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Abstract. PC cluster is recently regarded as one of the most promising
platforms for heavy data intensive applications, such as decision support
query processing and data mining. We proposed some new parallel al-
gorithms to mine association rule and generalized association rule with
taxonomy and showed that PC cluster can handle large scale mining with
them. During development of high performance parallel mining system
on PC cluster, we found that heterogeneity is inevitable to take the ad-
vantage of rapid progress of PC hardware. However we can not naively
apply existing parallel algorithms since they assume homogeneity. We
proposed the new dynamic load balancing methods for association rule
mining, which works under heterogeneous system. Two strategies, called
candidate migration and transaction migration are proposed. Initially
first one is invoked. When the load imbalance cannot be resolved with
the first method, the second one is employed, which is costly but more
effective for strong imbalance. The experimental results confirm that the
proposed approach can very effectively balance the workload among het-
erogeneous PCs.

1 Introduction

Recently commodity based PC cluster system is regarded as one of the most
promising platforms for data intensive applications such as decision support
query processing and data mining. The power of PC is superior to the worksta-
tion for integer performance and the price of PC is also much lower. So far ex-
tensive researches on parallel database processing algorithms have been done[3].
Currently parallel execution option is available for most of RDB products. Par-
allel engine is essential for large-scale data warehouse and is becoming popular
nowadays. Thus combining the above two key trends, namely, parallel database
processing on PC cluster would be a most cost-effective solution for large scale
data warehousing.

We have built 100 node PC cluster system named NEDO-100 for data base
applications. We implemented parallel RDB kernel on it. TPC-D benchmark and
association rule mining were run on the machine [6, 16] and, it showed sufficiently
high performance. We exemplified that the PC cluster can achieve considerably
high cost-performance ratio.

We implemented high performance association rule mining system on the PC
cluster. We have enhanced it with optimization to mine generalized association



rule. In generalized association rules, application-specific knowledge in the form
of taxonomies (is-a hierarchies) over items are used to discover more interesting
rules. We introduce new parallel mining algorithms by taking the classifica-
tion hierarchy into account[15]. Here we show that our system can handle large
amount of transactions(1GBytes). [13]

One problem we faced in that project is “heterogeneity.” The system we
built[6, 16] was completely uniform. However, when we planned to increase the
number of nodes, it was extremely difficult to find out the same machines. Since
the development period of PC is very short, configuration of machines is changing
so quickly. Once six months have passed, we have to introduce different type of
PCs. Thus heterogeneity is inevitable.

Most of the parallel algorithms developed so far assume the system be uni-
form. Very few papers address heterogeneity problem[2]. If we apply the parallel
algorithm developed for uniform parallel system to the heterogeneous environ-
ment, apparently we will see significant performance deterioration. A high per-
formance node can process its allocated task quickly but node with less powerful
processor or with low bandwidth disk usually takes longer time to finish. We
picked up data mining as a data intensive application and tried to solve the
heterogeneity problem.

In [5] we propose run time load balancing algorithms for association rule
mining under heterogeneous PC cluster environment. Two strategies named can-
didate migration and transaction migration are developed. Details on these two
will be given in later sections. PCs do not have to communicate each other be-
fore the execution in order to normalize the performance among different CPUs
and disks etc. During executing data mining, the workload of each node is mon-
itored autonomously and the system performance is controlled to be balanced
by migrating candidates/transaction among nodes at runtime.

Section 2 explains the NEDO-100 PC cluster system. Section 3 briefly ex-
plains the association rule mining. Section 4 describes parallel algorithms for
Apriori and for generalized association rules. Section 5 introduces the funda-
mental idea of load balancing for association rule mining. Section 6 discusses the
future work and concludes the paper.

2 NEDO-100 PC Cluster

We have developed a large scale PC cluster consists of 128 PCs interconnected
with 155 Mbps ATM and 10 Mbps Ethernet networks[6, 16]. The project was
launched in 1995 and the equipments came at the end of 1996. The system
started at February 1997.

Initially the PC cluster was made up of 100 PCs with 200 MHz Pentium Pro
only and then we have added another 8 nodes but with more powerful 333 MHz
Pentium IT and 20 nodes with 450 MHz Pentium II since the performance of PC
hardware had improved dramatically.

The configuration of each PC showed in Table 1. The details of the devel-
opment of this system has been written elsewhere. [6, 16] We have performed



Table 1. Configuration of each PC

Node# 1 ~ 100 101 ~ 119 120 ~ 127
CPU Pentium Pro 200MHz|PentiumII 450 Mhz PentiumlIl 333 MHz
Main Memory||64MB 256MB 64MB

Disk Drive Seagate Barracuda |IBM DTTA-371440|Seagate Cheetah

for databases ||(Ultra SCSI, 4.3GB) |(EIDE, 14.4GB) |(Ultra SCSI, 9.1GB)
Seagate Cheetah
(Ultra SCSI, 9.1GB)
ATM NIC Interphase 5515 PCI ATM Adapter

oS Solaris2.5.1 for x86 |Solari52.6 for x86 |Solari52.6 for x86

numerous experiments of data intensive applications on the system that prove
the applicability of this system. Remarkably, since the system use low-cost com-
modity PC, it offers extremely good cost performance compared to mainframe
based database system currently in the market.

Some basic performance measurement of NEDO-100 are: point-to-point through-
put using TCP /IP protocol over ATM exceeds 110Mbps with message size 8KB-
16KB, roundtrip latency measured to be 448us and disk read throughput about
8 MB per second.

3 Association Rule Mining

3.1 Association Rule

An example of an association rule is “ if a customer buys A and B then 90%
of them buy also C” . Here 90% is called the confidence of the rule. Another
measure of a rule is called the support of the rule that represents the percentage
of transactions that contain the rule.

The problem of mining association rules is to find all the rules that sat-
isfy a user-specified minimum support and minimum confidence, which can be
decomposed into two subproblems:

1. Find all combinations of items, called large itemsets, whose support is greater
than minimum support.
2. Use the large itemsets to generate the rules.

Here we briefly explain the Apriori algorithm for finding all large itemsets,
proposed in [9].

In the first pass, support count for each item is incremented by scanning
the transaction database. All items that satisfy the minimum support are picked
out. These items are called large 1-itemset. Here k-itemset is defined as a set of k
items. In the k-th pass, the candidate k-itemsets are generated using set of large
k—1-itemsets. Then the support count of the candidate k-itemsets is incremented
by scanning the transaction database. At the end of scanning the transaction
data, the large k-itemsets which satisfy minimum support are determined. The
process is repeated until no candidate itemsets generated.



3.2 Generalized Association Rule with Taxonomy

In most cases, items can be classified according to some kind of ”is a” hierarchies.
[11] For example ”Sushi is a Japanese Food” and also ”Sushi is a Food” can be
expressed as taxonomy. Here we categorize sushi as descendant and Japanese
food and food are its ancestors. By including taxonomy as application specific
knowledge more interesting rules can be discovered.

Cumulate algorithm [11] is the first algorithm to mine generalized association
rule mining. It is based on Apriori algorithm, and it is extended with optimiza-
tions that make use of the characteristics of generalized association rule such
as pruning itemsets containing an item and its ancestors at second pass and
pre-computing the ancestors of each item.

4 Highly Parallel Data Mining

4.1 Parallel Association Rule Mining

J.S.Park, et.al proposed bit vector filtering for association rule mining and naive
parallelization of Apriori [10, 8], where every node keeps the whole candidate
itemsets and scans the database independently. Communication is necessary only
at the end of each pass. Although this method is very simple and communication
overhead is very small, memory utilization efficiency is terribly bad. Since all the
nodes have the copy of all the candidate itemsets, it wastes memory space a lot.

In [14] Hash Partitioned Apriori(HPA) was proposed in 1996. The candidate
itemsets are not copied over all the nodes but are partitioned using hash function.
Then each node builds hash table of candidate itemsets. The number of itemsets
at second pass is usually extremely high, sometimes three orders of magnitude
larger than the first pass in a certain retail transaction database which we ex-
amined. When the user-specified support is low, the candidate itemsets overflow
the memory space and incur a lot of disk I/O.

While reading transaction data for support counting, HPA applies the same
hash function to decide where to send the transactions and then probe the hash
table of candidate itemsets to increase the count. Although it has to exchange
transaction data among nodes, utilization whole memory space through parti-
tioning the candidates over nodes instead of duplication results in better paral-
lelization gain.

Hybrid approach between candidate duplication and candidate partitioning
is proposed at [4] at 1997. The processors are divided into some number of
groups. Within each group, all the candidates are duplicated and among groups,
candidates are partitioned.

4.2 Parallel Algorithms for Generalized Association Rule Mining

In this subsection, we describe our parallel algorithms for finding all large item-
sets on shared-nothing environment proposed in [15].

Non Partitioned Generalized association rule Mining : NPGM NPGM
copies the candidate itemsets over all the nodes. Each node can work indepen-
dently.



Hash Partitioned Generalized association rule Mining : HPGM HPGM
partitions the candidate itemsets among the nodes using a hash function like in
the hash join, which eliminate broadcasting.

Hierarchical HPGM : H-HPGM H-HPGM partitions the candidate item-
sets among the nodes taking the classification hierarchy into account so that
all the candidate itemsets whose root items are identical be allocated to the
identical node, which eliminates communication of the ancestor items. Thus the

communication overhead can be reduced significantly compared with original
HPGM.

H-HPGM with Fine Grain Duplicate: H-HPGM-FGD In the case the
size of the candidate itemsets is smaller than available system memory, H-
HPGM-FGD utilizes the remaining free space. H-HHPGM-FGD detects the fre-
quently occurring itemsets which consists of the any level items. It duplicates
them and their all ancestor itemsets over all the nodes and counts the support
count locally for those itemsets like in NPGM.

4.3 Transaction Dataset

We use synthetic transaction data generated using procedure in [9]. For large
scale experiments of generalized association rules we use the following parameters
: (1)the number of items is 50,000, the number of roots is 100, the number of levels
is 4-5, fanout is 5, (2)the total number of transactions is 20,000,000(1GBytes),
the average size of transactions is 5, and (3)the number of potentially large
itemsets is 10,000.

4.4 Performance Evaluation Results
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Fig. 1. Execution time Fig. 2. Candidate probes Fig. 3. Speedup ratio

We show the execution time at pass 2 of all parallel algorithms varying the
minimum support in Figure 1. The execution time of all the algorithms increases
when the minimum support becomes small. When the minimum support is small,
the candidate partitioned methods can attain good performance. H-HPGM-FGD
significantly outperforms other algorithms.



Next, the workload distribution of H-HPGM and H-HPGM-FGD is exam-
ined. Figure 2 shows the number of candidate probes to increment the support
count in each node at pass 2. In H-HPGM, the distribution of the number of
probes is largely fractured, since the candidate itemsets are partitioned in the
unit of hierarchy of the candidate itemsets. H-HPGM-FGD detects the frequently
occurring candidate itemsets and duplicate them. The support counting process
for these duplicated candidate itemsets can be locally processed, which can ef-
fectively balance the load among the nodes.

Figure 3 shows the speedup ratio with varying the number of nodes used 16,
32, 64 and 100. The curves are normalized by the execution time of 16 nodes
system. H-HPGM-FGD attains higher linearity than H-HPGM. Since H-HPGM
duplicates no candidate itemsets, the workload skew degrades the linearity. The
skew handling methods detect the frequently occurring candidate itemsets and
duplicate them so that the remaining free memory space can be utilized as
much as possible. In Figure 3, H-HPGM-FGD achieves good performance on
one hundred nodes system.

5 Dynamic load balancing on heterogeneous PC cluster

5.1 Run Time Load Balancing Methods

The parallel algorithms so far proposed assume homogeneous parallel processing
environment. In [5], we propose dynamic load balancing algorithms for hetero-
geneous parallel systems, where each node might have different type of CPU,
and different kinds of disks, etc. We choose “flat” association rule mining based
on HPA rather than generalized one as the application to give clearer insight on
how they work.

As described in the section 4, HPA sends each node the itemsets and probes
them against its own candidate itemsets hash table. [14] If a node is assigned
more candidate itemsets, it will receive more itemsets from other nodes during
counting phase. This means that we can adjust the workload of each node by
adjusting the amount of candidate itemsets. If the load of a certain node is higher
than the other nodes, we take some of the candidate itemsets from that node
and give them to the other nodes. Then the itemsets that are originally directed
to that node are now redirected to the new nodes to which the removed itemsets
are relocated. Thus the counting workload is migrated from the original node to
the other nodes. We name this strategy Candidate Migration.

The Candidate Migration is possible if the node still has candidate itemsets to
be migrated. itemsets. If the skew is high, there arises the case where migrating
all the candidates is still not sufficient. In order to handle such situation, we
need yet another strategy to migrate workload.

Let’s examine the HPA algorithm again in more detail. Each node has two
major task. One is to receive the itemset sent from other nodes, probe it against
the hash table and increment the count corresponding to that itemset. The other
task is to read the transactions from the disk, generate the itemsets and send



them to the nodes determined using hash function. We use the former task for
Candidate Migration.

Now we consider the latter task. Actually, the itemset generation from trans-
actions is rather complicated process. This workload could be migrated. The
node with heavy workload reads the transactions from the disk and it does not
do itemset generation itself but just sends the transactions to the light nodes.
We name this strategy Transaction Migration.

Transaction Migration incurs overhead of network transfer for each transac-
tion. Thus, we put priority to the Candidate Migration. Initially heavy node mi-
grates candidate itemsets only. When there are no candidate itemsets remained
to migrate, then it migrates transactions.

5.2 Migration Plan Derivation

We propose dynamic load balancing methods during the execution of data mining
to cope with the skew in heterogeneous system. In this approach, a coordina-
tor node collects necessary information from all the nodes, calculate estimated
remaining processing time for that node rest7; and controls the distribution of
workload.

Since the goal is to have all nodes complete their job at the same time, our
method dynamically controls the load allocated for each node so that every node
has the same restT;.

The skew is defined as follow,

max(restT;) — min(restT;)

skew = avg(restT;) (1)

{skew < threshold : no skew )
skew > threshold : skew exists
Coordinator can judge that the load control is needed if this value exceeds some
certain threshold. Then it makes a plan for Candidate Migration If skew still
presents, it also creates another plan for Transaction Migration. The above pro-
cedure is periodically invoked. Coordinator checks the skew condition every fixed
time interval. The complete load balancing is difficult by any means. Error grad-
ually accumulates. Once it becomes beyond the threshold, the coordinator tries
to balance the workload again.

5.3 Experimental Environment and Transaction Dataset

In order to simplify the problem and to show clearly the effectiveness of our load
balancing approach on heterogenous environment, we have made performance
evaluation on a group of four nodes each with different CPU power, disk per-
formance and data distribution as shown in table 2. The parameters used are
described in table 3. In practice, we are forced to mine database in various situa-
tion, so data distribution is skewed. We put least amount of data to node 4 while
employing fast microprocessor in order to artificially generate skew. Apparently



experiment with dataset 2 has higher skew than that with dataset 1. This is
used for transaction migration experiments. And in all of the experiments, the
skew value was set to 0.2.

Table 2. Configuration for Table 3. Datasets for heterogenous
heterogenous experiments experiments
Node 1 [Node 2 |[Node 3 [Node 4 DataSetl|DataSet2

Proc. P.Pro P.Pro P.Pro P.II Number of transactions 1000000 1500000
Clock 200MHz|200MHz|200MHz|333MHz Avg. size of transactions 20 20
Disk SCSI SCSI SCSI IDE Number of items 5000 5000
DataSetl|[40MB 20MB 10MB 10MB
DataSet2|80MB 20MB 10MB 10MB

5.4 Performance Evaluation Results
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Heterogenous configuration experiment with Dataset 1 for candidate
migration The numbers of candidate itemsets(C) and large itemsets(L) re-
sulted from data mining of dataset 1 with 0.7% minimum support are shown
in table 4. The execution traces without any load migration are shown in Figure
4. The figure shows four different resource usage: CPU, disk, interconnection
network (send/receive). Horizontal axis is elapsed time and vertical axis denotes
utilization ratio for CPU and data transfer throughput for disk read and in-
terconnection network. The network throughput is divided into two parts, send
throughput and receive throughput.

We only show traces for Node 1 and Node 4 since the space is limited. In
the first half of second pass Node 1 is too busy receiving k-itemsets from other
nodes, and could not even afford to read its own transaction data. On the other
hand, Node 4 with more powerful CPU and less data finishes reading its data in
first 40 seconds and idles for the rest of time. The total execution time is 164.03
seconds.

When we apply Candidate Migration strategy, candidate itemsets are reallo-
cated as soon as skew is detected. The traces are shown in Figure 5. Every node
completes its task at almost the same time indicating the skew is eliminated and
workload is evenly distributed. The processing time is also greatly improved to
only 120.21 seconds.

Figure 6 shows the trace of weighted candidate itemsets of all the nodes. We
can see that Node 1 and Node 2 migrate their candidate itemsets to Node 3
and Node 4. The amount of migrated itemsets gradually increases and finally
converged to a certain value.

Heterogenous configuration experiment with Dataset 2 for both can-
didate migration and transaction migration We did an experiment with
more skewed environment using dataset 2. Result of data mining using dataset
2 and 0.7% minimum support is also shown in table 3. Node 1 is becoming the
bottleneck of the parallelization as shown in Figure 7. The total execution time
is 287.09 seconds.

By introducing the Candidate Migration, performance can be improved. The
processing time is reduced to 198.36 seconds. However since the load is extremely
concentrated at Node 1, as Figure 8 shows, Candidate Migration alone can not
get rid of that skew completely. Node 4 finishes reading out the transactions
from disk at around 125 seconds. We can see that all candidate itemsets of Node
1 has been transferred to other nodes, as shown at Figure 11. Thus Candidate
Migration can not migrate workload any more.

When we introduce Transaction Migration in addition to Candidate Migra-
tion, we can achive almost perfect load balancing as shown at Figure 9. Node
1 sends its transaction data and delegates the generation of k-itemsets to other
nodes. The elimination of skew records processing time of 182.18 seconds.

Figure 10 shows the trace of amount of weighted candidate itemset and
amount of migrated transactions for Node 1 and Node 4. No candidate item-
sets is left at Node 1. Node 1 also sends out transactions to the other nodes and
Node 4 receives some of the transactions from Node 1.
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Experiment for scalability of proposed load balancing method We scaled
up the system by multiplying the configuration we used so far. We used the con-
figuration of a group of 4 nodes as multiplication unit and expanded the system
from 4 nodes to 8, 12, 16, 24 and 32 nodes.

The results are shown in Figure 12. Execution time increases slightly as the
number of nodes increases. As the number of nodes increases, the overhead time
for synchronization becomes non-negligible.

6 Conclusion

We examined the effectiveness of parallel algorithms on large scale parallel com-
puter system using the large amount of transaction dataset. Our system is con-
sisted with one hundred of PCs. As far as the authors know, there has no research
on parallel data mining over such large scale systems using a large amount of
transaction dataset. Through several experiments, we showed H-HPGM-FGD
could attain sufficiently high performance and achieve good workload distribu-
tion on one hundred PC cluster system.

We proposed dynamic load balancing strategies for parallel association rule
mining on heterogeneous PC cluster system. Due to the short development period
of recent PCs, it is inevitable that the PC cluster system becomes heterogeneous.
In order to utilize all the system resources as fully as possible, we have to make
the program adaptive to its runtime environment.

We adopted HPA (Hash Partitioned Apriori) algorithm for underlying paral-
lel association rule mining. We proposed two kinds of dynamic load balancing
strategies for parallel association rule mining, Candidate Migration and Trans-
action Migration.

In order to clearly show the effectiveness of our approach, we set up rather
simple 4 node cluster with two kinds of PCs and varied the size of dataset for
each PC. We demonstrated the feasibility of our approach showing the execution
trace. By examining the trace, we confirmed that the proposed scheme effectively
works to remove workload inbalance. Candidate Migration works under medium
skew environment. If the skew is high and candidate migration can not suffi-
ciently help, the system automatically invokes the Transaction Migration. In
addition, we also showed the scalability experiments. We increased the size of
the system from 4 nodes to 32 nodes. We found sufficient scalability can be
archived.



Our experiments have showed that PC cluster, with its scalable performance
and high cost performance is a promising platform for data intensive applications
such as data mining.
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