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Abstract

Personal computer/Workstation (PC/WS) clusters are
promising candidates for future high performance comput-
ers, because of their good scalability and cost performance
ratio. Data intensive applications, such as data mining
and ad hoc query processing in databases, are considered
very important for massively parallel processors, aswell as
conventional scientific calculations. Thus, investigating the
feasibility of data intensive applications on a PC cluster is
meaningful.

Association rule mining, one of the best-known problems
in data mining, differs from conventional scientific calcula-
tionsin its usage of main memory. It allocates many small
data areas in main memory, and the number of those areas
suddenly grows enormously during execution. As a result,
the contents of memory must be swapped out if the re-
quirement for memory space exceeds the real memory size.
However, because the size of each data areaisrather small
and the elements are accessed almost at random, swap-
ping out to a storage device must degrade the performance
severely.

In this paper, we investigate the feasibility of using
available remote nodes memory as a swap area when
application execution nodes need to swap out their real
memory contents during the execution of parallel data
mining on PC clusters. We report our experiments in
which application execution nodes acquire extra memory
dynamically from several available remote nodes through
an ATM network. A method of remote memory utilization
with remote update operations is proposed and eval uated.
The experimental results on our PC cluster show that the
proposed method is expected to be considerably better
than using hard disks as a swapping device. The dynamic

decision mechanismfor remote memory availability and the
migration operations are also evaluated.

1. Introduction

Recently data intensive applications such as data mining
and data warehousing have been focused as one of the most
important applications for high performance computing. As
a platform, Personal computer/Workstation (PC/WS) clus-
ter is a promising candidate for future high performance
computers, from the viewpoint of good scalability and
cost performance ratio. We previously developed a large
scale ATM-connected PC cluster, and implemented sev-
eral database applications, including parallel data mining,
to evaluate their performance and the feasibility of such
applications using PC clusterg 1][2].

Different from the conventional scientific calculations,
association rule mining, one of the best known problems
in data mining, has a peculiar usage of main memory. It
alocates a lot of small data on main memory, and the
number of those areas multiplies to be enormous during the
execution. Thus, the requirement of memory space changes
dynamicaly and becomes extremely large. Contents of
memory must be swapped out if the requirement exceeds
the real memory size. However, because the size of each
dataelement israther small and all the elementsare accessed
almost at random, swapping out to a secondary storage sys-
tem is likely to cause severe performance degradation. We
are investigating the feasibility of using available memory
in remote nodes as a swap area, when application execution
nodes need to swap out their memory contents.

In this paper, we report our experimental resultsinwhich



nodes executing an application acquire extra memory dy-
namically from several remote nodesin the ATM-connected
PC cluster. Moreover, a method using distant node’ s mem-
ory with remote update operations, which is expected to
prevent a thrashing problem, is proposed and evaluated.
Therest of paper is organized as follows. In Section 2, the
datamining application and its parallelization are explained.
In Section 3, an overview of our PC cluster is presented,
and an implementation of parallelized data mining on our
PC cluster is described. The method of dynamic remote
memory utilization for parallel data mining is explained in
Section 4. In Section 5, performance results of the eval-
uation of proposed mechanisms are shown and analyzed.
Final remarks are made in Section 6.

2. Data mining application and its paralleliza-
tion

2.1. Mining of association rules

Data mining has attracted a lot of attention from both
research and commercial community, for finding interesting
trends hidden in large transaction logs. Data mining is a
method for the efficient discovery of useful information,
such as rules and previously unknown patterns existing
among dataitemsin large databases, thus allowing for more
effective utilization of existing data.

Large transaction processing system logs have been ac-
cumulated because of the progress of bar-code technology.
Such data was just archived and not used efficiently until
recently. The advance of microprocessor and secondary
storage technologies alows us to analyze vast amount of
transaction log data to extract interesting customer behav-
iors. For very large mining operations, however, parallel
processing isrequired to supply the necessary computational
power.

One of the best known problems in data mining is min-
ing of association rules from a database, so called ‘* basket
analysis'’'[3][4][5]. Basket type transactions typically con-
sist of a transaction identification and items bought per
transaction. An example of an association rule is *‘if cus-
tomers buy A and B, then 90% of them aso buy C'’.
The best known algorithm for association rule mining isthe
Apriori algorithm proposed by R. Agrawal of IBM Almaden
Research[6][7][8].

Apriori first generates so-caled candidate itemsets
(groups consisting of one or more items), then scans the
transaction database to determine whether the candidates
have the user-specified minimum support. In the first pass
(pass 1), support for each item is counted by scanning the
transaction database, and all items that achieve the mini-
mum support are picked out. These items are called large
1-itemsets. In the second pass (pass 2), 2-itemsets (pairs of

two items) are generated using the large 1-itemsets. These
2-itemsets are called the candidate 2-itemsets. Support for
the candidate 2-itemsets is then counted by scanning the
transaction database. The large 2-itemsets that achieve the
minimum support are determined. The algorithm goes on
to find the large 3-itemsets, the large 4-itemsets, and so on.
This iterative procedure terminates when alarge itemset or
a candidate itemset becomes empty. Association rules that
satisfy user-specified minimum confidence can be derived
from these large itemsets.

2.2. Parall€elization of association rule mining

In order to improvethe quality of therule, we haveto an-
alyze very large amounts of transaction data, which requires
considerable computation time. We have previously studied
several parallel algorithms for mining association rules[9],
based on Apriori. One of these algorithms, called Hash
Partitioned Apriori (HPA), is implemented and evaluated
on the PC cluster. HPA partitions the candidate itemsets
among processors using a hash function, like the hash join
in relational databases. HPA effectively utilizes the whole
memory space of all the processors, hence it works well for
large scale data mining. The steps of the algorithm are as
follows.

1. Generate candidate k-itemsets:

All processors have al the large (k — 1)-itemsets in
memory when pass £ starts. Each processor generates
candidate k-itemsets using large (k — 1)-itemsets,
applies a hash function, and determines a destination
processor ID. If the ID is the processor’s own, the
itemset is inserted into the hash table, otherwise it is
discarded.

2. Scan the transaction database and count the support
value:

Each processor reads the transaction database from
its local disk. It generates k-itemsets from those
transactions and applies the same hash function used
in phase 1. The processor then determines the des-
tination processor ID and sends the k-itemsets to
it.

When a processor receives these itemsets, it searches
the hash table for a match, and increments the match
count.

3. Determine large k-itemsets:

Each processor checks all the itemsets it has and de-
termines large itemsets locally, then broadcasts them
to the other processors. When this phase is finished
at all processors, large itemsets are determined glob-
aly. The algorithm terminates if no large itemset is
obtained.



3. ATM-connected PC cluster
3.1. Theissues of PC clusters

Components of today’s high performance parallel com-
putersare evolving from proprietary parts, e.g. CPUs, disks,
and memories, into commodity parts. Thisis because tech-
nologies for such commaodity parts have matured enough
to be used for high-end computer systems. While an in-
terconnection network has not yet been commoditized thus
far, ATM technology is one of the strong candidates as a
de facto standard of high speed communication networks.
With the progress of high performance networks, such as
ATM, future paralel computer systems will undoubtedly
employ commoadity networks as well.

Thus, PC/WS clusters using high performance commod-
ity networks have become an exciting research topic in
the field of parallel and distributed computing. They are
expected to play an important role as large-scale parallel
computers in the next generation, because of their good
scalability and cost performance ratio.

Initially, the processing nodes and/or networks of clus-
ters were built from customized designs, since it was diffi-
cult to achieve good performance using only off-the-shelf
productg[10][11]. Such systems are interesting as research
prototypes, but most failed to be accepted as common
platforms. However, because of advances in worksta
tion and high-speed network technologies, reasonably high
performance WS clusters can be built using off-the-shelf
workstations and high speed LANS[12].

Until recently, workstations were overwhelmingly su-
perior to personal computers, in terms of performance as
well as sophisticated software environments. However, the
latest PC technology has dramatically increased CPU, main
memory, and cache memory performance. While RISC pro-
cessors used in today’s WSs provide better floating point
performance than the microprocessors used in PCs, some
applications, such as database processing, primarily require
good integer performance. Since integer performance of
latest PCs is better than that of WSs (e.g. SPECIint95 of
800MHz Pentiumlll is 38.3, while SPECint95 of 450MHz
UltraSPARC-11 is 19.7), PCs have better cost performance
ratios than WSs for database operations. High-speed bus
architectures, such as the PCI bus, have also improved I/O
performance of PCs. Because the size of the PC market is
much larger than the WS market, further improvementsin
the cost performance ratio are expected for PC clusters.

Various research projects, which develop and ex-
amine PC/WS clusters, have been performed until
now[13][14][15][16][17][18]. However, most of them only
measured basic characteristics of PCs and networks, and/or
some small benchmark programs were examined. We be-
lieve that data intensive applications such as data mining

Table 1. Each node of the PC cluster

CPU Intel 200MHz Pentium Pro

Chipset Intel 440FX

Main memory | 64Mbytes

IDE hard disk | WesternDigital Caviar32500 2.5Gbytes
SCSI hard disk | Seagate Barracuda 4.3Gbytes

O] Solaris 2.5.1 for x86

ATM NIC Interphase 5515 PCI Adapter

and ad hoc query processing in databases are quiteimportant
for future high performance computers, in addition to the
conventional scientific applications. We have developed a
pilot system of ATM-connected PC cluster consists of 100
Pentium Pro PCs, and evaluated it with database applica-
tions including the TPC-D benchmark and a data mining
application[1][2].

3.2. An overview of our PC cluster pilot system

100 nodes of 200MHz Pentium Pro PCs are connected
with an ATM switch in our PC cluster pilot system. Each
node consists of the components shown in Table 1.

HITACHI’s AN1000-20, which has 128 port 155Mbps
UTP-5, is used as an ATM switch. Since this switch
has 128 port, al nodes can be connected directly with
each other, forming a star topology rather than a cascade
configuration. All nodes of the cluster are connected by a
155Mbps ATM LAN as well as by an Ethernet. An RFC-
1483 PV Cdriver, which supportsLL C/SNAP encapsulation
for IPover ATM[19][20], isused. Only UBR traffic classis
supported in thisdriver. TCP/IP isused asacommunication
protocol. An overview of the PC cluster is shown in Figure
1

3.3. Implementation of parallelized association rule
mining

HPA program described in Section 2 was implemented
on the PC cluster pilot system. Each node of the cluster has
atransaction datafile on its own hard disk. Transaction data
was produced using adatageneration program devel oped by
Agrawal, designating some parameters, such as the number
of the transaction, the number of different items, and so
on[8]. The produced data was divided by the number of
nodes, and copied to each node’ s hard disk. WesternDigital
Caviar32500 IDE disks are used for this purpose.

At each node, two processes are created and executed.
One process makes candidate itemsets from previous large
itemsets, and sends them to the other process, which puts
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Figure 1. An overview of the PC cluster

the data into a hash table. In the data counting phase, one
process generates itemsets by scanning the transaction data
file, and sends them to the other processes on the nodes
selected by the hash function. The target processes check
and increment their hash table values accordingly.

Solaris Transport Layer Interface (TLI) system calls are
used for the inter-process communication. All processes are
connected with each other by TLI transport endpoints, thus
formingameshtopology. /dev/tcpisused asatransport layer
protocol. It isatwo-way connection based byte stream. On
theATM level, Permanent Virtual Channel (PV C) switching
is used, since data is transferred continuously between all
processes.

During the execution of HPA, itemsets are kept in mem-
ory aslinked structuresthat are classified by ahash function.
That is to say, al itemsets having the same hash value are
assigned to the same hash line on the same node, and their
structures are connected with each other to form alist.

As an example, a result of HPA is shown in Table 2.
In this execution, the number of transactionsis 10,000,000,
the number of different items is 5,000, and the minimum
support is 0.7%. When the PC cluster using 100 PCs is
employed for this problem, reasonably good performance
improvement is achieved[2]. Several characteristics such as
CPU usage and network performance of the cluster during
the execution of HPA are analyzed and discussed in [21].

It is known that the number of candidate itemsetsin pass
2 isvery much larger than in other passes, as can be seenin
the table. This often happens in association rule mining.

Table 2. The number of candidate and large

itemsets at each step

C' | Number of candidate itemsets
L | Number of large itemsets
pass C L
pass 1 1023
pass2 | 522753 | 32
pass 3 19 19
pass 4 7 7
pass 5 1 0

4. Using availableremote memory dynamically
on the PC cluster

4.1. Swapping operation during the execution of
data mining

As mentioned in Section 3, the number of candidate
itemsets in pass 2 is very much larger than other passesin
association rule mining. The number of itemsetsis strongly
dependent on user-specified conditions, such as minimum
support value, and it is difficult to predict before execution
how large the number will be before execution. Therefore, it
may happen that the number of candidate itemsetsincreases
dramatically in this step so that the requirement of memory
becomes extremely large. When the required memory
is larger than the real memory size, part of the memory
contents must be swapped out. However, because the size
of each dataisrather small and all the dataisaccessed almost
at random, swapping out to a storage device is expected
to degrade performance severely in this case. In the case
of large scale clusters, a large fraction of the memory of
total nodes is not in active use on average[22]. Therefore,
“*borrowing’’ available memory from other nodesin case of
necessity seems to be a good idea. In the rest of this paper,
several methods are discussed in which available memory
in remote nodesis used as a swap area, when huge memory
isdynamically required during the execution of parallel data
mining on PC clusters.

4.2. Dynamic decision mechanism for remote mem-
ory availability

Remote nodes, whose memories are available for appli-
cation execution nodes, are found dynamically during the
execution. We call them ‘*‘memory available nodes’. The
mechanism to decide the availability of remote nodes is
shown in Figure 2. On memory available nodes, a pro-



cess is running to monitor the amount of available memory
periodically. ‘‘netstat -k’> command provided by Solaris
operating system is used to get memory information from
the kernel statistics structure. * Each time the process gets
the information, the process broadcasts it to all application
execution nodes.

On application execution nodes, a client process is run-
ning and waiting for the information sent from the memory
monitoring processes running on memory available nodes.
The client process has a memory area which can be shared
with application processes, and the received information
about the amount of memory at each node is written on the
shared memory. The application processes can read this
information at anytime, to decide the policy of swapping
operations. For example, when a memory available node
does not have enough memory space, the shortage of mem-
ory is detected by application processes, so that another
node is chosen as a swapping destination afterward.

On the other hand, if some other processes begin their
execution on a memory available node which already ac-
cepted swapping operations, the swapped out data must be
migrated to other memory available nodes to make space on
its memory for the new processes. This mechanism works
as follows. First, the memory shortage is monitored on
a memory available node, then this information is broad-
cast to client processes of al application execution nodes.
When the application execution nodes detect this memory
shortage, they check a memory management table which
shows where each entry currently exists. If they find that
part of their memory contents has been swapped out to this
memory available node, they sends a migration direction
to this node to tell to which node these entries should be
migrated. The memory available node migrates its contents
to other memory available nodes, according to the direction.

4.3. Dynamic remote memory acquisition

As a method of experiments, a limit value for memory
usage of candidate itemsets is set at each node. When the
amount of memory usage exceeds this value during the ex-
ecution of HPA program, part of contents is swapped out to
available remote nodes’ memory. That isto say, the appli-
cation execution node acquires memory area dynamically
from one of memory available nodes when it is heeded.

When the number of candidate itemsets becomes ex-
tremely large in pass 2 and the amount of memory usage
exceeds a specified value, the node sends some of its mem-
ory contents to destination memory available nodes. The
unit of swapping operation is a hash line, which is alisted
structures as explained in Section 3. The hash line swapped
out isselected using aL RU algorithm. At the memory avail-

1The**-k’* option to netstat command is not documented on the manual
pages. See [23] for more information.
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able node, the received contents are allocated and written in
itsmain memory. Each memory available node may receive
swapped out data from several application execution nodes.

A pagefault occurs, on the other hand, when an applica
tion execution node accesses an item that had been swapped
out. It sends a request to a memory available node which
holds the data, and the memory available node sends back
the requested hash line. After the application execution
node receives the contents, they are allocated and written
on main memory again, then the execution of application
resumes. Replacements of dataare decided by LRU manner.
The maximum number of nodes used as memory available
nodes can be changed as required from one to many in the
experiment.

The basic behavior of this approach has something
in common with distributed shared memory systems[24],
memory management system in distributed operating
systemg[25], or cache mechanism in client-server database
systems[26]. For example, if data structures inside applica-
tions are considered in distributed shared memory, almost
the same effect can be expected. That isto say, it ispossible
to program almost the same mechanism using some types of
distributed shared memory systems. Thus, our mechanism
might be regarded as equivalent to a case of distributed
shared memory optimized for a particular application.

4.4. Remote memory update oper ation

Because most of memory contents are accessed repeat-
edly, the number of pagefaults is considered to become
very high when the memory usage limit issmall. A kind of
thrashing may happen in such acase. In order to prevent this
phenomenon, we investigate a method to restrict swapping



operations.

When usage of memory reaches to the limit value at an
application execution node, it acquires remote memory and
swaps out part of its memory contents. The contentswill be
swapped in again if this data is accessed later. Instead of
swapping, it is sometimes better to send update information
to the remote memory when a pagefault occurs. That is
to say, once some contents are swapped out to memory
in a remote node, they are fixed at there and accessed
only through a remote memory access interface provided
by library functions. We apply this policy to the itemsets
counting phase, in which the memory access operation is
simple -- to compare itemsets with the contents of the hash
table and update the table.

5. Performance analysis of dynamic remote
memory utilization

5.1. Implementation of the mechanism on PC clus-
ter

The proposed mechanism has been implemented on
the PC cluster pilot system. The parameters used in the
experiment are as follows: The number of transactions is
1,000,000, the number of different items is 5000, and the
minimum support is 0.1%. The size of the transaction data
isabout 80Mbytes in total. The message block sizeis set to
be 4K bytes, and the disk 1/0 block size is 64K bytes.

The number of application execution node is 8 in this
evaluation. The number of hash line for candidate itemsets
is 800,000 in total, hence about 100,000 hash lines are
assigned to each node during the execution. The unit of
swapping operation isahash line, which could be contained
in one message block in this experiment.

With the above conditions, the number of candidate
itemsets in pass 2 was 4,871,881 in total. These candidate
2-itemsets are assigned to each node using a hash function.
The numbers of candidate 2-itemsets at each node are
shown in Table 3. Although the itemsets are assigned using
a hash function, the numbers at each node are not equal.
This frequently happens in the execution of HPA, because
some amount of skew usualy exists in transaction data in
association rule mining. We have also developed a method
to treat it, which can be found in another paper[27].

Since each candidate itemset occupies 24bytes in to-
tal(structure area + data area), approximately 14-15Mbytes
of memory are filled with these candidate itemsets at each
node.

Theinterval of monitoring the amount of available mem-
ory is 3sec, which is considered frequent enough for mon-
itoring and not too heavy for application execution nodes.
Thisvalue will be discussed later.

Table 3. The number of candidate 2-itemsets

at each node

nodel | node2 | node3 | node4
602559 | 641243 | 582149 | 614412
node5 | node6 | node7 | node8
604851 | 596359 | 622679 | 607629

5.2. Dynamic remote memory acquisition with sim-
ple swapping

First, a method using available remote nodes' memory
with simple swapping is examined. The maximum number
of nodes used as memory available nodes is changed from
1to 16. In this experiment, all memory available nodes are
assumed to have enough memory space to accept requests
of swapping operations. In such a case, al the memory
availablenodesare used for swapping operationsthroughout
the execution of the program and therefore the number of
memory available nodes is constant during the experiment.
The execution time of pass 2 in HPA program, when the
number of memory available nodes changes from 1 to 16,
is shown in Figure 3. In this figure, the result of 5 different
cases are shown. The upper 4 lines are the cases of memory
usage for candidate itemsets being limited as 12Mbytes,
13Mbytes, 14Mbytes, and 15Mbytes, respectively. The
lowest line is the case with no memory usage limit, in
which application execution nodes are assumed to have
enough memory for candidate itemsets so that no swapping
occurs. Other mechanisms and conditions are the same
with memory limited cases. Memory monitor mechanismis
running in this case a so, for comparison.

When the number of memory available nodes is small,
the execution timeisquitelong especially when the memory
usage limit size is smaller. Apparently memory available
node(s) become bottleneck in these cases. This bottleneck
is resolved when the number of memory available nodesis
8 - 16 in this experiment.

The execution time becomes longer asthe memory usage
limit size becomes small, since the number of swap out
increases in such cases. When memory usageislimited, the
execution time is quite longer than that of the no memory
limit case. This is because the number of swap out is
extremely large.

We can calculate the execution time of each pagefault
as follows. We will focus on the case when the number of
memory available nodes is 16, in which memory available
nodes are not considered to be bottleneck. In the case of
memory usage limit being 13Mbytes, for example, the exe-
cution time of the program is 4674.0sec, and the difference
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of the execution time between this and the no memory limit
caseis4427.0sec. Thetotal execution timeisdecided by the
busiest node that does the most swapping operations. Inthis
case, the maximum number of pagefaultsin the busiest node
was 1,896,226. Thus, the execution time of each pagefault
can be obtained by dividing the difference in execution
times by the maximum number of pagefaults, 2.33msec in
thisexample. The other cases are also calculated in Table 4.

The execution time of each pagefault consists of round
trip delay time, data transmission time, and memory allo-
cation and/or search time at memory available nodes. The
point-to-point round trip time on our PC cluster is approx-
imately 0.5msec as shown in [2]. Since the point-to-point
throughput is about 120Mbps on our cluster, and each page-
fault data is contained in one message block (4K bytes), the
data transmission time can be calculated from these values
as approximately 0.3msec. Therest of timeis considered to
be swapping operations cost in memory available nodes.

We can compare the pagefault execution time with the
access time of hard disks. According to a state-of-art spec-
ification of SCSI hard disks, Seagate Barracuda 7,200rpm
disks for example, the average seek time for read is about
8.8msec and the average rotation waiting time is about
4.2msec. In the case of latest fast hard disks such as HI-
TACHI DK3ELT 12,000rpm disks, the average seek time
for read is about 5msec and the average rotation waiting
timeisabout 2.5msec. Therefore, it takes at least 13.0msec
in average to read data from 7,200rpm hard disks, and
7.5msec even with the fastest 12,000rpm hard disks.

13MB
14MB
15MB

4674.0
2489.7
757.3

4427.0
2242.7
510.3

1896226 | 2.33
1003757 | 2.22
268093 | 1.90

5.3. Using remote memory with remote update
operation

The access interface function is developed to realize
the remote update operations. In this experiment also,
al memory available nodes are assumed to have enough
memory space to accept swapping requests, so that the
number of memory available nodes is constant during the
experiment.

The execution time using this method is shown in Figure
4. This figure shows the execution time of pass 2 of HPA
program, when the number of memory available nodesis 16.
The execution times of dynamic remote memory acquisition
using remote update operations and using simple swapping
are compared in the figure. The execution time using hard
disks as a swapping device is a'so shown, for comparison.
Seagate Barracuda 7,200rpm SCSI hard disk is used for
this purpose. In this case, memory contents are swapped
out to hard disks when the memory usage of candidate
itemsets exceeds the limit value. Other conditions and
implementations are the same with the case of dynamic
remote memory acquisition.

The execution time using hard disks as swapping devices
is very long especially when the memory usage limit is
small, because each access time to a hard disk is much
longer than that of remote memory through the network.
The execution time of dynamic remote memory acquisition
with simple swapping is better than for swapping out to hard
disks. It increases, however, when the memory usage limit
issmall, since the number of pagefaults becomes extremely
largein such acase.

The execution time of dynamic remote memory acquisi-
tion with remote update operations is quite short compared
to these results, even when the memory usage limit issmall.
It seemsto be effectiveto provide asimpleremote accessin-
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terface for the itemsets counting phase, because the number
of swapping operations during this phase is extremely large.
According to these results, performance of the proposed
remote memory utilization with remote update operationsis
considerably better than other methods.

5.4. Dynamic memory migration on memory avail-
ablenodes

In the previous experiments, all memory available nodes
are assumed to have enough memory space to accept re-
quests of swapping operations. In such cases, the number of
memory available nodes is constant during the experiment,
while the amount of memory is monitored periodically and
their availability is checked when they are accessed. As ex-
plained in Section 4, when a destination memory available
node does not have enough memory space and the shortage
is detected on the application execution node, another node
ischosen as aswapping destination. If some other processes
begin to run on a memory available node which already
accepted swapped out data and therefore it must make space
on its memory for the new processes, the swapped out data
ismigrated to another memory available node.

The following experiment is performed to evaluate the
memory migration mechanism. First, the HPA program
starts using the mechanism of the dynamic memory acquisi-
tion with remote update operation. During the execution of
the program, asignal is sent to the amount of memory mon-
itoring process on one of memory available nodes. After the
process receives this signal, it begins to pretend to have no
available memory space anymore as if other new processes
begin to use the whole memory on this machine, and broad-
casts the information to its client processes on application
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execution nodes. When application execution nodes detect
the memory shortage on the memory available node, they
sends a migration direction to this memory available node
for entries which was belonging to them, to which node the
entries should be migrated. Thenthe memory availablenode
migratesits contentsto other memory available nodes. After
this procedure, the application program resumes, while the
number of memory available nodes reduces by one. It is
possible to send a signal more than two memory available
nodes and migrate memory contents from them.

The execution time of pass 2 in HPA program in this
experiment is shown in Figure 5. The maximum number of
nodes used asmemory availablenodesis 16, and theinterval
of monitoring the amount of available memory is3sec. This
figure shows three lines. The lower line is the case in
which all 16 memory available nodes are used for swapping
operations throughout the execution of the program. The
middle line is the case in which one of memory available
nodes receives asignal during the execution of the program,
and it migrates contents of its memory to other memory
available nodes. The upper line is the case in which two of
memory available nodes migrate their memory contents to
other nodes.

Asshown onthefigure, theexecution timedid not change
significantly from case to case. According to the result, the
overhead of memory contents migrationisalmost negligible
in this experiment. Theresults are not significantly changed
either when the interval of monitoring the amount of avail-
able memory is alittle shorter, e.g. 1sec. Too short interval,
such as shorter than 1sec, degrades the system performance
because of the monitoring and communication overhead.
Such a short interval is expected to be unnecessary in most
cases.

6. Conclusion

At present, judging by the number of installation sites,
high performance parallel computers are becoming more
popular in business applications than in scientific research.
Datamining and ad hoc query processing are considered two
of the most important applications for parallel processing.
Since the PC cluster is a promising platform for future
high performance computers from the cost/performance
aspect, the feasibility of implementing parallel data mining
application over a PC cluster was examined.

In contrast to conventional scientific calculations, asso-
ciation rule mining, one of the best-known problemsin data
mining, has a peculiar feature in its usage of main memory:
it needs many small data elementsin main memory at each
node, and the numbers of those areas suddenly increase
greatly during execution.

In this paper, we show and discuss experimental results
in which application execution nodes acquire extra memory
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memory available nodes

dynamically from available remote nodes in an ATM-
connected PC cluster. The experimental results show this
method is considerably better than using hard disks as a
swapping device. A method of updating remote memory
in order to prevent thrashing was proposed and examined.
This method achieves the best performance. The dynamic
decision mechanism for remote memory availability and
the migration operations were al so evaluated. The overhead
of memory contents migration is almost negligible in this
experiment, unless the interval of monitoring the amount of
available memory is too short.
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