
consonance with most existing works concerning replication in P2P systems, we
sacrifice replica consistency for improving response times.
We define distance between two peers as the communication time τ between

them and two peers are regarded as neighbours if they are directly connected
to each other. Messages concerning load status and available disk space are
periodically exchanged between neighbouring peers. Additionally, we define the



load LPi of a peer Pi as the number of queries waiting in Pi’s job queue. Given
that the loads of two peers Pi and Pj are LPi and LPj respectively and assuming
without loss of generality that LPi > LPj , the normalized load difference ∆
between Pi and Pj is computed as follows:

∆ = ((LPi × CPUPi)− (LPj × CPUPj ))/(CPUPi + CPUPj ) (1)

where CPUPi and CPUPj are the processing capacities of Pi and Pj respec-
tively. Moreover, we assume that peers know transfer rates between themselves
and other peers and every peer has knowledge concerning the availability in-
formation of its neighbouring peers. In practice, after the system has been in
operation for a significant period of time, the peers will have exchanged several
messages between themselves and over a period of time, such information can be
obtained by the peers. Given that very ‘hot’ files may be aggressively replicated
across hundreds of peers in a very transitive manner and some peers may quickly
become out of reach of the primary copy owner, each peer keeps track only of
the replications that it has performed i.e., whenever a peer replicates any of its
data files at other peers, it notes the PIDs of those peers. For example, when a
‘hot’ data file Di is replicated by peer Pi to another peer Pj , Pi will note that Di

has been replicated at Pj . However, if subsequently Pj replicates Di at another
peer Pk, Pj (and not Pi) would note this replication information.

4 Proposed Replication and Query Redirection Strategy
for P2P systems

This section presents our proposed strategy for replication and query redirection
in P2P systems.

Initiation of replication

Each peer Pi periodically checks the loads of its neighbouring peers and if it finds
that its load exceeds the average loads of its neighbouring peers by 10%, it decides
that it is overloaded and initiates replication by selecting the ‘hot’ data files. For
hotspot detection purposes, Pi maintains its own access statistics comprising a
list, each entry of which is of the form (dataID,f), where dataID represents the
identifier of a specific data file and f indicates the number of times the data
file had been queried. Notably, in order to deal with the inherent dynamism of
P2P environments where the popularity of data files typically change from time
to time, we take only recent access statistics information into consideration for
detecting hotspots. Pi sorts all its data files in descending order of the access
frequencies of the files. For identifying hotspots, Pi traverses this sorted list of
data files and selects as ‘hot’ files the top N files whose access frequency exceeds
a pre-defined threshold Tfreq. The number of replicas to be created for each
‘hot’ data file Di is decided by the number of accesses to Di. In particular, for
every Nd accesses to Di, a new replica is created for Di. Notably, the values of



Tfreq and Nd are pre-specified by the system at design time. Now the destination
peer(s) where Di should be replicated must be determined efficiently. Hence, we
shall now discuss how the destination peer(s) for Di are selected.

Proposed Replication Strategy

The ‘hot’ peer PHot considers the following selection criteria for selecting a des-
tination peer PDest for replication of Di.

– PDest should have a high probability of being online (available).
– PDest should have adequate available disk space for replication. If PDest does
not have sufficient disk space, Di’s replica at PDest may be subsequently
deleted by the LRU scheme used at PDest in favour of hotter data items.

– Load difference between PHot and PDest should be significant enough to call
for replication at PDest.

– Transfer time TRep between PHot and PDest should be minimized. TRep can
be computed as Fi ÷ Ti, where Fi is the size of the file to be replicated and
Ti is the transfer rate of the network connection between PHot and PDest.
Since files in P2P systems are typically in the range of Megabytes (for music
files) and Gigabytes (for video files), TRep can be expected to be a significant
cost. Interestingly, Di is a ‘hot’ data file, the implication being that Di is
likely to exist in the disk of at least some of the peers which had earlier
queried for Di and downloaded Di from PHot. Hence, we propose that PDest

should be chosen from the peers which have already downloaded Di. This
has the advantage of making TRep effectively equal to 0.

Based on the above criteria for selecting PDest, we shall now present our repli-
cation strategy. For each ‘hot’ data file Di, the ‘hot’ peer PHot sends a message
to each peer which has downloaded Di during recent time intervals, enquiring
whether a copy of Di is still stored in them. (Some of the peers which have
downloaded Di may have subsequently deleted Di.) The peers in which a copy
of Di exists reply to PHot with their respective load status information as well
as the amount of available disk space that they have for replication purposes.
Among these peers, only those with high availability and sufficient available disk
space for replication of Di are candidates for being the destination peer. Now,
among these candidate peers, PHot first puts the peer with the lowest load into a
set which we designate as Candidate. Additionally, peers whose normalized load
difference with the least loaded peer is less than δ are also put into Candidate.
Note that δ is a small integer, the significance of δ being that two peers are con-
sidered to be having approximately the same load if the load difference between
them is less than δ. Then the peer in Candidate whose available disk space for
replication is maximum is selected as the destination peer. Figure 1 depicts the
algorithm for selecting the destination peer.

Proposed technique for Query Redirection

When a peer PIssue issues a query Q for data item Di to a ‘hot’ peer PHot, PHot

needs to make a decision concerning the redirection of Q to a peer containing



Algorithm Select DestPeer
PHot: The ‘hot’ peer which needs to select a destination peer for its ‘hot’ data file Di

SetPDownload: Set of peers which have downloaded Di from PHot

PHot sends a message to each peer in set SetPDownload enquiring whether they still
have a copy of Di and if so, their load and available disk space information.

Upon receiving the replies, PHot deletes those peers from SetPDownload that do not
have a copy of Di.
PHot deletes the peers with low availability from SetPDownload.
PHot deletes the peers, whose available disk space is not adequate for Di, from
SetPDownload.
if (PDownload is an empty set) {

end
} else {

PHot selects the peer Pmin with the least load from SetPDownload and puts it
into a set Candidate.

Peers of SetPDownload whose normalized load difference with Pmin falls below δ
are put into Candidate.
Among the members of Candidate, the peer with maximum available disk space
for replication is selected as the destination peer.

}
end

Fig. 1. Algorithm for selecting the destination peer

Di’s replica, if any such replica exists. The peer PRedirect to which Q should be
redirected must be selected such that Q’s response time is minimized. In our
proposed strategy, PHot checks the list LRep comprising the PIDs of the peers
where it had replicated Di and selects PRedirect based on the following criteria:

– PRedirect should have a high probability of being online (available).
– Load difference between PHot and PRedirect should be significant.
– Transfer time between PRedirect and PIssue should be low.

In consonance with the above criteria, our query redirection technique works as
follows. The ‘hot’ peer PHot first selects a set of peers which contain a replica
of the data file Di associated with the query Q and whose load difference with
itself exceeds TDiff . TDiff is a parameter which is application-dependent and
also depends on how one considers the system to be imbalanced. A small value
of TDiff would encourage replications (albeit at the cost of disk space), while a
large value of TDiff would possibly result in lesser number of replications. Note
that the normalized load difference is compared with TDiff to take the hetero-
geneity in processing capabilities of different peers into consideration. Among
these selected peers, the peer with the maximum transfer rate with the query
issuing peer PIssue is selected for query redirection. Notably, this is in conso-
nance with our objective of reducing response times. Figure 2 depicts the query
redirection algorithm.



Algorithm Query Redirect
LRep: List comprising the PIDs of peers which contain a replica of the ‘hot’ data file Di

associated with the query Q.
PIssue: The peer which originally issued the query.
PHot: The ‘hot’ peer which needs to redirect Q.

for each peer Pj in LRep {
PHot checks the normalized load difference LD between itself and Pj .
if ( LD ≥ TDiff ) {

PHot puts Pj into a set SetRedirect.
}

}

PHot selects the peer, whose transfer rate with PIssue is maximum from SetRedirect.
end

Fig. 2. Query redirection algorithm

5 Performance Study

We conducted extensive simulation experiments to evaluate the performance
of our proposed replication strategy. Our simulation environment comprised a
machine running the Solaris 8 operating system. The machine has 4 CPUs, each
of which has a processing power of 900 MHz. Main memory size of the machine
is 16 Gigabytes, while the total disk space is 2 Terabytes. We used a maximum
of 4 neighbouring peers corresponding to each peer. The interarrival time for
queries arriving at each peer was fixed at 1 millisecond. Table 1 summarizes the
parameters used for our performance study. In Table 1, z is a parameter whose
value equals (1 - zipf factor). This implies that when z=0.1, the skew is high
and when z=0.9, the skew is low. Note that in all our experiments, in order to
model free-riders, we directed queries only to 1% of the total number of peers in
the system and these peers become the ‘hot’ peers (data providers), the rest of the
peers being free-riders. For all our experiments, the system was allowed to run for
sometime for collection of access statistics information and we started recording
the results only after the system had reached a stable state. Hence, all our
experimental results indicate the performance of our proposed strategy during
the stable state. Additionally, in all our experiments, the ‘hot’ peers always
remained available (online), while the availability of other (non-hot) peers was
randomly selected in the range of 10% to 90%. Our main performance metric is
query response time. For the sake of convenience, we shall henceforth refer to our
proposed dynamic replication scheme as DRep (Dependability via Replication)
and the policy of not performing replications as NoRep (no replication).

Performance of DRep

Figure 3 indicates the results for the default values of the parameters i.e., the case
in which the total number of peers was 1000, queries were directed to only 10 of



Parameter Default value Variations

No. of peers 1000 5000, 10000

No. of peers to which queries are directed 10 50,100

No. of queries 20000 100000, 200000

z 0.1 0.5, 0.9

Number of replicas 4

Interarrival time between queries 1ms

Transfer rate between peers 0.5 Mb/s to 1 Mb/s

Latency 10 ms to 20 ms

Size of a file 1 MB to 10 MB

Table 1. Parameters used in Performance Study

these peers, the number of replicas initially being 4 and z=0.1. Figure 3a depicts
the average response times at each of the 10 ‘hot’ peers. Observe that there is
significant reduction of average response times at each of the ‘hot’ peers, the
reduction in average response time being maximum for the hottest peer. Further
investigation of the experimental log files revealed that DRep was able to reduce
the average response time of the hottest peer by upto 50%. Such reduction in
average response time is possible owing to load reduction at the ‘hot’ peers as
shown in Figures 3b and 3c, which present two snapshots (taken at different
points in time) of the load distribution at the ‘hot’ peers.
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Fig. 3. Performance of DRep

Variations in Workload Skew

Now let us examine the effect of variations in workload skews among the 10
‘hot’ peers on the average query response times. For this purpose, we varied z
to 0.5 and 0.9. Figure 4a displays the average response time of all the queries
in the system for different values of z. The results show that DRep significantly
outperforms NoRep for variations in workload skews. However, the gain in terms
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of average response time is higher in case of highly skewed workload (i.e., z=0.1)
and the gain in average response time keeps decreasing as the workload skew
decreases. This occurs because as the workload skew decreases, the load becomes
more evenly distributed among the ‘hot’ nodes, the implication being that the
load at the hottest peer also decreases, thereby reducing the waiting times of
queries at the hottest peer. Figure 4b depicts the average response times at
the hot peers when z was fixed at 0.5, the explanations for these results being
essentially the same as the explanations for Figure 3.

Variation in the number of peers

Now we shall investigate the scalability of DRep with respect to the total number
of peers in the system. For this experiment, as the total number of peers in
the system is increased, the number of queries in the system is increased in
a proportional manner. This is in consonance with real-life situations because
as the number of peers in the system increases, more peers are likely to issue
queries, thereby increasing the number of queries circulating in the system. The
number of queries for systems comprising 1000, 5000 and 10000 peers was 20000,
100000 and 200000 respectively. Moreover, the number of ‘hot’ peers for systems
consisting of 1000, 5000 and 10000 peers was fixed at 10, 50 and 100 respectively
i.e., in each case, the number of ‘hot’ peers was 1% of the total number of peers
in the system. The number of replicas was initially 4. Figure 5 shows the average
response time of all the queries when the total number of peers was varied. The
results in Figure 5 demonstrate the scalability of DRep and indicate that DRep
provides more performance gain over NoRep as the number of peers increases
primarily because increased number of peers implies more options for performing
replication and more possibilities for query redirection. The implication is that
the load imposed on the ‘hot’ peers by queries on the ‘hot’ data files can be
distributed among a larger number of peers by replicating the ‘hot’ data files at
those peers.



6

12

18

24

1000 5000 10000

Tim
e (

10
4  se

c) 

Number of peers

NoRep
DRep

Fig. 5. Effect of varying the number of peers

6 Conclusion

The sheer scale, dynamism and heterogeneity of P2P environments coupled with
the presence of disproportionately large number of ‘free-riders’ pose significant
challenges to dependability (in terms of data availability) of P2P systems. In this
regard, we have proposed a novel strategy for enhancing the dependability of
P2P systems via dynamic replication. Our performance evaluation demonstrate
that our proposed technique is indeed able to enhance the dependability of P2P
systems by reducing response times significantly. In the near future, we plan to
extend this work by considering issues concerning replication of very large data
items such as video files.
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