
Performance Analysis of UB-tree Indexed Pub/Sub System

Wang Zhang Botao Wang Masaru Kitsuregawa

Institute of Industrial Science
The University of Tokyo

Komaba 4–6–1, Meguro Ku, Tokyo,
135–8505 Japan

{zhangw,botaow,kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT
A publish/subscribe system dynamically routes and de-

livers information from information producers to interested
users. Efficient event filtering (or event matching) algo-
rithms are the kernel of publish/subscribe systems. And
most of research efforts are focusing on the multiple one-
dimension indexes in last several years. There are two main
problems in such kind of systems: the heavy workload of
the indices’ maintenance and the poor performance of in-
dex searching process for the inequality operators (>, <).
We propose a multidimensional predicate index based on
the UB-tree, which has no limit on the using of operators
(=, <, >). Also we just use one index to reduce the workload
of maintenance dramatically. In this paper, our proposal will
be introduced and compared with other famous algorithms.

Keyword: UB-tree, Multidimensional index, Event filter-
ing, publish/subscribe system, predicate index

1. INTRODUCTION
A publish/subscribe system connects together informa-

tion producers, which publish events to the system, and in-
formation consumers, which subscribe to particular types
of events within the system. The system is responsible for
identifying the set of subscriptions that are matched by a
published event (if any), and for notifying the correspond-
ing subscribers. The earliest publish/subscribe systems were
subject-based. In such systems, information consumers sub-
scribe to one or more subjects and the system notifies them
each time an event, classified as belonging to one of the sub-
jects they subscribed to is published. Event matching is
a straightforward task in these systems because events can
be filtered only according to their subject. Any additional
event filtering has to be done by the subscriber himself.

An attractive alternative to subject-based systems is the

content-based systems. These systems appear to be more
promising in meeting subscriber’s needs of defining filtering
criteria (conjunction of predicates) when they register their
interest in receiving publications. Compared to subject-
based systems, content-based systems allow subscribers to
express a ”query” against the content of a published event.
Examples of content-based systems are READY [13], and Le
Subscribe [23]. In general, most content-based subscriptions
systems use quite similar publication and subscriptions lan-
guages. In these systems, an event is distinguished based on
its event schema. An event schema defines the type of the
information contained in each event, and the system usually
supports multiple event schemas.

In our study, we build a predicate-based index on UB-tree
by dimension transform for efficient event matching. This
paper is organized as following: In section 2, is the back-
ground of our study. In section 3 the UB-tree and dimension
transformation will be introduced. Then our work on how
to optimize the event filtering process will be introduced in
section 4. And some the related works is introduced in sec-
tion 5. At last, the experiments and comparisons among our
proposal with other famous solutions will be introduced in
section 6. The last section is our conclusion.

2. BACKGROUND

2.1 Event Matching Model
The event matching model can be expressed as follows.

Given an event e and a set of subscriptions S, determine all
subscriptions in S that are matched by e. A subscription is
a conjunction of predicates. A predicate is a triple consist-
ing of an attribute, a constant, and a relational operator (<,
<=, =, !=, >=, >). A subscription schema defines the type
of the information to be supported by publish/subscribe sys-
tem. The attributes are defined in subscription schema.
For example, three attributes: CompanyName, Price and
ChangeRatio with string, float and float types respectively
can be defined for stock market.

Following is a subscription example of stock schema, (Com-
panyName = Yahoo) AND (Price > 1000) AND (Change-
Ratio < 0.05). An event is an array of pairs of (Attribute,
Constant). The size of array depends on subscription schema.
Following is an event example of stock schema, (Company-
Name, Intel), (Price, 5000), (ChangeRatio, 0.03). An event

e matches a subscription S if all predicates in S are sat-
isfied by some (Attribute, Value) pairs in e. For example,
event (CompanyName, Yahoo), (price, 500), (ChangeRatio,
0.1) matches following subscription which is expressed as a
conjunction of two predicates: (CompanyName = Y ahoo)
AND (Price < 1000).

Event matching algorithms in the content-based publish/
subscribe systems can be classified into two categories:

• Algorithms based on predicate index. The algorithms
based on predicate indexing consist of two steps:

– The first step determines all predicates that are
satisfied by the event.

– The second step finds all subscriptions that are
matched by the events based on the results of the
first phase.

Algorithms based on predicate indexing techniques
use a set of one-dimension index structures to index
predicates in the subscriptions. They differ from each
other by the way to select predicates from subscrip-
tions, which are kept in the index structures [7] [10]
[15] [17] [20] [23] [28].

Basically, the predicates are grouped based on all sub-
scriptions. A predicate family consists of predicates
having the same attribute. For each attribute, one
predicate index is built. For example, for stock schema
introduced previously, three predicate indexes will be
built for CompanyName, Price, ChangeRatio.

• Algorithm based on subscription index [1] [18]. The
techniques based on subscription index insert subscrip-
tions into a matching tree. Events enter the tree from
root node and are filtered through by intermediate
nodes. An event that passes all intermediate testing
nodes reaches leaf nodes where references of matching
subscriptions are stored.

Our proposed solution is also designed for predicate index.
Although there are many proposals for selection of pred-
icates from subscriptions, [10] [15] [23] [28], the predicate
index is essential while determines all the predicates that
are satisfied by the event at the first step. From next in-
troduction, we will concentrate on the predicate index. For
details of different methods of predicates selection, please
refer to [10] [15] [23] [28].

3. UB-TREE AND DIMENSION TRANSFOR-
MATION

From viewpoint of search in high dimensional data space,
event filtering of subscriptions using operators ”<” or ”>”
can be regarded as the following two kinds of queries:

• Events are point enclosure queries and subscriptions
are hyper cubes.

• Events are range queries and subscriptions are points.
In this case, dimension transform is required.

Because the attributes used in subscriptions should not
be fixed, there are lots of incomplete subscription hyper
cubes which overlap each other heavily. So normally it is
hard to use of multidimensional indices structure directly
to build efficient indices on those subscriptions hyper cubes
for point enclosure query. For this reason, we choose range
query and do dimension transform in our design.

As introduced in [6] [8] [9] [12], many multidimensional in-
dex structures have been proposed for range query. Because
besides efficient event filtering (search), publish/subscribe
system requires both dynamic maintenance and space effi-
ciency, not all multidimensional index structure can meet
above requirements. For example, performance of R-tree
[14] and R*-tree [4] suffer from region splitting and merg-
ing while updating index. R+-tree [26] cannot guarantee a
minimal storage utilization; KD-tree [5] is sensitive to the
order in which the points are inserted; quadtree [25] is un-
balanced and sensitive to data density. UB-tree [2] [11] [24]
is designed to perform multidimensional range query. It is a
dynamic index structure based on B-tree and supports up-
dates with logarithmic performance like B-tree with space
complexity O(n). For above reasons, we choose UB-tree to
perform range query in our design.

3.1 UB-Tree
The UB-tree [22] is a clustering index for multidimen-

sional point data, which inherits all good properties of the
B-tree. Logarithmic performance guarantees are given for
the basic operations of insertion, deletion and point query.
The UB-tree clusters data according to a space filling curve,
which is named as the Z-curve and introduces the new idea
of partitioning the data space into disjoint Z-regions, which
are mapped into disk pages. The Z-regions are then indexed
by a B-tree using last included Z-address as key, which is
the ordinal of a point on the Z-curve. As shown in Fig.1,
Z(x) is a bijective function that computes for every tuple x
its Z-address, i.e., its position on the space filling Z-curve.
The slide presents the Z-addresses (or Z-values) for an 8x8
universe in Fig.1(a). Z-values are efficiently computed by
bit-interleaving as described in Fig.1(b).

These Z-regions in conjunction with a sophisticated algo-
rithm for multidimensional range queries [3] and the Tetris
algorithm [21] for sorted reading of multidimensional ranges
offer excellent properties [22] for multidimensional applica-
tions like data warehousing, archiving systems, temporal
data management, etc. The middle part, in the Fig.2, shows
a Z-region partitioning (or also called UB-tree partitioning)
which is a disjoint set of Z-regions whose union covers the
entire multidimensional space. In this figure the partition-
ing consists of 5 Z-regions. Most Z-regions preserve spatial
proximity, i.e., neighboring points of a given point are in
the same region with a high probability. The region [21 :
35] consists of two disconnected parts. If a Z-region could
consist of many disconnected parts, this would prevent Z-
regions from being suitable for clustering. However, [22]
gives a proof that regardless of the dimensionality of the
Z-ordered space (i.e., not only for 2d) the number of not
connected parts of a Z-region is at most two.

3.2 Dimension Transform for Event Filtering

Figure 1: Z-curve and Z-address

Figure 2: Z-regions and Z-space

For one attribute A with value range [IMin, IMax], the
corresponding predicate with format of Istart <= A <=
Iend can be represented as an interval of [Istart, Iend].
Given a corresponding event with value Evalue, if the pred-
icate is satisfied, it means

Istart <= Evalue <= Iend
logically it is equal to

(IMin <= Istart <= Evalue) AND (Evalue <=
Iend <= IMax)
By defining two new dimensions AStart and AEnd for Istart
and Iend, 1D dimensional point enclousre query can be
transformed to 2D range query as shown in Fig.3.

For one attribute, after transform from 1D to 2D, event
becomes range query and subscription becomes point data.
The new 2D space has following properties:

• Event range. Event range is determined by two ver-
texes in 2D space. Upper left corner (IMin, IMax) is
fixed. Lower right corner (Evalue, Evalue) is always
located on the diagonal of 2D space as shown in Fig.
3.

• Equality predicate point. It means Istart == Iend is

true, so it is located on the diagonal of 2D space.

• Half-interval predicate point. Half-interval predicate
means only one operator is used, like Istart <= A or
A <= Iend. It logically equals to Istart <= A <=
IMax or IMin <= A <= Iend. The half-interval
predicate point is located on the border of 2D space
above the diagonal.

• TRUE. For uncompleted subscription, only parts of
attributes are used. Because subscription is a conjunc-
tion of predicates, for the attributes not be used in the
subscription, their related predicates should always be
considered as TRUE. Logically TRUE can be repre-
sented as IMin <= A <= IMax. Then TRUE is a
point with constant value (IMin, IMax).

• Dead Space. Because Istart <= Iend, there is no data
located in the space under diagonal space. It’s called
dead space. And we don’t need to allocate the space
for this area.

(Istart<=
Subscription

Event (Evalue)
 Attribute<=Iend)

(Istart, Iend)Subscription

Event (IMin<= AStart <=Evalue) And
(Evalue<= AEnd <=IMax)

1D Point Enclosure Query

IMin IMax
Attribute

Istart IendEvalue

Event

Subscription

IMin IMax

 AEnd

IMax

 AStart
Evalue

Evalue

Iend

IstartEvent
Subscription

2D Range Query

IMin

Figure 3: Transform 1D point enclosure query to 2D
range query

For above properties, even the data in 1D space are dis-
tributed uniformly, it is very possible that data skew occurs
after transform. Without data skew, the number of results
of range query will be limited for its low selectivity on high
dimensional space. Data skew depends on the percentage of
kinds of predicates used in subscriptions. Its influence on
performance of event filtering will be shown and discussed
later in Fig.7(d) and Fig.7(e).

4. PERFORMANCE IMPROVEMENT
With the emergence of cheap computers with huge mem-

ory, more and more algorithms can be run in the main mem-
ory. Considering the performance, our solution is designed
to be executed in the main memory too. In this section,
after analyzing the workload distribution of UB-tree’s range
querying, we propose our optimizing methods focusing on
reducing the cost of filtering operation [27].

4.1 Workload Distribution of Range Query
Because original UB-tree is designed for secondary stor-

age, the performance is dominated by I/O cost. The main
task of its range query is to calculate efficiently the set of
one-dimensional intervals of Z-value (Z-regions). Our index

is designed to run in main memory, for performance improve-
ment, the workload distribution of calculating intervals of Z-
value and filtering results from candidate objects kept in the
selected Z-regions, should be considered comprehensively.

According to UB-tree’s structure,workload distribution de-
pends on the setting of the maximum number of objects kept
in one Z-Region (corresponding to one leaf node of B+tree)
as shown in Fig.4(a) (Please refer to Table.1 in Section 6 for
detail information of test environment).

0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000

m
a
tc

h
in

g
 t
im

e
(m

s)

number of subscriptions in one Z-region

matching time per event

TotalCost
Time to collect Intervals

Time to filter

(a)

50

100

150

200

250

300

400000 800000 1.2e+06 1.6e+06 2e+06

m
a
tc

h
in

g
 t
im

e
(m

s)

number of subscriptions

matching time per event

TotalCost
Time to collect Intervals

Time to filter

(b)

Figure 4: Workload distribution

From Fig.4(a) we can find that there exists a value range
(nearly from 400 to 900 here) where the best performance
can be gotten. So we will do some optimization work within
this range. As shown in Fig.4(b) (the maximum number
is 700 there), the workloads of this two steps(filtering pro-
cess and the intervals collecting process) are different. Cost
on filtering operation accounts for major part of the total
cost. And the cost changes linearly with the number of sub-
scriptions (objects). Cost to collect intervals (Z-regions) is
relatively small and stable. So the goal of the optimiza-
tion of UB-tree in the main memory is to reduce the cost
related to filtering operation. Two methods are proposed:
one is reducing the input of filtering operation (Section 4.2);
another is improving the performance of filtering operation
itself (Section 4.3).

4.2 Reduce Input of Filtering Operation
The basic idea is shown in Fig.5(a), an array of grid tables

is created dynamically to reduce input of filtering operation.
Each dimension is equally divided by a linear hash and the
total space is divided into grid similar to grid file. Grid ta-
ble is an array of grid cells, which is not located in dead
space. It records whether each cell is covered or not by the
incoming event range. The sequence number of the item in
grid table (cell array) is called cell ID. The structure of one
grid table is shown in Fig.5(b). After dimension transfor-
mation, N attributes corresponds to one 2ND space. The
left side of Fig.5(b) shows an example of cell ID setting in
2D space. The right side of Fig.5(b) shows an example of
cell ID setting in 4D space. Here each dimension is divided
equally into two parts. The links show the corresponding
relation between the 2D space and 4D space when number
of attributes changes from 1 to 2. The method of calculating
cell ID is straightforward and skipped here.

In order to make use of grid table, the following extension
should be done:

(a) Basic idea (b) Cell Ids in differ-
ent spaces

(c) Value setting of grid table in 4D
space

Figure 5: The way to reduce input of filtering oper-
ation and Grid Table

• While inserting a subscription point, its corresponding
cell ID is calculated and kept inside the index with the
subscription point. Because each subscription point
corresponds to one cell of the grid, the subscription
can compute its cell ID according to its coordinates on
dimensions.

• Before searching index, the grid table should be reset
and filled according to the range of input event. For
the cell intersecting with the event range, its entry will
be set to 1, otherwise left to 0 as shown in Fig.5(c).
The content of each item is ”cell ID(value)”. Cell ID
is not kept in the item.

As introduced previously, grid table is dynamically built and
assigned. Because the size of grid table increases exponen-
tially with the increasing of the number of attributes, build-
ing one grid table on all attributes is impractical. In order
to save the size of grid table, only parts of attributes with
higher selectivity and larger value domain, are selected to
build grid table. Further these attributes are divided into
groups to reduce the exponential increment of the memory
used caused by the large number of selected attributes. Each
group corresponds to disjunctive lower dimensional space.
That’s the reason why an array of grid tables is used in
Fig.5(a). In this case, corresponding different groups, mul-
tiple grid tables should be created and checked while do
event filtering.

Before filtering a candidate object (subscription point) of
UB-tree, the cell ID(s) kept with the candidate object will
be used to check whether the corresponding cells intersect
with the input event range by looking up the grid table(s).
If one of the cell values is 0, that means the corresponding
cell doesn’t intersect with input range, and then there is no
need to send this candidate object to the filtering operation

further. So the input of filtering operation is reduced.

Because this optimization method is not dependent on
UB-tree, so it can be applied to other similar multidimen-
sional index structure. It is the intersection of two orthogo-
nal partitioning methods: space-filling curve and grid table.
Even the adding of grid table is a kind of overhead, the cost
of maintain an array of grid tables with smaller size, can be
neglected compared with larger number of candidate objects
in a large database. The effectiveness of the grid table will
be shown later in Fig.8.

4.3 Improve Performance of Filtering Opera-
tion

As introduced before, Z-address is the key gotten by bit-
interleaving of coordinates corresponding to all dimensions.
Even the Z-address can be used to do filtering operation
directly, the operation is much expensive than the bitwise
operation. In order to improve the performance of filtering
operation, the coordinates of subscription points are added
in UB-tree like Z-addresses.

According to above two optimization methods, the struc-
ture of a node entry1 in UB-tree is extended as shown in
Fig.6.

Z-address Data

Z-address DataGrid Id Grid Id

Group 1 Group N

Coordinates

Figure 6: Entry extension of UB-tree node

5. RELATED WORK
A lot of algorithms related to event matching have been

proposed. Some are proposed for publish/subscribe systems
[1] [10] [18] [28] and continuous queries [7] [20]; some are
proposed for active database [15] [17].

Predicate indexing techniques have been widely applied.
There, a set of one-dimension index structures to index the
predicates in the subscriptions. Mainly, there are two kinds
of predicate indexing based algorithms: counting algorithm
[28] and Hanson algorithm [15] [17]. They differ from each
other by whether or not all predicates in subscriptions are
placed in the index structures. According to [19], it is hard
to judge which one is better because counting algorithm de-
pends on average probability of a predicate to be satisfied
and Hanson algorithm depends on average probability of
matching each access (selected) predicate. [28] is an Infor-
mation Dissemination System (IDS) for document filtering.
There, the predicate index is an inverted list which is built
based on the vocabularies used in predicates. In [15] [17],
algorithms related to rule management were proposed. The
key component of the algorithm in [15] is the interval bi-
nary search tree (IBS-tree) for each attribute. The IBS-tree

1Leaf node of UB-tree based on B+-tree.

is designed for efficient retrieval of all intervals that overlap a
point, while allowing dynamic insertion and deletion of inter-
vals. ”Expression Signature” is designed to group subscrip-
tions and share computation in [17]. In [10], Hanson algo-
rithm is extended by dynamic clustering. High performance
is gotten compared to counting algorithm, but there fixed
attributes are predefined and value domain of attributes is
limited to 5-100.

In [10], the algorithm has another important aspect: ac-
cess predicate. A predicate p can be an access predicate for
a subscription s only if s can only match the events that
verifies p. And p is associated with a reference to a list of
subscription clusters. This guarantees that subscriptions in
the cluster list associated to p need to checked if and only if
p is satisfied. In our experiment, we don’t consider the mem-
ory restrict and rebuild the access-predicate based indices to
get the best filtering performance.

The testing networking based techniques initially prepro-
cess the subscription into a matching tree. Different from
predicate index, [1] and [18] built subscription trees based
on subscription schema. In [1], each non-leaf node contains a
test, and edges from the node represent results of that test.
The test and result correspond to predicate. A leaf node
contains a subscription. The matching is to walk the match-
ing tree by performing the test prescribed by each node and
following the edge according to the result of test. if num-
ber of matched subscription(s) is greater than one, multiple
paths will be walked. In [18], Profile (subscription) tree is
built, the height of tree is number of attributes defined in
subscription schema. Each non-leaf level corresponds to one
attribute of event schema. Each attribute domain is divided
into non-overlapping sub-ranges by the value of predicate.
One leaf node contains multiple subscriptions whose pred-
icates are satisfied by the values of attributes in the sub-
ranges. There is only a single path to follow in order to find
the matched subscriptions.

In the later experiments, we use counting algorithm and
access-based algorithm, which are the representative predi-
cate indexing techniques, as the contrasts.

6. PERFORMANCE EVALUATION
In this section, we’ll evaluate our proposed index and

the effectiveness of optimizing method. At same time we
compare it with 1) counting algorithm since it is used in
many publish/subscribe systems and 2) bruteforce consid-
ering about the curse of dimensionality. 3) access-predicate
based algorithm which has a high performance. 4) R-tree
considering about the multidimensional indices’ comparison
for the original R-tree without dimension transformation.

6.1 Environment
The set of parameters used in simulation is listed in Ta-

ble 1. In all of the experiments presented in the rest of the
paper, the parameters take their default values except the
parameter on horizontal axis. The type of simulated data
is short integer with 16bits. B+tree is used to build UB-
tree with fanout 4, and the order of one leaf node is 3502.

2Because binary search tree is the fast search algorithm
based on tree structure in main memory, it has fanout 2.

Table 1: Simulated parameters
Parameter Value

range
Default
value

Number of subscrip-
tions

0-2000000 1200000

Number of dimen-
sions (attributes)

8-40 16

Possibility of one at-
tribute is used in sub-
scription

0-100% the first 3
attribute is
100%, the
4th-8th at-
tributes is
70%, the
others are 1%

Ratio of one sub-
scription is satisfied

0-100% 0.01%

Ratio of equality
predicates is used

0-100% 80%

Ratio of half-interval
predicate among
non-equality predi-
cates

0-100% 50%

Two grid tables are built for first 8 attributes. 4 attributes
use one grid table. Each space is divided into 5 parts. We
implemented a workload generator according to a workload
specification. The events are created randomly. The hard-
ware platform is Sun Fire 4800 with 4 900MHz CPUs and
16G memory. The OS is Solaris 8. We will do kinds of
evaluations by changing one parameter and fixing other pa-
rameters.

To compare with the access-predicate based algorithm in
the experiment, we extend the scenarios in the Le subscribe
system [10]: the total number of attributes, which the sub-
scription can choose, is 32. The domain size for each at-
tribute is 10000. And the number of the fixed attributes
is from 8 up to 28, the number of the unfixed attributes is
only 1. For all the scenarios, in the fixed attributes, 2 of
them are in equality. And for the one unfixed attribute, it is
in equality. The number of subscription is 100000, and the
number of event is 100.

Our simulated environment is reasonable for the pub-
lish/subscribe system. Notice that, there exists data skew
for default distributions of equality predicates and inequality
predicates after dimension transform as introduced in sec-
tion 3. For each attribute after dimension transform, 80%
equality predicates will locate on diagonal line and 10% half-
interval predicates will locate on the border of 2D space.

6.2 Evaluation Results
Fig.7(a) shows that both original UB-tree and optimized

UB-tree have better scalability. Fig.7(b) shows that di-
mension transform based algorithms are insensitive to the
changes of selectivity. The reason is data skew about dimen-

So the fanout is set as smaller as the implementation is al-
lowed here. 350 means the maximum number of objects kept
in a node is 700 where the best performance can be reached.
Please refer to Fig.4(b).

1

10

100

1000

10000

100000

1e+06

1e+07

400000 800000 1.2e+06 1.6e+06 2e+06

m
at

ch
in

g
tim

e(
m

s)

number of subscriptions

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(a) Different numbers of sub-
scriptions

1

10

100

1000

10000

100000

1e+06

1e+07

0.00001 0.00005 0.0001 0.0005 0.001

m
at

ch
in

g
tim

e(
m

s)

possibility that subscription match an event

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(b) Different selectivity

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

8 16 24 32 40

m
at

ch
in

g
tim

e(
m

s)

number of dimensions

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(c) Different dimensions

1

10

100

1000

10000

100000

1e+06

50 60 70 80 90 100

m
at

ch
in

g
tim

e(
m

s)

percentage of equality predicates

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(d) Different distributions of
equality predicate

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

m
at

ch
in

g
tim

e(
m

s)

percentage of half-interval predicates

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(e) Different distributions of
half-interval predicates

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

4 8 12 16

m
at

ch
in

g
tim

e(
m

s)

number of dimension

matching time per event

count
brute force

Rtree
ubtree

Optimized ubtree

(f) Different numbers of se-
lected attributes

Figure 7: Results of different simulations

sion transform because the access number of leaf node(Z-
region) changes 4 times(from 79 to 221) for one event fil-
tering while selectivity changes 100 times (from 0.00001 to
0.001). Fig.8(a) shows the same change trend of objects
number in Z-regions and number of results in the same test.

Fig.7(c) shows the performance with different dimensions.
The reason that counting algorithm performance is stable is
that only the first 8 attributes have higher possibility to
be used. Because the filtering operation is applied for ev-
ery dimension, the time of dimension transform based algo-
rithms and bruteforce become higher with the increment of
dimensions. And the time of optimized algorithm grows a
little quickly because the time saved by using of grid table is
not dependent on the total attribute number of data space.
Fig.7(d) shows performance of counting algorithm heavily
depends on the distribution of equality predicates. Fig.7(e)
shows the performance with different distributions of half-
interval predicates. Again the performance of counting al-
gorithm changes sharply. Fig.7(f) shows that with number
increment of the selected attributes, time of counting algo-
rithm rises when more and more one-dimensional indexes

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0.00001 0.00005 0.0001 0.0005 0.001

nu
m

be
r

of
 s

ub
sc

rip
tio

ns

possibility that subscription match an event

Total
number in Z-Regions

Number after optimizing
Number of Results

(a) Different selectivity

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

8 16 24 32 40

nu
m

be
r

of
 s

ub
sc

rip
tio

ns

number of dimensions

Total
number in Z-Regions

Number after optimizing
Number of Results

(b) Different dimensions

Figure 8: Effectiveness of grid table

are used.

The representative effectiveness of grid table is shown in
Fig.8 with different selectivity and dimensions. It also shows
the changing of the input before and after using grid table.
We can find that the lower the selectivity is, the higher the
effectiveness of grid table is. The input amount is reduced
by 1-2 orders of magnitude here. The difference is more than
one order of magnitude that means the curse of dimension-
ality doesn’t occur in our simulated environment. As intro-
duced above, theoretically selectivity of such kind of range
query decreases exponentially for uniformly distributed data
when size of the dimension increases. But in practice, the
selectivity is dependent on the definition of subscriptions
like our simulated environment. The data skew occurs after
dimension transform and the data mainly distribute on the
hyper plane determined by border of space and its diagonal
line, that’s reason the cure of dimensionality is postponed.

During the experiment, we find the original R-tree is much
faster than the R-tree with dimension transform. So we
choose the original R-tree as our contrast in the experiments.
According to the results in Fig.7, we find that the Perfor-
mance of R-tree is between the performance of the original
UB-tree and optimized UB-tree. The optimized UB-tree is
more than 3 times than the R-tree in the event filtering pro-
cess. And from the Fig.9(a), we can find the index building
time for the R-tree is much higher than the UB-tree. This
is another evidence for the bad insertion performance of the
R-tree. So we don’t think it is a good choice for the pub-
lish/subscribe system, which also needs good performance
of dynamic maintenance.

We also make some comparison with the access-predicate
based algorithm. In our experiment, we don’t concern about
the memory space used. So we rebuild the access-predicate
based algorithm to get the best performance. From the
result in Fig.9(b), we find with the number of the fixed
attribute grows, the access-predicate based algorithm get
worse quickly. But for our solution, it gets more benefit
with the dimension increased. And this is the performance
comparison based on the similar scenario in the Le subscribe
system [10]. With the limitation of the Le subscribe system,
we can’t use the access-predicated algorithm on the scenar-
ios, described in the Table1, which is more practical.

7. CONCLUSION

10

100

1000

10000

400000 800000 1.2e+06 1.6e+06 2e+06

bu
ild

in
g

tim
e(

s)

number of subscriptions

building time for the index

ubtree
rtree

(a) Indices building time for
UB-tree and R-tree

1

10

100

8 12 16 20 24 28

se
ar

ch
in

g
tim

e(
m

s)

number of fixed attributes

event matching time

access-predicate based
optimized ub-tree

(b) Searching time for the
UB-tree and access-predicate
based algorithm

Figure 9: other experiments

In this paper, we proposed an UB-tree based predicate
index for publish/subscribe system by dimension transform.
It is more practical According to above experiments, our
proposed optimized index is 4 orders of magnitude faster
than counting algorithm, and 1 order of magnitude faster
than UB-tree without optimizing, and more than 3 times
faster than the R-tree solution. For the high dimensional
data, it can get more benefit. So we can say that our pro-
posed index structure is efficient under reasonable size of
dimension (Maximum is 40, default is 16).

8. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M.

Astley, T. D. Chandra. Matching Events in a
Content-based Subscription System. Eighteenth ACM
Symposium on Principles of Distributed
Computing(PODC), 1999:53-61

[2] R. Bayer. The Universal B-tree for multidimensional
Indexing. Technical Report TUM-I9637, November
1996

[3] R. Bayer and V. Markl. The UB-tree: Performance of
Multidimensional Range Queries. Technical Report
TUM-I9814, Institut fr Informatik, TU Mnchen, 1997.

[4] N. Beckmann, H.-P. Kriegel, R. Schneidar, B. Seeger.
The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles. SIGMOD 1990:322-331

[5] J. L. Bentley. Multidimensional binary search trees
used for asociative searching. Commun. ACM
18:509-517, 1975

[6] S. Berchtold, D. A. Keim. High-Dimensional Index
Structure: Database Support for Next Decade’s
Application Tutorial. ICDE 2000

[7] S. Chandrasekaran, M. J. Franklin. Streaming Queries
over Streaming Data. Proceedings of the 28th VLDB
Conference, Hong Kong, 2002

[8] Y.-J. Chiang, R. Tamassai, ”Dynamic Algorithms in
Computational Geometry”. Technial Report CS-91-24,
Dept. of Computer Science, Brown Univ., 1991

[9] M. deBerg, M. V. Kreveld, M. Overmars, O.
Schwarzkopf. ”Computational Geometry-Algorithms
and Applications”. ISBN 3-540-65620-0 Springer. 1998

[10] F. Fabret, H.Arno Jacobsen, F. Llirbat, J. Pereira, K.
A.Ross, D. Shasha. Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe
Systems. ACM SIGMOD 2001

[11] R. Fenk, V. Markl, R. Bayer. Inerval Processing with
the UB-tree. IDEAS 2002:12-22

[12] V. Gaede, O. Gnther. Multidimensional Access
Methods. In Computing Surverys 30(2):170-231. ACM
Press, 1998

[13] R.Gruber, B. Krishnamurthy and E. Panagos. The
architecture of the ready event notification service. In
Proc. of the 19th IEEE International Conference on
Distributed Computing Systems Middleware
Workshop, 1999.

[14] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. ACM SIGMOD 1984:47-57

[15] E. N. Hanson, M. Chaaboun, Chang-Ho, Y. Wang. A
Predicate Matching Algorithm for Database Rule
Systems. ACM SIGMOD 1990

[16] E. N. Hanson, T. Hohnson. Selection Predicate
Indexing for Active Database Using Interval Skip List.
TR94-017. CIS department, Univeristy of Florida,
1994

[17] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L.
Noronha. Scalable Trigger Processing. ACM SIGMOD
1999

[18] A. Hinze, S. Bittner. Efficient Distribution-Based
Event Filtering. International Workshop on
Distributed Event Based Systems. Austrai July 2002

[19] H. A. Jacobsen, F. Fabret. Publish and Subscribe
Systems. Tutorial. ICDE 2001

[20] S. Madden, M. Shah, J. Hellerstein, V. Raman.
Continuously Adaptive Continuous Queries(CACA)
over Streams. ACM SIGMOD 2002

[21] V. Markl, M. Zirkel, and R. Bayer. Processing
Operations with Restrictions in RDBMS without
External Sorting: The Tetris Algorithm. Sydney,
Austrialia, pages 562C571. IEEE Computer Society,
1999.

[22] V. Markl. Processing Relational Queries using a
Multidimensional Access Technique. PhD thesis,
DISDBIS, Band 59, Infix Verlag, 1999.

[23] J. Pereira, F. Fabret, F. Llirbat and D. Shasha.
Efficient matching for web-based publish/subscribe
systems. In Proc. of the Fifth IFCIS International
Conference on CoopIS2000, Eilat, Israel, September
2000.

[24] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhard,
and R. Bayer. Integrating the UB-tree into a Database
System Kernel. In Proceedings of International
Conference on Very Large Data Bases, 2000, Cairo,
Egypt, 2000.

[25] H. Samet. The quadtree and related hierarchical data
structure. ACM Computer Survery. 16(2):187-260,
June 1984

[26] T. K. Sellis, N. Roussopoulos, C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. VLDB 1987:278-291

[27] B. Wang, W. Zhang, M. Kitsuregawa. UB-tree Based
Efficient Predicate Index with Dimension Transfrom
for Pub/Sub System. In DASFAA04, 2004.

[28] T. W.Yan, H. Garcia-Molina. The SIFT
Information Dissemination System. In ACM TODS 2000

