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Abstract In this paper we discuss the application of the dynamic
clustering feature of hash to a relational data base machine. By partitioning
the relation using hash, large load reductions in join and set operations are
realized. Several machine architectures based on hash .are presented. We
propose a data base machine GRACE which adopts a novel relational
algebraic processing algorithm based on hash and sort. Whereas conventional
logic-per-track machines perform poorly in a join dominant environment,

GRACE can execute join efficiently in O( N}ZM) time, where N and M are

the cardinalities of two relations and K the number of memory banks.

§1 Introduction

Many of the machines proposed so far, such as RAP"” and SURE? have
adopted as a base the* Logic per Track® concept by Slotnick,” with some
modification. This filter processing approach can reduce the amount of data
that is transferred between the secondary storage device and main memory of a
host computer. In supporting a relational data base, it outperforms conventional
systems by several orders of magnitude in the execution of relatively light load
operations such as selection and update. For heavy load operations, however,
such as join and projection including duplicate elimination, we can only expect
a slight improvement in performance.” There are other type data base machines,
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such as DIRECT.” DBC join processor,” and RELACS,” but they adopt
exhaustive matching algorithms to execute join and thus may not be sufficiently
efficient in join, projection, and set operations for large relations.

In this paper, we discuss the application of hash to data base machines.
It is shown that join and projection can be performed more efficiently through
the utilization of the dynamic clustering feature of hash. Several machine
architectures enhanced by the hash mechanism are presented. We have devel-
oped the data base machine GRACE, which adopts a novel relational algebraic
processing strategy based on hash and sort.®) Conventional cellular logic type
data base machines composed of K cells execute join in O (-EE*M) time.

GRACE, however, takes O (N_};M) time, where the relations with the cardinal-

ities ;¥ and M are stored in K memory banks and 2 X K processors are
activated. Its architecture and bucket processing scheme are described. GRACE
is expected to exhibit much higher performance in the join dominant environ-
ment than any data base machine proposed so far. R

§2 Application of Hash to Data Base Machines

The first data base machine to utilize hash was CAFS.® Hash was used
here as a joinability filter, where many tuples that cannot be joined are sieved
out using a hashed bit array. This reduces the cardinalities of both relations and
results- in a large load reduction. While this method is very powerful for
preprocessing, remaining tasks, such as the elimination of spurious tuples and
tuple concatenation in explicit join, must be done on the host machine.

Besides the CAFS approach, the dynamic clustering feature of hash is
also useful for heavy load operations such as join, projection, and set
operations. In the clustering approach we adopted, it is not the number of tuples
in two relations but the foad of join itself which can be reduced. The ordinary
join algorithm takes time proportional to the product of two relations’
cardinalities. However, if two relations are clustered on the join attribute, that
is, if the tuples are grouped into disjoint buckets based on the hashed value of
the join attribute, there is no joining between tuples from buckets of different
hashed value, Let

5 3
N=E',lm, M=j=Z]HT:'
where N and M are the cardinalities of two relations, #; and m; are the sizes of
the i-th bucket in each clustered relation, and s is the number of buckets. The
total processing time 7" can be expressed as follows :
T }imx mi

i=1
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This load reduction effect is depicted in Fig. 1. The two axes denote two rela-
tions divided into s intervals, and the cross section reveals the join load of #; X m;.

Relation A i-th Bucket of Relation A

Number of tuples

Relation B

i-th Bucket of Relation B

umber of tuples

JOIN of i~th Bucket of Relation A<
with i-th Bucket of Relation B

" 7(1) Non-clustered Processing (2) Clustered Processing

. Processing Load ‘
{Simple JOIN algorithm takes time proportional to the product

of each relations” cardinality)

Fig. 1 Load reduction effects by clustering feature of hash in join operation

The shaded areas correspond to the processing load. Accordingly, this clustered
approach can dramatically diminish the load in comparison with the nonclus-
tered ordinary approach. The above approach can be applied to prejection
(duplicate elimination) as well as join. A data base machine utilizing this
clustering approach would attain a very rapid relational algebraic execution,
which we discuss in the following section.

§3 Classes of Machine Architecture Enhanced by Hash

Mechanism
Several types of machine architecture can be configured to implement the
hash-based relational algebraic processing scheme suggested in the previous
section. Here we identify several classes.

3.1 Uniprocessor Architecture

The clustering feature of hash can be fully utilized even in a conventional
single processor environment. After generating a hashed relation in a disk cash
as shown in Fig. 2 (a), a processor processes one bucket after another. Since the
size of each bucket is rather small, a processor with an adequate local memory
capacity can execute join of large relations efficiently. As described previously,
the load of join and projection is reduced from N X M to Z n: X m;.
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3.2 Multiprocessor Architecture

We can attain a higher performance for large data bases by storing them
over multiple memory banks and processing buckets with many processors.
From the mapping scheme of a logical view of hashed relations in multiple
memory banks, we can see two approaches: a bucket converging architecture
where all the tuples of a bucket are stored in only one memory bank, and a
bucket spreading architecture where tuples of a certain bucket are stored over
many memory banks,
(1] Bucket converging architecture

Before the execution of join, a relation stored over the source memory
banks is hashed and distributed to destination banks so that all the tuples
having the same hashed value converge into one bank (Fig. 2 (b)). Each
destination bank has the logical view shown in Fig, 1 after the distribution.
Since the tuples of one bank cannot be joined with those of another, processors
dedicated to each bank can proceed independently in the same way as in
uniprocessor architecture. In this architecture, however, the nonuniformity of
hash causes memory bank overflow, where tuples gather in one bank beyond its
capacity (Fig. 2 (c)). This phenomenon is the same as the bucket overflow found
in the direct access method. It causes difficulties in memory management, such
as determining the load factor, which is crucial in this architecture.
[2] Bucket spreading architecture

In bucket spreading architecture, there is no memory bank overflow.
Instead it is necessary to provide some mechanism to process a bucket whose
tuples are spread over many memory banks. Here we consider the following two
approaches.
(i) Intra-bucket parallel processing architecture Many of the cellular
logic type data base machines proposed so far can be much enhanced by introduc-
ing a hash mechanism (Fig. 2 (d)). Each processor hashes the tuples of its own
memory bank on the join attribute. It adds a tag of hashed value
to each tuple and restores it. A bucket is spread over some number of banks ; the
number of tuples of a certain bucket varies bank by bank. The logical view of a
hashed relation is depicted in Fig. 2 (e), where the same pattern denotes the
tuples of the same bucket. In this architecture, join can be executed in the same
way as RAP.” Namely, tuples of a selected source bank are broadcast to all
target banks, where each processor joins the distributed tuple with its own
tuples. A processor need not compare a received tuple with all those in its own
bank, but rather only with those with the same hashed value. Therefore, fair
performance improvement can be expected if the machine employs a storage
medium where the retrieval time of a bucket’s tuples is almost proportional to
the volume of the bucket. One track of a disk is not adequate because it always
takes one revolution to retrieve any amount of records. For example, machines
employing major/minor magnetic bubble memory instead of disk such as EDC!®




68 M. Kitsuregawa, H. Tanaka, and T. Moto-oka

would show higher performance. This is because the bubble memory is a
pseudo-random access device and can skip unnecessary records rapidly. We
discuss the enhanced bubble chip organization in 4.1(2). When a source bank
finishes broadcasting its own tuples, the next bank starts in the same way. After
all the tuples of the bucket over all source banks are sent to the destination
bank, the next bucket processing begins. Thus cellular logic type data base
machines can execute join much more efficiently by introducing a hash mecha-
nism than the conventional cellular logic type architecture. Each bucket is
processed in parallel by many processors, and buckets are handled serially. This
architecture is characterized by intra-bucket parallel processing and inter-bucket
serial processing. Machines of this type also have some problems. Since the
subbucket sizes are different in different banks, some banks might take a long
time to process their subbuckets, while some are idle. Here we call the portion
of the bucket contained in each bank a subbucket. All subbuckets spread over
some number of banks amount to one bucket. The bank of the largest subbucket
might decrease the performance of bucket processing.

(ii) Pipelined bucket processing architecture In contrast with the
previous architecture, a bucket here is processed by only one processor. Several
buckets are processed simultaneously by activated muitiple processors, In this
sense it has the same features as bucket converging architecture, but there is no
bank overflow, and the processing scheme is quite different.

A processor gathers the tuples of the allocated bucket from the memory
banks. This gathering process proceeds in pipeline fashion. That is, a processor
visits bank one after another and inputs the necessary tuples, while memory
banks output the tuples of the bucket allocated to that processor. A processor
runs through a pipe composed of memory banks. After it inputs all the relevant
tuples, it begins relational algebraic processing. Multiple processors flow in a
pipe, corresponding to a data stream in an ordinary pipeline system. Since a
bucket is allocated only to one processor, there is no inter-processor communi-
cation. Each can proceed independently. When a processor finishes one bucket,
it enters the pipe again. This architecture is characterized by inter-bucket parallel
processing and intra-bucket serial processing. Of course, buckets beyond the
available processors are processed serially. We discuss this architecture in more
detail in the next section.

§4 Architecture of GRACE

In the previous section, several machine architectures utilizing hash were
introduced. We designed a relational algebra machine GRACE belonging to the
last category, pipelined bucket processing architecture,

4.1 Bucket Processing in GRACE
In GRACE the buckets generated through hash are processed by dynam-
ically allocated processors in parallel. First we clarify the bucket processing
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mechanism of GRACE : how to process individual buckets in a processor, how
to allocate buckets to processors, how to control the bucket stream without
disturbing the pipeline, and how to manage the buckets in the memory banks.
Thereafter, the actual architecture is presented.
(17 Bucket processing based on sorting

We have not yet discussed how to process an individual bucket. There are
a number of methods. Since the size of one bucket is relatively small, ordinary
exhaustive matching is possible. Associative array or parallel comparison logic
which many of the proposed machines adopted is another candidate. In order
not to disturb the pipeline, it is necessary to process a bucket in O(n) time,
where 7 is the size of a bucket. The first method takes time proportional to the
product of the cardinalities of two relations in join. The second makes on-the-
fly processing possible, but the array capacity is limited in current technology.
We adopted a hardware sorter, based on the pipeline marge sort,'" which
completes sorting in O(n) time and has less of a capacity problem. It can output
a sorted data stream with a very small delay after inputting all the records. It is
obvious that a relational algebraic operation can be executed in O(#) time if
the relation is sorted, but the sorter cannot complete sorting until the last data
item arrives. Therefore, it takes longer to process a bucket than on-the-fly
processing. But this hardly affects performance because buckets are processed in
pipeline fashion, as discussed in the following paragraphs.
(2) Bucket output mechanism

Memory banks are required to generate an efficient bucket serial data
stream to processors. We find semiconductor RAM and magnetic bubble
memory in the memory hierarchy as the storage medium of the bank. Here we
consider bubble based organization. The pseudo-random accessibility of major/
minor bubble memory is the key feature in efficient bucket serial data stream
generation. The unnecessary records stored over minor loops can be skipped in
a period of | bit field rotation time. This quick skip mechanism improves the
access time and effective transfer rate of bubble memory. In pipelined bucket
processing architecture, memory banks need to output the tuples of a given
bucket contiguously. Rather than an individual record access, a set oriented
access should be supported efficiently, sequence of the records doesn’t matter.
Therefore, the effective transfer rate is more influential than the access time. We
modified a conventional major/minor bubble chip to get a higher transfer rate,
As is shown in Fig. 3 (a), short buffer loops are inserted between major lines and
minor loops. Necessary records can be buffered in the added loops while a
record is being output bit-serially. Block replication/transfer gates are used
between major lines and buffer loops, and swap gates between buffer loops and
minor {oops. Swap gates permit look-ahead buffering. The gates are controlled
by a bubble control unit using a mark-bit RAM which synchronizes the
magnetic field rotation. The hashed value of a tuple is stored in this RAM. The
gates are controlled so that tuples with the same hashed value are output
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Fig. 3 Modified major/ minor bubble chip with buffer loops

continuously. Figure 3 (b) indicates the simulation results of the performance of
this chip. Buffer loops make the inter-record gap time almost negligible ; that is,
efficient bucket serial data stream generation is realized.
(3] Bucket processing pipeline

Here we discuss the pipelined processing of the buckets in more detail.
With the adoption of a hardware sorter, it takes about 2 X #» time for a processor
to handle a bucket of » tuples. That is, it takes # time to gather the tuples from
the memory banks and another # time for relational algebraic operation on the
sorted tuples. It should be noticed that tuple gathering and sorting are overlapp-
ed, and the sorter can begin to output the sorted data stream when it inputs the

‘last tuple. Memory banks continuously output the tuples of the bucket

considered. Tuple gathering is done by pipelined processing, as mentioned in
3.2(2](ii). Dy denotes the tuples of j-th bucket stored in the i-th memory bank.
Figure 4 shows the pipeline processing overview, where the number of memory
banks and processors are two and four, respectively. Thus 2 X K processors are
activated to process the data streams generated by K memory banks. Here we
assume that Dy is the same size for all { and j.

Pipeline processing works well when each segment time is equal. If a
segment takes a long time, it becomes a bottleneck. In actual processing we
cannot expect an ideal case like Fig. 4. Both the volume of buckets and number
of tuples belonging to a certain bucket differ greatly among banks, meaning
that the segment time of the pipeline varies dynamically. This causes pipeline
disturbance and results in performance degradation. To resolve this segment
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time fluctuation, we have to spread the tuples of a bucket almost evenly over
memory banks. Accordingly, we perform ‘bucket flat distribution’, through
which a tuple of the j-th bucket emitted by a source bank is controlled to fall
into the i-th destination bank, where the size of Dy is minimum among the
banks at that time,

Nonuniformity of the hash function is inevitable. Therefore, it is difficult
to make the sizes of buckets equal. From the point of processor utilization, it is
desirable that the size of a bucket be close to the processor’s capacity. Thus, we
do ‘bucket size tuning’ : First we partition the relation into smaller buckets, then
integrate some of these into a larger bucket whose volume is less than the
capacity of a processor. Through this tuning, buckets with the size of near
uniformity can be produced.

4,2 Hardware Architecture of GRACE

The global architecture of GRACE is shown in Fig, 5, GRACE consists
of four kinds of fundamental modules : processing, memeory, disk, and control
modules. These are connected through a processing ring and staging ring. The
relations stored in disk modules are staged into memory modules and processed
by processing modules through the processing ring. The time divison multi-
channel ring buses make many modules run simultaneously. We shall describe
each component briefly.

A processing module handles an allocated bucket with a hardware sorter,
as was discussed in 4.1[1). The O(r) sorter can sort the tuple stream
generated by memory modules keeping up with the stream. We have imple-
mented a sorter with microprogrammed control and attaind a processing rate of
3 Mbyte/sec,12) comparabie to the highest transfer rate of the current disks. A
tuple manipulation unit, another important component, performs relational
algebraic operations on the sorted tuple stream. The third component in a
processing module is a hashing unit, which hashes the tuple over the attributes
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Fig.5 Global architecture of GRACE

for the next operation.

A memory module provides a large working space for intermediate and
final relations and generates an efficient bucket serial data stream to processing
modules. We now use bubble memory to construct this, as discussed in 4.1 (2].
A modified bubble chip with buffer loops is available at present.'® The
major drawback in the current magnetic bubble memory is its low transfer rate.
This problem can be resolved by activating multiple chips in parallel. We have
designed a pilot module incorporating 16 chips.

A disk module literally adopts a disk as the secondary storage to support
large data bases. In staging relations to memory modules, filter processors in
disk modules evaluate the simple predicates on the fly and eliminate unnecessary
records. The irrelevant attributes are also removed. This mechanism is found in
many data base machines such as RAP and TIP in DBC, and reduces the
amount of data to be transferred between modules. There is also a hashing unit,
which adds the hashed value of join or projection attributes to the tuple.
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§5 Query Execution on GRACE

Here we describe query execution on GRACE architecture. First the neces-
sary relations are staged from disk modules to memory modules through a
staging ring. The data streams from the disks are filtered out and hashed values
are added. Only necessary tuples are transferred to memory modules, where they
are stored in bubble memory and tags of hashed value in a corresponding mark-
bit RAM. When the data transfer is completed, a hashed relation is generated
conceptually on memory modules. Then an actual relational algebraic process-
ing is performed through a processing ring. Memory modules generate bucket
serial data streams, and processing modules gather the tuples of the allo-
cated bucket. This proceeds in pipeline fashion as shown in Fig. 5. Once a
processor is finished with one bucket, it begins with another. The relational
algebraic operation ends when all the buckets are consumed. The data streams
generated in memory modules are hardly disturbed. Thus, join is executed in

O(N-I-M

K
the number of activated memory modules.

For a complex query comprising many joins and/or set operations, the
result relation produced in memory modules is joined with another relation,
Recall our processing strategy for join. First the relation is hashed into small
buckets, and thereafter the generated buckets are processed. Therefore, it seems
that the hashing operation must be interleaved for each intermediate relation.
But there is no need for such an extra processing phase. A processing module
hashes result tuples while processing a bucket. That is, hash processing of a
result relation for the next operation can be overlapped with the actual process-
ing of the current operation. We call this ‘operator level pipeline’. This eliminat-
es the hashing overhead time. Thus, GRACE can execute 2 complex query very
efficiently.

) time, where N and M are the cardinalities of two relations and K

§6 Conclusion

We have examined various approaches to utilizing the clustering feature
of hash in data base machines and introduced possible architectures. Through
partitioning the relation using hash, dramatical performance improvement in
join and set operations can be attained. GRACE adopts a novel relational alge-
braic processing strategy based on hash and sort, where hashing overhead is
canceled by the operator level pipeline effect. GRACE is expected to execute a
complex query comprising many joins and/or projections much faster than any
data base machine proposed so far. The details of GRACE and the performance
evaluation will be reported in a future paper.
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