
On Spatial Indexing in Peer-to-Peer Environments

Yilifu Anirban Mondal Masaru Kitsuregawa
Institute of Industrial Science

University of Tokyo, Japan
{yilifu,anirban,kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT
The unprecedented growth and increased importance of ge-
ographically distributed spatial data has created a strong
need for efficient sharing of such data among users. Interest-
ingly, the ever-increasing popularity of peer-to-peer (P2P)
systems has opened exciting possibilities for such sharing.
This motivates our investigation into spatial indexing in
P2P systems. While much work has been done towards
expediting search in file-sharing P2P systems, issues con-
cerning spatial indexing in P2P systems are significantly
more complicated due to overlaps between spatial objects
and the complexity of spatial queries. Incidentally, existing
R-tree-based structures for distributed environments (e.g.,
the MC-Rtree) are not adequate for addressing the sheer
scale, dynamism and heterogeneity of P2P environments.
Hence, we propose P2PR-tree (Peer-to-Peer R-tree), which
is a new R-tree-based indexing mechanism specifically for
P2P systems. The main features of P2PR-tree are two-fold.
First, it is hierarchical and performs efficient pruning of the
search space by maintaining minimal amount of information
concerning peers that are far away and storing more informa-
tion concerning nearby peers, thereby optimizing disk space
usage. Second, it is completely decentralized, scalable and
robust to peers joining/leaving the system. The results of
our performance evaluation demonstrate that it is indeed
practically feasible to share spatial data in a P2P system
and that P2PR-tree is able to outperform the MC-Rtree
significantly.

Keywords: Spatial indexing, P2P systems, R-tree.

1. INTRODUCTION
Spatial data occurs in several important and diverse applica-
tions associated with geographic information systems (GIS),
computer-aided design (CAD), resource management, de-
velopment planning, emergency planning and scientific re-
search. During the last decade, tremendous improvements in
data gathering techniques have contributed to an unprece-
dented growth of available spatial data at geographically

distributed locations and this coupled with the trend of in-
creased globalization has created a strong motivation for
the efficient global sharing of such data among users. Inter-
estingly, the growing importance and ever-increasing pop-
ularity of peer-to-peer (P2P) systems such as Napster[13]
and Kazaa[10], which have the capability of facilitating data
sharing among hundreds of thousands of distributively-owned
computers worldwide, has opened new and exciting possi-
bilities for global sharing of spatial data. This motivates
our investigation into spatial indexing in P2P systems. In-
terestingly, spatial data sharing in P2P systems can be of
tremendous benefit to users looking for a hotel room or a
museum or some landmark within a certain spatial location.

While much work has been done towards expediting search
in file-sharing P2P systems [3, 15, 19], issues associated
with the indexing of spatial data in P2P systems have re-
ceived little attention. Understandably, several challenging
issues such as overlaps between spatial objects, avoidance of
data scattering and the complexity of spatial queries makes
the problem of spatial data indexing in P2P systems sig-
nificantly more complicated than that of sharing files. In
this regard, DHT(Distributed Hash Table) based P2P sys-
tems[19], are not adequate for indexing spatial objects pri-
marily because they may potentially result in scattering the
spatial data over a large number of peers, thereby resulting
in considerable overlap and consequently causing even small
window queries to access a large number of peers. However,
we believe that the time has come to investigate the pos-
sibility of deploying P2P systems for sharing spatial data
globally.

Incidentally, spatial indexes have been extensively researched
in centralized environments (e.g., the R-tree[8], the R*-tree[1],
the R+-tree[18]) as well as in traditional distributed domains
such as clusters (e.g., the dR-tree [12], the M-Rtree[11] and
the MC-Rtree [16, 17]). However, existing R-tree-based
techniques for distributed environments are not adequate
for P2P environments for two reasons. First, peers can
join/leave anytime in P2P systems and the existing tech-
niques have not been designed to deal with this kind of
dynamism. Second, the existing techniques use centralized
mechanisms comprising a centralized node which supervises
and directs queries to all other nodes in the system. How-
ever, we believe that such centralization is not appropriate
for P2P systems partly due to the fact that all updates and
searches passing through a centralized peer may result in
severe performance problems (and even more so if the cen-

YILIFU
DEWS2004 7-C-02

tralized peer goes offline1) and partly because it is practi-
cally extremely challenging to maintain updated information
at a centralized peer when data can be added/deleted au-
tonomously by any peer in the entire system. In essence, a
completely decentralized spatial indexing technique, which
is scalable enough to handle hundreds of thousands of peers
and also dynamic enough to deal with peers joining/leaving
the system anytime, is called for.

Notably, important ongoing grid-related projects such as the
GRID Physics Network (GriPhyN)[14] and the European
DataGRID[4] have the capability of sharing data which is
expected to be in the multi-terabyte range. Our proposal
differs from these works mainly in two ways. First, individ-
ual nodes in spatial GRIDs are usually dedicated and they
may be expected to be available most of the time, while for
P2P systems, nodes may join or leave arbitrarily at any point
of time. Second, given that computers in spatial GRIDs are
owned by organizations, we can have considerable amount
of centralized control in GRIDs. In contrast, the individ-
ual peers in P2P systems are usually distributively owned,
thereby precluding the possibility of any kind of centralized
control.

This paper proposes the P2PR-tree (Peer-to-Peer R-tree)
scheme for supporting efficient spatial indexing in P2P sys-
tems. The main features of P2PR-tree are two-fold.

1. It is hierarchical and performs efficient pruning of the
search space by maintaining minimal amount of infor-
mation concerning peers that are far away and storing
more information concerning nearby peers, thereby op-
timizing disk space usage.

2. It is completely decentralized, scalable and robust to
peers joining/leaving the system, thereby making it
well-suited to P2P environments.

We conducted simulation experiments to test the effective-
ness of P2PR-tree for spatial select (window) queries. The
results indicate that it is indeed practically feasible to share
spatial data in a P2P system and that P2PR-tree is able
to outperform the MC-Rtree significantly. The remainder
of this paper is organized as follows. Section 2 discusses
related work, while Section 3 presents an overview of our
proposed system. Section 4 discusses our proposed scheme
for spatial indexing in P2P environments, while Section 5
reports our performance evaluation. Finally, we conclude in
Section 6 with directions for future work.

2. RELATED WORK
The problem of spatial indexing has motivated several re-
search efforts. In this regard, the R-tree [8] is one of the most
popular and widely used spatial index structures. Each spa-
tial data object in the R-tree is represented by a Minimum
Bounding Rectangle (MBR). Leaf nodes in the R-tree con-
tain entries of the form (oid, rect) where oid is a pointer to
the object in the database and rect is the MBR of the object.
Non-leaf nodes contain entries of the form (ptr, rect) where

1Irrespective of how a centralized peer may be selected, no
guarantee can be provided about the peer remaining online.

ptr is a pointer to a child node in the R-tree and rect is the
MBR that covers all the MBRs in the child node. Figure 1a
depicts a set of data rectangles organized in an R-tree, while
Figure 1b indicates how they are indexed by an R-tree with
fanout 3. The bounding rectangles at each level of the R-tree

A

B

C

D
E

F

G

R1

R2

R3

X

Y

0
0

1

1

H

I

(a) Data rectangles
organized in an R-tree
(data rectangles are
shaded in black)

Root Node

A B C D E F G H I

R1 R2 R3

(b) The corresponding
R-tree

Figure 1: The R-tree

can overlap and this may possibly lead to an R-tree search
traversing multiple paths down the tree, thereby resulting
in increased number of disk accesses . With the objective
of reducing such overlaps, some variants of the R-tree, such
as the R+-tree [18] and the R*-tree [1] have been proposed.
While the R+-tree avoids overlapping rectangles in the in-
termediate nodes of the tree, the R*-tree gives preference
to squarish covering boxes with the objective of reducing
overlaps.

R-tree-based distributed spatial indexes include the M-Rtree
[11], MC-Rtree [16] and the dR-tree [12]. In case of the M-
Rtree, all the internal nodes of the parallel R-tree are stored
at one single dedicated machine that is regarded as the mas-
ter server, while the leaf nodes are declustered across several
other machines. The leaf level at the master server contains
the (MBR, siteid, pageid) tuples for each global leaf node.
In order to identify the page and site where the leaf page is
located, the (siteid, page id) is used. An improvement to the
M-Rtree is the MC-Rtree where the master node contains
only the client ids of the data nodes (and not page ids), while
the data rectangles are kept indexed by R-trees in the client
machines. Intuitively, MC-Rtree exploits parallelism better
than the M-Rtree since the client machines find the page ids
in parallel. The dR-tree uses an R-tree-based two-tier in-
dexing mechanism which facilitates efficient data migration
and load-balancing in clusters.

Ongoing research efforts aimed at global sharing of spatial
data are essentially GRID-related and include the GRID
Physics Network (GriPhyN)[14], the European DataGRID[4],
the Earth Systems GRID (ESG)[7] and the NASA Infor-
mation Power GRID (IPG)[9].While the GriPhyN project
and the European DataGrid project both aim at employing
GRIDS for improving scientific research which require effi-
cient distributed handling of data in the petabyte range, the
ESG project aims at facilitating detailed analysis of huge
amounts of climate data by a geographically distributed

community via high bandwidth networks. The IPG project
attempts to improve existing systems in NASA for solving
complex scientific problems efficiently. More recently, an
R-tree-based indexing structure for P2P systems has been
proposed in [6] in the context of sensor networks. The pro-
posed index structure in [6] can be interpreted as a P2P
version of the centralized R-tree. However, our work differs
from the proposal in [6] in several ways. Here, we state only
two of the major differences. First, our approach is com-
pletely decentralized without any notion of cluster leaders,
while the work in [6] assumes the existence of cluster lead-
ers. Second, the execution of nearest neighbour queries have
been optimized in [6], while we focus on optimizing window
queries.

3. PROBLEM OVERVIEW
Given a set of hundreds of thousands of geographically dis-
tributed and distributively owned data providing peers, the
problem is to search efficiently for a given spatial object such
that the queried object can be retrieved within response
times that would be acceptable to most users.

Every peer has a globally unique identifier peer id (when a
peer leaves the system and then joins the system, the ID
remains preserved.) We need to adopt any existing iden-
tification scheme used for P2P systems. Every peer stores
data concerning certain spatial regions. Note that spatial
attributes usually remain relatively static, but non-spatial
attributes may change e.g., a hotel’s geographical location
can be reasonably expected to remain the same over a sig-
nificantly long period of time, but the number of available
rooms in the hotel can change very frequently. Moreover, ev-
ery incoming query is assigned a unique identifier Query id
by the peer Pi at which it arrives. Query id consists of
peer id and tm, where tm is a distinct number generated
by Pi using the time of arrival of the query as a seed. Ob-
serve that this ensures uniqueness of Query id since more
than one query cannot arrive at the same peer at exactly
the same time.

We define a peer Pi as relevant to a query Q if it contains at
least a non-empty subset of the answers to Q, otherwise Pi

is regarded as irrelevant w.r.t. Q. Note that it is possible
for more than one peer to store information concerning the
same spatial region and possibly even the same spatial ob-
jects. Moreover, it is not necessary that each peer indexes all
the spatial objects that are within the covering MBR of the
region that it indexes. This may be primarily attributed to
the fact that the owner of each peer autonomously decides
the spatial objects about which he wishes to store informa-
tion. We shall henceforth designate the covering MBR of
the region indexed by a peer as the peerMBR of that peer.

Deciding upon the amount of information that a peer must
maintain about the data stored at other peers in the system
represents a trade-off between information maintenance cost
(number of messages and index maintenance overhead) and
search efficiency (response time and number of messages) .
If a peer maintains no information concerning other peers,
search has to be performed by broadcast which results in
flooding the network with queries and possibly increased
user response times. On the other hand, if a peer main-
tains full information concerning other peers, search effi-

ciency may be increased significantly albeit at the cost of
high maintenance. Moreover, the information may not fit
in main memory, thereby necessitating disk I/Os to access
the information. More importantly, given that peers may
join/leave the system at any time and a very large number
of data items may be added or updated or deleted within a
very short time interval, it is not a practically viable option
for a peer to maintain full information about other peers.
Keeping this in mind, our approach maintains some infor-
mation about other peers to facilitate indexing. However,
in this paper, we do not specifically investigate the opti-
mal granularity at which a peer should maintain information
about other peers and hence, we leave granularity issues to
further study.

4. A DISTRIBUTED SPATIAL INDEXING
SCHEME FOR P2P ENVIRONMENTS

This section presents our proposed P2PR-tree (Peer-to-Peer
R-tree) spatial indexing scheme for efficiently locating ob-
jects in spatial P2P environments. In case of P2PR-tree, the

Figure 2: Creating a hierarchical static decomposi-
tion of space

universe is first divided statically into a set of blocks (each
block being a rectangular tile). The set of blocks will consti-
tute level 0 of our proposed index as we shall see later. Each
block is statically divided into a set of groups (each group is
a rectangular tile) and the set of groups constitute level 1 of
our index.

The static decomposition of space has an important advan-
tage from the perspective of P2P systems. Whenever a new
peer joins the system, the newcomer just needs to contact
one peer which will inform it about the covering MBRs of the
blocks and at least one peer in each block. Using this block
structure information, the peer can decide which block(s)
it belongs to. (In case the region indexed by a peer over-
laps more than one block, the peer will be assigned to both
blocks.) Once the peer knows its block(s), it contacts one
peer inside its block for the group-related MBR information
and at least one peer inside each group. Using the group
structure information, the peer will know which group it
belongs to. Once the peer assigns itself to that group, it
finds out which subgroup it should assign itself to and so
on. Note that this strategy optimizes disk spaces signifi-
cantly by maintaining minimal information about peers that
are far away and more detailed information concerning peers
that are nearby. Interestingly, this kind of static decomposi-
tion of space is able to deal efficiently with peers joining and
leaving the system. On the other hand, if we had dynam-
ically divided the universe into blocks, information about
any splits in blocks would have to be sent to an extremely

(a) peerMBRs within Block 1 (b) The corresponding index structure

Figure 3: Illustrative example depicting our indexing scheme

(a) Block 1’s peerMBRs after
P20 and P30 joins

(b) The resulting index structure after the join

Figure 4: Example to show the effect of peers joining

large number of peers. Moreover, in case of a dynamic way
of dividing the universe into blocks and groups, it would
have been extremely challenging to keep the block-related
and group-related information updated, given the dynamic
nature of P2P systems. However, the dynamic method of
splitting is an attractive option when the number of peers is
low since the dynamic method can deal with highly skewed
data distributions which the static technique cannot. Hence,
for levels other than block and group levels, we perform dy-
namic decomposition of space, as we shall see shortly. Each
group is dynamically divided into further rectangular tiles
and these set of tiles, designated as subgroups, forms level 2
of our index. Depending upon the circumstances, subgroups
may be dynamically divided further into sets of rectangular
tiles, which we shall designate as subgroups of level 3. Note
that we shall use the term subgroups generically throughout
this paper to indicate sets of rectangular tiles which form
level i of our index, where i ≥ 2. The maximum number
of peers in a group is pre-specified at design time and we
shall denote it by GMax. Moreover, the maximum number
of peers in subgroups (at different levels of the distributed

index) is also specified at design time and we shall refer to
it as SGMax.

Figure 2 indicates how the universe is divided into 4 blocks
(Block1, Block2, Block3 and Block4) and groups. Now let
us take a closer look at block 1 to understand detailed is-
sues concerning how P2PR-tree works. Figure 3a depicts the
distribution of peerMBRs in each of the 4 groups (namely
G1,G2,G3,G4) of block 1, while Figure 3b presents the corre-
sponding index structure. In Figure 3, P1,P2,P3,P4, P5,P6,
P8,P9,P10 denote the peerMBRs of peers whose peer ids are
1,2,3,4,5,6, 8,9,10 respectively. In Figure 3b, B1,B2,B3,B4
represent the covering MBRs of block1,block2,block3 and
block4 respectively. For the sake of clarity, we display the
index structure with special emphasis only on G1 and G2.

Observe that the number of peerMBRs in each group is not
the same e.g., while G1 has 4 peerMBRs, G3 has only 1
peerMBR. This kind of skew occurs primarily because the
static decomposition of space is not based upon the actual
data distribution during run-time. Given that peers may

join/leave the system at any time, the number of peerMBRs
corresponding to a given group can be reasonably expected
to keep changing dynamically, the implication being that
skews among groups are inevitable because it is not feasi-
ble to have a priori knowledge concerning the dynamically
changing data distributions in each of the groups. Similarly,
a moment’s thought indicates that such data skews may also
occur at any other level of our distributed index. Interest-
ingly, it is also possible for a peerMBR to overlap multiple
groups e.g., P3 overlaps both G1 as well as G2. In case a
peerMBR overlaps more than one group, the corresponding
peer will be assigned to both the groups. Hence, in the index
structure shown in Figure 3b, P3 appears twice since P3 has
been assigned to both G1 and G2. Note that we define PL,
the level of a peer, based upon its position in the distributed
index e.g., PL in case of peer 6 is 2 in Figure 3b.

Now let us understand how the index is modified in response
to new peers joining the system using the P2PR-tree scheme.
Figure 4a depicts what happens when two new peers join
the system with their respective peerMBRS P20 and P30.
For this example, let us assume the values of GMax and
SGMax to be 4. Observe that P30’s joining the system is
straightforward since it does not result in an overflow. How-
ever, P20’s joining is significantly more complicated since its
joining causes an overflow in G1, thereby causing G1 to split
further into subgroups SG1 and SG2. For splitting purposes,
we propose to adopt an existing clustering technique[2] for
performing node splitting in R-trees. The main idea behind
the proposal in [2] is that the node splitting problem in R-
trees is essentially a problem of finding a good set of clusters
and the proposal also moves beyond the traditional two-way
node splitting of R-trees to make node splitting more flexi-
ble, the prime objective being to find real clusters as opposed
to two groupings.

Observe that the node splitting caused P1 and P2 to move
from level 2 to level 3 of the index. From Figure 4b, it is clear
that P2PR-tree does not provide global height-balance. In
Figure 3b, we have shown the information that P1 maintains
to facilitate search. As we see from Figure 3b, P1 maintains
information concerning the entire covering MBRs of each of
the blocks, namely B1,B2,B3,B4 and the covering MBRs
of all the 4 groups in its own block (i.e., G1,G2,G3,G4)
in addition to the peerMBRs of P2,P3,P4. Observe from
Figure 4b how the information maintained by P1 is changed
after splitting occurs.

Notably, the fact that our approach is R-tree-based (since
we use MBRs as an approximation) does not restrict the
peers in the system to using only R-tree-based structures for
indexing the spatial objects that they store. A peer can use
any indexing scheme for indexing its objects, but the only
requirement of P2PR-tree is that the peer must be able to
provide its peerMBR to other peers in the system.

Search mechanism
Now we shall discuss how efficient search can be conducted
via P2PR-tree. For our search mechanism, every query is
associated with a QL, the significance of QL being that it
determines which level of the distributed index the query
is currently traversing. When a new query is issued to any
peer in the system, its QL is 0 and whenever a query is for-

warded to peer(s) at another level of the distributed index,
the value of QL is incremented by one. This guarantees
that queries traverse down the distributed index and pre-
cludes the possibility of any query traversing up the index.
Whenever a query Q arrives at any peer Pi in the system,
Pi checks whether its peerMBR intersects with Q and if so,
Pi searches its own R-tree, returns results (if any) and the
search is terminated. Otherwise, Pi checks the value of QL

associated with Q and depending upon the value of QL,
Pi forwards Q to the relevant block(s) or group(s) or sub-
group(s) or peer(s). Figure 5 depicts our proposed search
algorithm. Pi sending Q to a particular block Bi constitutes

Algorithm SpatialP2PSearch()
Input: Query MBR Q

Output: Query Result if result is found, NULL otherwise

MBR Intersect (): A function which returns TRUE if two

MBRs intersect, FALSE otherwise

/* A query Q is issued to a peer Pi */

if (MBR Intersect (Q, PeerMBRPi
) {

Search own R-tree

terminate

} else {
Check the value of QL

if (QL = = 0) {
Check level 0 to decide relevant block(s)

QL ++;

Send Q to each relevant block

} else if (QL = = 1) {
Check level 1 to decide relevant groups(s)

QL ++;

Send Q to each relevant group

} else {
if (PL > QL) {

Check level QL to decide relevant subgroups

QL ++;

Send Q to each relevant subgroup

} else if (PL = = QL) {
Check level QL to decide relevant peers

Send Q to relevant peer(s)

}
}

}
end

Figure 5: Spatial P2P search algorithm

Q being sent to one peer in that block. Note that this im-
plicitly assumes that every peer knows at least one peer in
each block. While the system is operational and the peers
issue queries to each other, it is likely that more peers will
interact and come to know each other. Hence, over a period
of time, it might be possible for a peer in a specific block
to know N peers in each of the other blocks. Given that Pi

knows N peers at a block Bi to which it wishes to forward
Q, Pi first sends Q randomly to any one peer Pj among the
N peers that it knows. If it does not receive an acknowl-
edgement message from Pj within a pre-specified maximum
time limit, designated as TIME OUT, Pi forwards the query
to another peer among the N peers that it knows. In case
all the N peers that Pi knows in Bi are unavailable, Pi will

not be able to forward Q to Bi. For the sake of convenience,
we shall henceforth refer to the set of N peers that a peer
knows in each block as the routing peers or simply routers.
Note that the mechanisms for sending a query to a particular
group or subgroup are essentially similar to that of sending
a query to a specific block.

5. PERFORMANCE STUDY
This section reports the performance evaluation of our pro-
posed technique.

Experimental setup
We conducted extensive simulation experiments to evaluate
the performance of our proposed indexing strategy. Our
simulation environment comprised a machine running the
Solaris 8 operating system. The machine has 4 CPUs, each
of which has a processing power of 900 MHz. Main memory
size of the machine is 16 Gigabytes, while the total disk
space is 2 Terabytes.

The main metric that we have used for the performance
study is query response time since we believe that response
time provides a reasonably accurate reflection of search per-
formance. We also measured the number of queries that
failed due to peers being unavailable (offline). In particular,
our performance evaluation investigates the following:

• Effect of variations in interarrival rate of queries

• Effect of workload skew

• Effect of variations in the number of routers per peer

Table 1 provides a summary of the parameters that we used
in our performance study. For all our experiments, we di-
vided the universe into 10 blocks and we divided each block
into 10 groups. In Table 1, TIB denotes transfer time be-
tween peers (inter-block), while the transfer time between
peers (inter-group) is represented as TIG. TIP is the trans-
fer time between peers within the same group, while Inter-
Rate denotes the interarrival rate between queries. For ex-
ample, when InterRate is 10 queries/second/peer, it implies
that 10 queries are issued to every peer in the system every
second. Moreover, we set the value of TIME OUT to 20
seconds.

Each of the 1000 peers that we used in our experiments
stored more than 200000 spatial objects. Each peer uses
an R-tree for its own directory management. As in exist-
ing works, we assumed that one R-tree node fits in a disk
page (page size = 4096 bytes). The height of each of the
R-trees at each of the 1000 data providing peers was 3 and
the fan-out was 64. Given that the number of free-riders
in P2P systems is typically much higher than that of data
providing peers, we also took free-riders into consideration
for our simulation study. In particular, for our simulation,
we assume that the free-riders do not have any index struc-
ture stored at themselves, thereby implying that a free-rider
first has to contact any one of the data providing peers in
the entire system and this data providing peer will use the
P2PR-tree scheme to process the query. Our performance
study was conducted using a real dataset known as Railroads

in Germany[5]. We had enlarged this dataset by translating
and mapping the data.

Parameter Default Value Variations
No. of Peers 1000 5000
Zipf factor 0 0.1,0.3,...,0.9

InterRate(queries/sec/peer) 20,40,...,100
TIB (ms) 80 to 120
TIG (ms) 45 to 55
TIP (ms) 10 to 15

Availability(percentage) 80 20,40,60,100
No. of Routers 5 1,2,3,4

Table 1: Parameters used in Performance Study

In order to model skewed workloads, we used the Zipf dis-
tribution over n buckets to decide the number of queries to
be directed to each of the n peers in the system. Note that
this is only an approximate manner of generating skewed
workloads since the actual load imposed on a peer depends
not only upon the number of queries directed to that peer,
but also on the individual sizes of the respective queries.
Moreover, due to overlaps in spatial regions between peers,
it cannot be guaranteed that a specific query would only be
relevant to one peer. This is essentially an inevitable com-
promise. We modified the value of the zipf factor to obtain
variations in workload skew. Notably, a value of 1 for the
zipf factor implies a heavily skewed workload, while a value
of 0 indicates a uniform workload distribution. We gener-
ated window queries by enlarging the individual data MBRs
stored at each of the peers.

Incidentally, existing works on spatial indexing have not re-
ally addressed issues concerning P2P environments, let alone
decentralized indexing techniques. In order to compare our
work meaningfully against existing works, we use the MC-
Rtree as reference. Recall that the MC-Rtree is a well-known
and one of the most efficient distributed R-tree-based tech-
niques. (We do not compare our approach with the M-Rtree
since the MC-Rtree has been shown to outperform the M-
Rtree.) For the MC-Rtree approach, we select a specific peer
in every block as the block leader. Each of these block lead-
ers maintains an MC-Rtree which indexes the peerMBRs of
all the peers whose spatial regions are fully contained within
their blocks or intersect with their blocks. We ensured that
every block leader had adequate disk space for storing the
R-tree. For the sake of convenience, we shall henceforth refer
to this strategy as the MC-Rtree.

Variation in query interarrival rate
Now let us investigate the comparative performance of P2PR-
tree with respect to MC-Rtree when the query interarrival
rate is varied, while keeping the zipf factor fixed at 0. For
this experiment, the number of routers was set to 5 and
the availability of every peer was fixed at 80%. Figure 6a
and Figure 6b depict the results of the effect of variations
in query interarrival rates when the number of peers in the
system was 1000 and 5000 respectively.

The results in Figure 6 indicate that with increase in query
interarrival rate, the response time increases only slightly
in case of P2PR-tree, while for MC-Rtree, the response

(a) Effect of varying interarrival rates for 1000 peers (b) Effect of varying interarrival rates for 5000 peers

Figure 6: Performance comparison between P2PR-tree and MC-Rtree

time keeps increasing. Such increased response times oc-
cur in case of MC-Rtree because every query has to be
routed through at least one of the centralized block lead-
ers, thereby resulting in a large number of queries waiting
for long periods of time to be routed and ultimately caus-
ing severely increased query response times. In contrast,
the completely decentralized nature of P2PR-tree ensures
the absence of any serious routing bottlenecks, thereby ex-
plaining why P2PR-tree exhibits superior performance as
compared to MC-Rtree.

Effect of variations in the workload skew
Now we shall study the effect of variations in the workload
skew by varying the zipf factor, the number of routers being
set to 5 and the availability being fixed at 80%. The query
interarrival rate was fixed at 10,000 queries/second for the
whole system i.e., 10000 queries come to the system every
second and the number of queries to be directed to each peer
depends upon the zipf factor. The results, which are pre-
sented in Figure 7, demonstrate that the performance gain of
P2PR-tree over MC-Rtree keeps increasing as the workload
skew increases. Observe that as the workload skew increases,
there is a slight increase in response time for P2PR-tree pri-
marily because highly skewed workloads cause some of the
peers to become bottlenecks, thereby resulting in increased
response times at those peers. However, the increase in re-
sponse time for MC-Rtree (as the skew increases) is much
greater than that of P2P-Rtree because apart from indi-
vidual ‘hot’ peers, the MC-Rtree strategy also has to con-
tend with serious routing bottlenecks and load imbalance
at the centralized block leaders. Interestingly, the results
also demonstrate that even though the decentralized nature
of P2PR-tree ensures the absence of bottlenecks in routing,
large number of queries directed to a few ‘hot’ peers within
a small time interval can still degrade the performance of
P2PR-tree to some extent. One way of preventing such
degradation in performance is to integrate load-balancing
techniques into P2PR-tree. Hence, we intend to examine
load-balancing issues in this context in the near future.

As the results in Figure 6 and Figure 7 demonstrate, the
performance of P2PR-tree is far superior to that of MC-

Rtree. Hence, we shall not discuss or make performance
comparisons with MC-Rtree any further. Now let us study
the performance-related behaviour of P2PR-tree in response
to variations in the number of routers known to a peer.

Variation in the number of routers
The number of routers that each peer knows in each block
can impact system performance considerably. Hence, we
performed an experiment in which we varied the number
of routers that a peer knows per block, while keeping the
zipf factor fixed at 0 and the interarrival rate set to 10
queries/second/peer. The experimental results in Figure 8
indicate that when the availability of individual peers is
high, the success rate of queries is high and depends lit-
tle on the number of routers per peer e.g., in Figure 8, when
all the peers are available 100% of the time, the success rate
is 100% irrespective of the number of routers. However as
the availabilities of individual peers decrease, the effect of
the number of routers that a peers knows becomes more
and more pronounced. For example, for 1 router per peer
and 20% availability of individual peers, the success rate of
queries falls below 20%. The results indicate that the suc-
cess rate of queries increases with an increase in the number
of routers per peer. This is expected because the more the
number of routers that a peer knows, the higher would be
the probability of success for a given query.

6. CONCLUDING REMARKS
The unprecedented growth and increased importance of ge-
ographically distributed spatial data has created a strong
need for efficient sharing of such data among users. Inter-
estingly, the growing importance and ever-increasing popu-
larity of peer-to-peer (P2P) systems have opened new and
exciting possibilities for global sharing of spatial data. This
provides a strong motivation for designing a spatial P2P
system which allows its users transparent access to data of
any location from anywhere. While much work has been
done for expediting search in file-sharing P2P systems, is-
sues associated with search in geo-spatial P2P systems are
significantly more complicated due to overlaps between spa-
tial objects and the complexity of spatial queries. Inciden-
tally, R-tree-based structures, which have been proposed in

Figure 7: Effect of varying zipf factor

Figure 8: Effect of varying the number of routers

existing works concerning indexing of spatial data in dis-
tributed environments (e.g., clusters), are not adequate for
addressing the sheer scale, dynamism (in particular, peers
joining/leaving the system and new data being added or
deleted from the peers anytime) and heterogeneity of P2P
environments. Hence, we have proposed a new R-tree-based
mechanism, which is specifically designed for efficiently in-
dexing spatial objects in a P2P environment. The proposed
technique is completely decentralized, scalable and robust to
peers joining/leaving the system. Moreover, the technique
optimizes disk space usage by maintaining minimal amount
of information concerning peers that are far away and stor-
ing more information concerning nearby peers and its hier-
archical nature ensures efficient pruning of the search space.
We conducted extensive simulation experiments to test the
effectiveness of our proposed spatial indexing technique for
spatial select (window) queries. Our performance evalua-
tion demonstrates that the response times for user queries
are within acceptable limits and that it is indeed practically
feasible to share spatial data in a P2P system.

To this end, we believe that our contributions have ad-
dressed some of the relevant issues associated with spatial
indexing in P2P systems. Currently, we are working on algo-
rithms for handling highly skewed data distributions. In the
near future, we intend to investigate issues concerning repli-
cation for performance as well as availability reasons and
also we plan to examine issues concerning load-balancing in

this context with the objective of improving user response
times.

7. REFERENCES
[1] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: an efficient and robust access method for
points and rectangles. In Proc. ACM SIGMOD, 1990.

[2] S. Brakatsoulas, D.Pfoser, and Y. Theodoridis. Revisiting
R-tree construction principles.
citeseer.nj.nec.com/586207.html.

[3] A. Crespo and H. G. Molina. Routing indices for
Peer-to-Peer systems. Proc. ICDCS, 2002.

[4] European DataGrid.
http://eu-datagrid.web.cern.ch/eu-datagrid/.

[5] Datasets.
http://dias.cti.gr/∼ytheod/research/datasets/spatial.html.

[6] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial
queries in sensor networks. Proc. P2P, 2003.

[7] Earth Systems Grid. http://www.earthsystemgrid.org/.

[8] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. ACM SIGMOD, pages 47–57, 1984.

[9] NASA IPG. http://www.ipg.nasa.gov/.

[10] Kazaa. http://www.kazaa.com/.

[11] N. Koudas, C. Faloutsos, and I. Kamel. Declustering
spatial databases on a multi-computer architecture. In
Proc. EDBT, pages 592–614, 1996.

[12] A. Mondal, M. Kitsuregawa, B.C. Ooi, and K.L. Tan.
R-tree-based data migration and self-tuning strategies in
shared-nothing spatial databases. Proc. ACM GIS, 2001.

[13] Napster. http://www.napster.com/.

[14] GriPhyN Project. http://www.griphyn.org/index.php.

[15] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. Proc. IFIP/ACM, 2001.

[16] B. Schnitzer and S.T. Leutenegger. Master-client R-trees:
A new parallel R-tree architecture. Technical Report
COMP-98-01, University of Denver; URL:
http://www.cs.du.edu/ leut/ssdbm99-TR.ps, 1998.

[17] B. Schnitzer and S.T. Leutenegger. Master-client R-trees:
A new parallel R-tree architecture. In Proc. of Statistical
and Scientific Database Management, pages 68–77, 1999.

[18] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: A dynamic index for multi-dimensional objects.
In Proc. VLDB, pages 507–518, 1987.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. Proc. ACM SIGCOMM,
2001.

