
Heat Balancing for Btree Indexed Database over

 Ring Configured Shared Nothing Machines

Hisham Feelifl and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo

Institute of Industrial Science, University of Tokyo
7-22-1, Roppongi, Minato-ku, Tokyo 106, Japan.
E-mail: {hisham, kitsure} @tkl.iis.u-tokyo.ac.jp

Abstract

In shared nothing machines, data are typically declustered
and indexed across the system processing elements (PEs)
to achieve efficient query and transaction execution. Since
the access pattern is inherently dynamic, therefore, there is
no one placement of relations that is optimal for the
lifetime of the database system. Whenever data is moved
across PEs, the indexes need to be modified too.
Consequently reorganization based on the access history
(heat) of the data or its corresponding index is essential
and should be online, in addition, it should satisfactorily
deal with the index modification, as data is moving across
the PEs. In this paper, we study the heat balancing
strategies that have the capability of minimizing the index
modification. Meanwhile, it has been observed that the
system performance during reorganization is greatly affect
by the cost of the balancing decisions (migration cost) and
the location of the hot spot in the system. In this paper, we
propose a new migration configuration, namely the ring
configuration, it has the capability to reduce the migration
cost and to absorb the dependency on hot spot locations. It
has been shown there is a considerable reduction in the
system migration cost, which mainly improves the system
performance during the reorganization process. We also
propose a new online heat balancing algorithm, namely
two bags of heat, that utilizes the ring configuration with
additional advantages of distributing the given heat as
evenly as possible across the system PEs and the capability
to minimize the balancing convergent time. We evaluate
the performance of the proposed strategy in comparison
with the linear configuration; the conducted simulation
shows its efficiency in correcting the system-performance
degradation.

1. Introduction

 As demonstrated by the existing machines such as Bubba
[B90], Gamma [D90] and Kitsuregawa’s 100 Node PC Cluster
[TOK97], shared nothing machines have three main virtues:
cost, extensibility, and availability. By implementing a
distributed database design that favors the smooth incremental
growth of the system by the addition of inexpensive processing
elements (PEs), extensibility can be better (in the thousands of
PEs). With careful partitioning of the data on multiple disks,
linear speedup and linear scaleup could be achieved for simple
workloads. By replicating data on multiple PEs, high

availability can be also achieved. Shared nothing architectures
suffer from the load balancing problems. Load (heat) balancing
is difficult to achieve because it relies on the effectiveness of
database partitioning for the query workloads. Unlike other
architectures, load balancing is decided based on data location
and not the actual load of the system [V93]. The basic
motivation to investigate and realize heat-balancing facilities
comes from simple experience that several applications in
shared nothing machines usually do not exploit the system very
good. Further more, the addition of new PEs in the system
presumably requires reorganizing the database to deal with the
heat balancing issues.

 In shared nothing machines, each PE has exclusive access
to its memory modules and disk unit(s). The PEs communicate
with each other by sending messages via the communication
network, the only shared resource. To achieve efficient query
and transaction execution, data are typically declustered and
indexed across the system PEs, where the execution of a
transaction or a query is distributed over the network.
However, the access pattern is inherently dynamic, which in
turn can lead to performance degradation as some PEs become
“hot spot” (frequently accessed), therefore, reorganization for
heat balancing is essential. Heat balancing is particularly
challenging for evolving workloads, where the hot and cold
data (infrequently accessed) change over time. Data
reorganization can only counteract such situations, and such
reorganizations should be performed online without requiring
the system to be quiescent [WZS91 & SWZ93]. Additionally,
as the data moving from hot spot PEs to cold PEs, the
corresponding indexes have to be modified too. Therefore, data
reorganization should also satisfactorily deal with the index
modification [AON96].

 In [FK99-1 & FK99-2], they propose online heat balancing
strategies for parallel indexed database, in which the data
migration process is based on distributing the given heat as
evenly as possible across the system PEs. However, it has been
observed that the migration cost produced by their migration
decisions may be considered high. The minimization of the
migration cost is an important factor that improves the system
response during the reorganization process. In addition, it is
has been observed that their migration cost is dependent on the
hot spot location in the system. Such dependency on the hot
spot location in the system may lead to long responses during
the reorganization process, if the hot spot occur in a costly
position. In this paper, we extend their work by increasing the

DEWS00
Paper Number: 66

2

alternatives during the heat balancing process and tuning their
strategies performance in term of migration cost and
insensitivity to the hot spot location in the system. By
introducing a new migration configuration, namely the ring
configuration, has the capability to reduce the migration cost
and to absorb the dependency on the hot spot location in the
system. The organization of the paper is as follows. In the next
section, we briefly discuss the related work. Section 3
establishes the system search structure, the considered
migration strategy for index modification, and the system
workload. Section 4 clarifies the considered migration
configurations and Section 5 discusses the proposed heat
balancing strategy for ring configured shared nothing
machines. Sec. 6 deals with the experimental work and finally,
we conclude the paper.

2. Related work

Data reorganization should take place only when the benefit
outweighs the cost [CABK88]. Though there has been much
work in the area of online reorganization in the recent years.
In [WZS91 & SWZ93], the authors present an online method
for the dynamic redistribution of data, which is based on
reallocation of file, fragments. A limitation of their study is
that they do not consider index modification. [SC91 & SC92]
present a simulation based performance study of online index
construction algorithms, they present ten algorithms which
typically as follows; a reorganizer scans the data, copying out
information for index entries, concurrently with updaters that
modify the same data. The proposed algorithms differ in the
data structures used for concurrent updates, their strategies for
combining these updates with the newly created entries, and
finally, in the degree of concurrency supported following the
scan phase. Although these algorithms are limited to
centralized DBMS, they may consider as the basis of recent
work [e.g. AON96]. Perhaps [SD92] is the first paper that
discusses a solution for online index reorganization. They
outline the issues involved in changing of all references to a
record when its primary identifier is changed due to a record
move. The techniques in the [SD92, ZS96] are limited to
centralized DBMS and require the use of locks, where using
locks during reorganization can degrade performance
significantly [AON96]. In [AON96] they examined the
problem of online index reorganization. They present two
alternatives for performing the necessary index modifications,
called one-at-a-time OAT page movement and BULK page
movement. While these alternatives are extremes on the
spectrum of the granularity of data movement, they both
depend on the conventional B+-tree algorithms in insertion and
deletion, which increases the cost of, index modification.
 To minimize the index modification cost, in [YKM99] they
suggest the Fat-Btree as a powerful search structure that
supports the data reorganization and speeds up the migration
process. Basically, they have noted that whenever trees height
at a source and a destination are at the same value, the amount
of data to be migrated correspond to the entirety of one or
more index branches at a source PE. So that, it would be easy
to prune the entirety of index branches from a source PE tree
as well as attaching these branches into a destination PE tree
using bulk-migration technique without excess overhead in
index modification. However, their objective is to balance the

number of pages across the system PEs (space balancing)
rather than balancing the search structure workload that
produced by the system access pattern (heat balancing) across
the system PEs. Where, access pattern skew may lead to
performance bottleneck even though the system is already
space balanced. In addition, they base their space-balancing
algorithm on the disk-cooling algorithm [SWZ93], which has
relatively long convergent time and instability cases [FK99-1].
By using the Fat-Btree and considering the access pattern
skew, in [FK99-1] they propose an online heat balancing
strategy to reorganize the data with minimal cost of modifying
the indexes. The heat balancing is based on distributing the
given heat as evenly as possible across the system PEs, which
in general improves the system performance, with the
advantage of minimizing the convergent time of the balancing
process. However, the migration decisions that required for
balancing the given heat are carried out through one step,
which may be harmful for the system performance. In order to
reduce the effect of the one step migration, in [FK99-2] they
provide two algorithms. In the first algorithm, they drop some
of the system PEs from the balancing process, which reduces
the migration cost. However, the mechanism of dropping some
PEs is completely depends on the given heat distribution rather
than on the system requirements. While in the other algorithm
the migration decisions are carried out in incremental way
(many steps) instead of one step. This is has the advantage of
reducing the migration cost, and thus better performance
during the reorganization but it increases the convergent time
of the balancing process, which may be an important
requirement in many environments. In addition, it increases the
cost required to update the first level of the global index as
results of long migration decisions. In contrast, this paper
extends their algorithms by providing a new migration
configuration that can decrease the migration cost and preserve
the main advantage of minimizing the balancing convergent
time and minimizing the first level updates. We also base our
strategy on the Fat-Btree as a powerful search structure has the
capability of minimizing the index modification cost and on
the principle of distributing the given heat as evenly as
possible, which has a great effect on the system performance.

3. The System Global Index

 We assume that data are initially range partitioned across all
the system PEs so that the access method can associatively
access data for strict match queries, range queries and cluster
data with similar values together. Using a B-tree based index
enables more efficient processing of range queries than a
hashed index, where only the nodes containing data in the
specified range are accessed. One solution to associative access
is to have a global index mechanism replicated on each PE
[OV91]. Conceptually, the global index is a two-level index
with a major clustering on the PE range and a minor clustering
on some attribute of the relation. The first level directs the
search to the PE wherein the data is stored. The second level of
the index is a collection of Fat-Btrees, one at each PE; each
Fat-Btree independently indexes the data at its PE [YKM99].

3

 A source PE (PEr) can be defined as the PE from which the
data pages (through the corresponding index branches) have to
be moved to other PEs. Similarly, a destination PE (PEd) can
be defined as the PE at which the data pages (and index
branches) have to be stored. If the height of the Fat-Btree at the
migration source and destination are the same, then the amount
of data to be migrated correspond to the entirety of one or
more branches of the Fat-Btree at the source PE. So that, it
would be easy to prune the entirety of the branches from the
Fat-Btree at the source PE as well as attaching these branches
into the Fat-Btree at the destination PE using bulk-migration
technique without excess overhead. The attachment of
branches at the destination tree and detachment these branches
at the source tree are essentially pointer updates. The amount
of data to be migrated is obtained from the index branches at
the source PE. The branches to be migrated are obtained from
the heat statistics of the system access pattern. The branch
migration does not change the tree structure itself, but it
redistributes the data pages distribution at both the PEr and
PEd. In addition, it causes an update in the root node of the
Fat-Btrees at both the PEr and PEd, which in turn requires the
“ first level” index copies to be updated. This is can be done in
a lazy manner by piggybacking update messages onto
messages used for other purposes. We base our reorganization
strategy on the advantages of the Fat-Btree in speeding up the
migration process and minimizing the index modification cost.

3.1. The system workload

 The system workload is reflected by a metric, called heat
[CAB88]. We define the heat of a range R = {Rmin .. Rmax}
as the access frequency of R over some period of time. A range
R as a logical or abstract quantity could be achieved by any
physical quantity in the system such as a data page, an index
branch, an index tree, and a PE. Maintaining heat statistics on a
range varies from a maximal to a minimal cost case, depending
upon the physical quantity O that holds the range R. The
maximal cost case may appear, if we maintain heat statistics
for every data page in the system, so that O = { data page} .
This roughly requires maintaining statistics for every possible
point in the whole range. The minimal cost case could be
achieved if we maintain heat statistics for every tree (or PE) in
the system, O = { PE} , which requires information proportional
to the PEs number. Although the approach is simple and
inexpensive, but it has the disadvantage of the inaccurate
estimation in the workload. On the middle of the spectrum,
there are mid-cost cases, e.g., maintaining heat statistics for
every index branch in the system or even for every sub-tree at
every root node in the system, O = { Sub-tree} . The main
advantage of such approaches is; they provide some
compromise solution in term of cost and accuracy that may be
required to measure the system workload. In our simulation,
we use one of such mid-cost approaches that suggested by
[FK99-1], in which we maintain heat statistics information for
every sub-tree at a root node of a PE. Then, in order to
minimize the required information, they assume a uniform heat
distribution in the deeper levels of every sub-tree. Thereby, it
would be easy to estimate the heat of every index branch in the
distributed search structure. However, we consider, in
principle, the workload estimation (approach) is a “design

parameter” that mainly depends on the applications and their
requirements.

4. Migration Configurations

 In this section, we discuss the migration configurations; the
linear and the ring configurations. Where, both are based on
the range partitioning strategy.

4.1 The L inear Configuration

 Since data is range partitioned across the PEs, we can only
move data from one PE to its neighboring PEs (left or right or
both), which hold the preceding or succeeding ranges, see Fig.
1. In Fig. 1, a link is a virtual link between PEs indicating that
there is a permitted migration that can be carried out between
such PEs. Clearly, the above rule of the migration directions in
the system has only two exceptions. The first exception deals
with the “rightmost” PE, which has the capability of migrating
data only with its left neighbor. While the second deals with
the “ leftmost” PE, which has the capability of migrating data
only with its right neighbor. This non-overlapping data
partitioning gives also non-overlapping indexes. With the
advantage of simplifying the system global index, especially in
the implementation of its first level. So that, the first level,
which directs the search to the proper wherein the data is
stored, can be basically implemented as a partitioning vector
with entries number equals the PEs number in the system. We
refer this type of data partition with its migration directions as
the linear configuration.

Fig.1 .0 M igration configurations of 8 PEs. (a) The linear

configuration. (b) The r ing configuration.

4.2. The Ring Configuration

 It has been observed that the system PEs can be configured
into a ring rather than a linear set, and in the same time, the
range partitioning strategy with the 2-levels search structure
can be preserved. So that, migration can be wrapped around by
allowing the rightmost and the leftmost PEs to hold two key
ranges (or two trees) instead of only one (as in the linear
configuration). Since with range partitioning strategy, the
rightmost and the left PEs are initially hold non-adjacent
ranges, we support the ring configuration by permitting of non-
adjacent trees at these PEs. However, when data reorganization

PE0

PE1PE7

PE2

PE3

PE4

PE5

PE6

Ring Neighbors

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

(a)
Linear Neighbors

(b)

Link

L ink

Key range Space

Key

4

is taking place, it is possible that those non-adjacent trees occur
at any PE in the system rather than the rightmost or the
leftmost PE. Therefore, we support this property at any PE in
the system. With the ring configuration, there will be in
general non-adjacent trees that could occur at any PE in the
system and its location is mainly dependent on the migration
decisions that have been done so far. While there is non-
adjacent trees at some PE, the search structure at every other
PE in the system is only one tree. Noting that, we have more
flexibility in the migration directions at any PE in the system;
i.e. heat can be propagated through the system without any
restriction at the rightmost or the leftmost PE that imposed by
the range partition strategy. It also gives the chance to reduce
the system migration cost and its effect on the system
performance during reorganization.

 Before considering the migration issues that may be achieved
by the ring configuration, let us demonstrate its effect on the
search structure. Assume we have 4 PEs with the following
key ranges: PE0 is assigned 1-25, PE1 26-50, PE2 51-75, and
PE3 76-100. If PE0 is the hot spot PE, then with the ring
configuration, we have the freedom (flexibility) to migrate data
(heat) with keys say, 10-25 to PE1 or to migrate data with keys
data 1-15 to PE3. The selection between them is mainly
dependent on the migration decisions that required for
balancing the whole system, and their cost. Thus, if for some
reason we select the range 1-15 and migrated it to PE3, then
PE3 will has two key ranges, adjacent range (to PE2) 76- 100
and non adjacent range (ring migration effect) 1-15. In the
same time, the migration of range 1-15 to PE3 has to be
reflected at the first level of the global index, which can be
reflected by insertion of a new entry in it, so that the search
will be directed to PE3 for such range. The cost of insertion of
a new entry in the first level is equivalent to that of its
updating, which is normally done after every migration that
carried out in the system. Therefore, it has a negligible cost on
the system performance and it could be imagined it as adding a
new PE to the system. Furthermore, if after some period of
time PE3 becomes the hot spot and PE0 becomes a cold PE,
then PE3 has the capability to migrate heat (and data) from its
key ranges to PE0 depending on the amount of heat to be
migrated. It is possible to return back the whole key range (1-
15) that adjacent to the current key range of PE0 or some part
of it or all of it plus some key range, say 90-100, that originally
belongs to the initial key range of PE3. Of course, the situation
is completely dependent on the amount of heat to be migrated
from PE3 to PE0, but, the example demonstrates the dynamic
process that could be happen at the first level of the global
index while the migration is taking place. Clearly, the number
of entries in the first level (at every PE) will dynamically
alternate between N and N+1, where N is the number of PEs,
(and it will never exceed the value of N+1). The alternation
depends on the system history in terms of the access pattern
and the corresponding migration decisions.

 With the linear configuration, in order to achieve a smoother
heat distribution among the system PEs, the migration can be
carried out with ripple effect, i.e., by cascading the migration
from the hot spot PE to the coldest PE which can be several
PEs away. For example, assume a system of 8 PEs with the hot
spot at PE0 and the coldest PE is PE7. The following scenario

will happen; PE0 will migrated data and its corresponding
index branches to PE1, which in turns migrates data to PE2,
the procedure is repeated until the heat and the corresponding
data are migrated to PE7, see Fig. 2.

Fig. 2 A r ipple-migration case in the linear configuration

FindAdjacentTree(SourcePE, DestinationRange)
 // for evert tree at the SourcePE check for the minimal adjacency.
 for(i=0,MinimumIndex=0;I<TreesNumber(SourcePE);i++)
 { Range=RootRange(SourcePE,i); // get a tree root range
 Adjacency=RangesAdjacency(Range,DestinationRange);
 If(i) { if(Adjacency<MinimumAdjacency)
 {MinimumAdjacency=Adjacent; TreeIndex=i;}}
 Else {MinimumAdjacency=Adjacency;TreeIndex=0;}}
 return TreeIndex; // return the tree number (index).
GetHeatFromTree(SourcePE, TreeIndex, RequiredHeat)
// Determine the tree branches from the tree of index = TreeIndex
// branches are extracted from the tree based on the required heat- see Sec. 3-1
// return all branches that corresponds the required heat

GetHeatFromPE(SourcePE, DestinationRange, RquiredHeat)
HeatType AcquiredHeat=ZeroHeat; int Treeindex;
TreeIndex=FindAdjacentTree(SourcePE,DestinationRange);
 while (AcquiredHeat<RequiredHeat)
{ AcquiredHeat+=GetHeatFromTree
 (SourcePE,TreeIndex,RequiredHeat);
 TreeIndex=1-TreeIndex; // get the other tree, if there is.
}
return All index branches to be migrated.

Fig. 3. A high level descr iption of the heat extraction
process from trees of a source PE.

Thus in the linear configuration, the ripple migration may be
carried out on an expensive way as the heat (data) should
moves (by data migration) for several PEs away, accordingly,
this will increase the system response time during the
reorganization process. While with the ring configuration it
would be so easy to migrate directly the heat (data + index
branches) from PE0 to PE7 because both of them are ring
neighbors. Noting that as data are migrated from PE0 to PE7,
there will be the possibility to introduce a non-adjacent range
to the PE7’s search structure. The given example shows that
the ring configuration can provide a ripple migration in an
inexpensive way. Especially, for systems of large size of PEs
and highly skewed access patterns, where the cost of the ripple
migration is proportionally to the amount of migrated heat
(data) and the distance for which the heat should propagate.
Fig. 3 outlines the simple procedure that deals with the heat
extraction process from a source PE’s trees that could result
with the ring configuration.

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

A case of heat (data + index branches) migration in the l inear configuration

The hot spot PE The coldest PE

5

 It has been also observed that the system’s migration cost, in
the linear configuration, depends on the hot-spot locations in
the system. If the hot spot occurs at the leftmost or the
rightmost PE, it may more costly than if it were at some other
location, say in the middle, as a result of the inflexibility
imposed by the linear configuration. This dependency gives a
different system behavior in terms of the migration cost and
the average query response time for different hot-spot
locations.

Fig. 4 Hot spot location and migration cost dependency.

Ideally, the hot-spot location should be opaque from the
system performance, so that the system reaction to the access
patterns is mainly correlated to their skew rather than their
favourite locations. We generally can not predict where will
the hot spot occur? But what we are seeking for providing a
configuration that has the capability to remove such unwanted
effect. In order to demonstrate this point, assume a system of 4
PEs and a heat distribution (400,300,200,100) that can be
assigned to the PEs with the following combinations;
[(400,300,200,100), (100,400,300,200), (100,200,400,300),
(300,200,100,400)]. The first heat distribution represents the
hot spot at PE0, while the second represents the hot spot at
PE1, and so on. Assume further, it is required to balance the
system so that every PE has 250 unit of heat (average heat)
after the balancing process. We can apply, for example, the
full-window algorithm [FK99-1], which is based on the linear
configuration, with the following approximation migration cost
≈ migrated Heat (so that we can easily demonstrate the idea
with such simple example). Fig. 4 shows the obtained
migration cost against the hot spot location. It clarifies that
there are some hot-spot locations that give minimal migration
cost, e.g. hot spot at PE1 or at PE3. It also gives an information
about the percentage of the maximal migration cost by its
minimum, which equals about 250 %. This gives us the
motivations to consider another configuration that capable to
remove such dependency on the hot-spot locations.

 To some extent, the system with the ring configuration has
the capability to absorb such dependency. Since a ring
configuration can be easily converted into a linear
configuration by just imagining we have the ability to “cut”
(ignore) only one neighborhood relationship between any ring
neighbors. Therefore, the ring configuration can be converted
to the linear configuration that gives the minimal migration
cost. The resultant linear configuration can be dynamically

changed as tracking the change in the hot-spot location, thus
for every considered heat distribution in the given example, we
obtain the same value of migration cost. With this virtual
property of the ring configuration we can also, for example,
exhaustively search for the “cut” that minimize the migration
cost between the ring neighbors. This example shows, in
addition, the “cutting” property that can be applied to any ring
neighborhood with preserving the search structure
organization.

 From the above discussion, it is quit reasonable to support
the configuration that has the capability to reduce the migration
cost and in the same time has the capability to opaque the hot
spot location from the system performance. In the following
section, we consider a heat-balancing algorithm that capable to
balance PEs configured in the ring configuration, and in
addition has the capability to minimize the migration cost that
may required to balance the given ring.

5. Online Heat Balancing

 The heat balancing is an important factor that can determine
the response times, speedups, and throughput of the system.
The data reorganization should satisfactorily deal with this
issue. Online heat balancing is done in four basic steps:
monitoring PE workload, exchanging this information between
PEs if it is necessary, calculating new distribution and making
the work migrating decision, and the actual data migration. In
this section, we consider the heat balancing strategies for Btree
index over parallel shared nothing machines. In the next sub-
section, we consider the “ full-window” algorithm that we use it
as a part of our proposed algorithm.

5.1. Heat Balancing of the L inear Configuration.

Figure 5. The “ full window” algor ithm notation,

 In [FK99-1] & [FK99-2] they propose three algorithms
based on the linear configuration, however, the three
algorithms are cored with the following idea. They observe the
exceptions in the migration directions that exist in the linear
configuration. These exceptions exist at the “right most” PE
(RMPE) and the “ left most “ PE (LMPE), where the RMPE
can only migrate –as a source or a destination- data to its left
neighbor, while the LMPE can only migrate with its right
neighbor. Their algorithm starts by recording the possible
migrations at both the RMPE and LMPE of the system with
their neighbors. Then, by virtual dropping these PEs from the
system, there will be new RMPE and LMPE, at which the
process can be repeated again. This can be demonstrated by
two pointers with their movements are shown in Fig. 5. The

RMPELMPE

System PEs

PE0 PE1 PEn-2 PEn-1PE3 PE4 PEn-3PEn-4

� � � � � � � � � 	
 � � � � � � � 	

Left Pointer Right Pointer

Pointer movementPointer movement

0

100

200

300

400

500

600

0 1 2 3

Hot-spot location

A
pp

ro
xi

m
at

e
m

ig
ra

tio
n

co
st

 (
in

 u
ni

t
of

 h
ea

t) Linear configuration

Ring configuration

6

process is repeated until the system is virtually vanished after
storing the migration sequence -which is required to balance
the given system- into a structure called “migration directory” .
By executing these decisions, the system is heat-balanced as
evenly as possible. They refer to this algorithm as the “ full-
window” algorithm.

5.2 Heat Balancing of the Ring Configuration:
 Two-Bags Algor ithm.

 In this section we consider the ring configuration for a
system of N PEs. First we formulate the problem, then we
discuss the proposed solution.

Problem statement
Given a system of N PEs configured in a ring configuration R
that described in Section 4, and the corresponding PEs heat
distribution. The problem is to find the migration decisions that
are required for heat-balancing the ring R with the minimal
cost of migration decisions, so that, the system performance
during the reorganization time is kept within accepted ratings.
The problem belongs to the optimization problems that can be
solved using a greedy algorithm.

The problem solution can be considered if we succeed to
answer the following basic questions:
(1) Where should we start the balancing process; particularly,

at which PE we should start the balancing process.
(2) If we succeed to select one PE or some PEs, then, how can

we extend (progress) this selection process to include
more PEs, so that the system is heat-balanced.

(3) If we succeed to extend the selection process, then, how
can we minimize the corresponding migration cost.

To answer the first the question; the initial consideration for
any heat balancing process should intuitively focus on the hot
spot PE, where the system’s main problem comes from.
Besides, if it were required to include some threshold in the
heat balancing process, then it would be better to include the
hot spot PE under any threshold consideration. This could be
achieved easily if we first select the hot spot PE as the starting
point of the proposed algorithm. As we select the hot spot PE,
there is a need to migrate its excess heat (= its heat – average
heat) to one of its neighbors. Hence the next questions come,
which neighbor we should select, the clockwise or the anti-
clockwise neighbor, of course, the one with which the system’s
migration cost is minimal and the system is heat balancing.
Accordingly, the answer to the last questions are; the selection
progress is based on the minimization of the migration cost. In
addition to these questions, the migration cost can be
considered as the objective function while heat-balancing the
system. Thus, we need to evaluate the migration cost during
the balancing process, where the migration cost is
proportionally related to the heat to be migrated which in turn
proportionally related to the data pages and the corresponding
index branches that have such heat. Therefore, we can
approximate the objective function by; migration cost ≈
migrated heat, so that, the cost evaluation is achieved from the
given heat distribution, thus with the minimal effort. For
example, if the hot spot PE has the heat of 400 with the
average heat of 250, then the amount of heat to be migrated

from the hot spot is 150 (400-250), which gives also its
migration cost by the above approximation = 150. The
previous discussion guides our consideration to the problem
solution.

Fig.6 Two bag procedure

Algor ithm basic: Definitions and basic procedures

1- Marked Arc: is the arc that connects all the selected PEs so
far. The Initial “marked arc” = { the hot spot PE} . As the
selection is taking place, the arc is dynamically expanded, by
including more PEs, in the direction(s) that minimize the
migration cost. During the course of the algorithm, the PEs
may be thought of as divided into three categories as follows.
(a) Marked PEs: PEs that belongs to the marked arc
constructed so far. (b) Fringe PEs: not in the marked arc, but
adjacent to some PEs in the marked arc.(c) Unseen PEs: All
others. See Fig. 6.
2- Heat Requirement (HR): it represents the amount of the
excess/missing heat that required for balancing a “marked arc” .
Every “marked arc” has two ends; therefore, there are two heat
requirements one for each end and each requirement has its
corresponding cost to satisfy it. Noting that, it is possible to
have a “marked arc” with one (or both) of its end has (have)
zero heat requirement(s), which means the arc is already
balanced at such end (ends), and in terms of requirements and
cost, if there is not requirement then there is not cost.

We can also define a “marked arc” by its two ends (End1 and
End2) and the corresponding heat requirements (HR1 and
HR2), so that any marked arc can be described as “marked
arc”= (End1, End2, HR1, HR2).
3- Heat collection procedure (Two bags): during the
construction of a “marked arc” , we have to satisfy its heat
requirements and evaluate their cost. The procedure can be
abstractly formulated as collecting the required heat from the
current “ fringe” (and “unseen”) PEs so that the encountered
“marked arc” is heat-balanced. This is equivalent to attaching
some of the “ fringe” (and “unseen”) PEs to the encountered
“marked arc” , and therefore, we satisfy its heat requirements.
Since the configuration gives us the chance to simultaneously
collect heat at both ends of a “marked arc” , we propose a
mechanism called two bags, where the heat is collected
through a structure called “heat bag” with the following
components:

typedef struct
{ PEType Pointer; // a pointer to the current PE.
 DirectionType Direction; // pointer-advance direction .
 HeatType HeatRequirement; // current requirement
 HeatType CollectedHeat; // collected heat so far

A marked PE

 A fringe PE

 A fringe PE

An unseen PE

Fi rst bag pointer

Second bag pointer

End1, HR1

End2, HR2

A marked arc

7

 HeatType ExcessHeat; // the accumulated excess heat.
 CostType Cost; // cost evaluation of the collected heat.
 FlagType Activity; // 1 active, 0 inactive.
} BagType;

The “Pointer” component points to the current PE during the
heat collection process, while “direction” gives its advance
direction for the future collection (clockwise or anti-
clockwise). The component “HeatRequirement” gives the
current heat requirement from the current “ fringe” and
“unseen” PEs, while “CollectedHeat” indicates the collected
heat by a bag. During traversing the “ fringe” and “unseen”
PEs, the accumulated excess-heat at the current PE is
calculated by, ExcessHeat +=Heat(PE)- average heat. The
function of this component is as follows, if we accept a bag’s
collected heat, we can simply generate a new heat requirement
for a new “marked arc” as follows, HR= - ExcessHeat of such
bag. The “Cost” component evalutes the migration cost
corresponding to the collected heat so far. The “ Activity”
component indicates that if the corresponding bag is active or
not.

 Assume we have a heat requirement HR, in order to collect
heat from the both ends of the “marked arc” , we support two
bags, one for each side. The heat requirement at each bag is
initially assigned to HR. One bag’s pointer moves from the
“ fringe” PE of End1 towards End2 of the “marked arc” , while
the other bag’s pointer moves from the “ fringe” PE of End2
towards End1 of the “marked arc” , see Fig. 6. At any time the
heat is collected and with the aid of the cost evaluation at each
bag we can accept one of them or both, depending on the heat
requirement and their cost. In the same time, once the collected
heat of one bag is accepted, then the “HeatRequirement” at
every bag is updated accordingly. While the heat collection is
taking place and as the result of opposite movements of the
bags’ pointers, it is possible that the two bags’ pointers collide
at some PE, which may lead to invalid heat-collection.
However, we solve such problem by providing; a locking
mechanism and an activity-resetting mechanism. The activity-
resetting mechanism checks and decides the following
decisions:
(1) Reset the bag activity that has zero “CollectedHeat” , which
means this bag is not capable to collect heat with the given
requirement and its pointer movement direction.
(2) Reset the bag activity that has the more highly cost, which
means this bag is capable to collect heat but in expensive way
and the other bag can collect such heat with less cost. In this
case, the resetting means reset such bag to its last accepted
heat-collection.
The mentioned mechanisms insure the heat collection is
always carried out without any contradiction.

Algor ithm

The algorithm starts by picking up the hot spot PE from the
given ring R and then “branches out” from the ends of the arc
constructed so far (“marked arc”) by choosing new members
(neighbors) at each iteration. The key step in the algorithm is
the selection of PEs from the “ fringe” and “Unseen” PEs
according to the heat requirements at the “marked arc” ends
and their cost evaluation. The initial state of the algorithm is as

follows; we have only one heat requirement, HR0, which
equals: Heat (the hot spot PE) – average heat and it can be
satisfied through the two bags procedure, which in turn
generate a new “marked arc” with new two requirements. The
requirement satisfaction, which yields the generation of new
“marked arc” , can be repeated again until there is no more heat
requirements. The general structure of the algorithm can be
described as follows.

Pick up the hot spot PE and initiate a marked arc;
HR0 = Heat (the hot spot PE) – average heat
Apply two bags procedure to satisfy HR0
While “ algor ithm does not terminate” do
 For each of the two requirements
 Satisfy the cur rent requirement by using the two-bags procedure and
 evaluate the cor responding cost.
 Accept the “ marked arc” that gives the minimal cost.
 Generate new requirements.
 I f the cur rent “ marked arc” has zero requirements
 Store it and generate a new “ marked arc” with its requirements.
End.

The algorithm terminates if one of the following conditions is
true
• The set of the “unseen” and “ fringe” PEs is empty.
• The heat standard deviation of the Unseen PEs less or

equal a predefined value, where, we consider the heat-
standard deviation across the PEs is the balancing
threshold. So that, the data migration can be initiated or
generally controlled by this predefined value.

During the “marked arc” generation, it is possible to obtain a
new “marked arc” that has zero requirements at both of its ends
and the algorithm-termination conditions are not satisfied. This
means the current “marked arc” is heat-balanced, therefore, we
store the current “marked arc” and generate a new one from the
set of the “ fringe” and “unseen” PEs, then select the local hot-
spot PE (from the “ fringe” and “unseen” PEs) and repeat the
whole algorithm until one of its termination conditions is
reached. Thereby, the output of the mentioned algorithm is, in
general, a set of “marked arcs” , which in turn utilizes the
“cutting” property of the ring configuration. It should be noted
that the achieved “cutting” is mainly a heat-distribution
dependent. Each obtained “marked arc” can be considered as a
set of PEs that configured with a linear configuration rather
than a ring configuration. Then, it would be easy to apply a
linear-configuration algorithm, e.g. the full-window algorithm,
on every obtained “marked arc” and produce the corresponding
migration decisions that required for heat-balancing the given
arc. The accumulation of the partial decisions forms the
migration decision that required for balancing the given ring
with the given threshold.

Procedure “ produce migration decisions”
For every “ marked arc” generated by the above algor ithm
 Apply the full-window algor ithm on it and produce the
 cor responding migration decisions.
 Store the cur rent decisions into the migration directory.
It should be noted that, we select the full-window algorithm to
acquire its advantage in minimizing the balance’s convergent
time. Besides, it may be useful to store the decisions into a

8

structure called “migration directory” , so that, it would
possible to apply some profitability analysis on the obtained
migration decisions, e.g., we can drop some decisions without
losing too much gain and saving additional cost. However, in
order to clarify first, the effect of the ring configuration and the
corresponding heat-balancing algorithm without any
profitability analysis we drop such analysis from our
simulation.

6. Simulation Result

 In this section, we describe our experiments to study the
performance of the online data reorganization with the
mentioned configurations; the linear and ring configurations.
We use the full-window algorithm as a heat-balancing strategy
for the linear configuration, while we use, for the same
purpose, the proposed algorithm, 2 bags, for the ring
configuration. We evaluate the system performance in each
configuration, where the metric used is the impact on the
response time of queries (during the reorganization process)
and the system migration cost. Table 1 shows the major
system, database and query configuration parameters with their
default values and variation settings.

Table 1: The major parameters and their used values.
Parameter Default values / variation
System Parameters:
Number of PEs in the cluster
Index node size
Network bandwidth
Time to read or write a data page

16 /32/64
4K page
120 Mbits/s
8 ms

Database Parameters:
Number of records 1 million, 4 Byte as a key size.
Query Parameters:
Zipf distribution decay factor
Mean arrival rate
Mean service time

0.3; 0.1 → 0.9
20.0/ 25 per second.
500 ms

The hot-spot location
Strategies threshold =
Heat standard deviation/average
heat.

0/ 0 → 15 for 16 PEs.
0.07/ 0.01 → 0.2

 We first create an initial Fat-Btree with the tuple key values
generated using a uniform distribution. Then we generate range
queries using Zipf- distribution, the queries are generated with
skew that defined by the skew factor (τ) of Zipf-distribution.
Therefore, there are more range queries are issued at one PE
than the other PEs, depending on the skew factor τ. The heat
skew will initiate the migration of branches between the PEs,
depending on the balancing strategy’s threshold. We model
each of the PEs as a resource and the queries as entities. We
assume the heat balancing is done in centralized scheme and it
is initiated after every 100*N queries, where N is the PEs
number. In addition, we assume the data migration is done in
some semi-incremental approach, in which the one-step
migration granularity, at any time, is within two limits. The
minimum granularity of such step (other than zero) is only one
index branch, while the maximum is only one sub-tree at the
root node. These limits are globally unified across the system
PEs; thus, any amount of heat (to be migrated) is normalized
such that the corresponding migration granularity is interpreted
within the mentioned two limits. It is has been shown in
[FK99-2], such semi-incremental has the effect on the system

performance rather than for example coarse migration (one
step migration).

 In the first set of experiments, we study the effect of the ring
configuration compared to the linear configuration on the
migration issues. Noting that, we express the system’s
migration cost as the summation of the individual cost (time)
that is required to carry out every migration issued by the
system. Meanwhile, we express the migration workload at any
PE as the summation of the individual time in which such PE
is involved in the migration process as a source or a
destination. In order to visualize first the flexibility of the ring
configuration, we consider the following experiment. We
record the migration workload at every PE in the system under
the default values of Table 1, Figure 7 shows the obtained
results in both configurations. The figure indicates the
capability at the hot-spot PE (PE0) to migrate its excess heat to
PE1 and PE15 (its ring neighbors) as a result of the ring
configuration. In the same time, it shows the capability at the
coldest PE (PE15) to help the hot spot PE (and other PEs, e.g.
PE1) by distributing some of its (their) excess heat to the
unseen neighbors of PE0 (and other, e.g. PE1), e.g. PE14 and
PE13. Thus, the migration workload at the mid-PEs (e.g. PE7
and PE8) are greatly reduced as indicated which in turn
reduces the overall migration workload. The arrows in the
figure indicate the direction of the heat migration
(propagation). In addition, it implies the effect of the ripple
migration on the migration workload at every PE with both
configurations as indicated by bell-like curve (between PE0
and PE15) with the linear configuration and those with the ring
configuration. For example, the bell-like curve that between
PE2 and PE10, and the curve (folded) that between PE1 and
PE11.

 In order to evaluate the system dependency on the hot-spot
locations, we design the considered query set, that follows
Zipf-distribution, such that the hot-spot location can be
changed from 0 to N-1, where N is the number of PEs, a query
set (i), i= 0.. N-1, represents the hot-spot at PEi. Figure 8
shows the system’s average migration cost against the hot-spot
location for both configurations. The figure affirms the
existence of such dependency with the linear configuration, for
example ratio migration cost when the hot spot at PE0 to that
when the hot spot at PE14 is about 3, which means the system
performance may be unfortunately degraded, if PE0 were the
hot spot PE. As indicated also, this dependency can be
removed by the ring configuration which has a nearly constant
migration cost, so that the system reaction to the access pattern
is mainly correlated to its skew, regardless of the hot-spot
locations.
 In order to study the system’s migration cost under different
environments of skewed access patterns and hot-spot locations,
we first assume PE0 is the hot spot PE (the worst case for the
linear configuration, see Fig. 8). Figure 9-a compares the
system’s migration cost associated with the considered
configurations under a variable skew factor with PE0 the hot
spot at PE. From this figure, we can observe that as the data
skew increases, the system’s migration cost increases in a
nearly linear relationship. It mainly shows the effectiveness of
the ring configuration in reducing the worst cases of the
migration cost in the linear configuration. However, in order to

9

cover a wide range of hot-spot locations, we consider the
following experiment based on the average measurements. For
each considered value of the skew factor, we change the hot-
spot location from 0 to N-1 and record the corresponding
migration cost one for each hot-spot location. Then we take the
average of these values to represent the cost under the
considered skew factor. Figure 9-b compares the average
migration cost associated with the considered configurations
under variable skew factor. The figure demonstrates the
superiority of the ring configuration in reducing the migration
cost under a wide range of access pattern skew and the hot-spot
location. We also observe that the average reduction in the
migration cost is about 43%. Furthermore, the migration
workload can be also controlled through the strategy threshold.
Fig. 13-a shows the threshold sensitivity of the proposed
strategy, it indicates that the heat balancing decisions can be
tuned to cover a wide range of the system requirements. To
demonstrate scalability, we repeated the described experiment
for different numbers of PEs. Fig. 10 shows the scalability of
the proposed strategy for clusters of 32 and 64 PEs with the
mentioned average measurement. The main results affirms that
for skewed access patterns as the number of PEs increases, the
migration workload increases and thus heat balancing.

 In order to evaluate the system performance with the
considered configurations, we first consider the system
“without” reorganization. Figure 11 gives the query’s average
response time against its arrival rate. To demonstrate the
performance with reorganization, we select the arrival rates of
20/sec and 25/sec to carry out our experiments, where the
system originally at these rates is dead (without
reorganization), see Fig. 11. By heat balancing, the system can
answer queries at such arrival rates and its responses, while
reorganization is taking place, are given in Fig. 12. The
measure is achieved by recording the query average response
time from the time at which migration process has been
initiated to the time at which the system is ready to operate in
steady state. The result basically affirms the effectiveness of
the heat balancing in correcting such degradation in the
performance. It affirms in addition the effectiveness of using
the ring configuration as a result of reducing the migration
cost. Furthermore, Fig. 13-b shows the ability to tune heat-
balancing process to meet the balancing requirements.

6. Conclusion

Heat balancing is necessary because the optimal data
placement changes with time and usage of the parallel database
system, and significant performance improvements can be
obtained by heat balancing. In this paper, we have proposed a
heat-balancing model for ring configured shared nothing
machines, that has the capability to distribute the given heat as
evenly as possible in minimum convergent time. In addition, it
has the capability to minimize the system’s migration
workload, so that the performance during reorganization is
kept within accepted ratings. The model includes the data
migration with the minimal cost of index modification. The
model has the advantages that can be reflected on the system
performance, so that it can be employed in many practical
applications. The Heat balancing has been studied before, but
no work addresses the critical issue of distributing the given

heat as evenly as possible across the PEs with minimal index
modification and the capability to minimize the required
migration decisions. This paper fills an essential void.
References
[AON96] K.J. Achyutuni, E. Omiecinski, and S. B. Navathe. “Two techniques
for On-line Index Modification in Shared Nothing Parallel Databases” . Procs
ACM SIGMOD 1996.
[B90] H. Boral et al., “Prototyping Bubba, a Highly Parallel Databse System”,
IEEE Trans. On Knowledge and Data Eng., Vol. 2, No. 1, March 1990.
 [CABK88] G. Copeland, W. Alexander, E. Boughter, and T. Keller. “Data
Placement in Bubba”. Proc. of ACM SIGMOD Conference, pages 99-
108,1988.
[D90] D.J. DeWitt et al.,”The GAMMA Database Machine Project” . IEEE
Trans on Knowledge and Data Eng., Vol. 2, No. 1, March 1990.
[FK99-1] H. Feelifl and M. Kitsuregawa. “Online Heat Balancing for Parallel
Indexed Database On Shared Nothing System”, Proceedings of 1999 database
workshop, pp. 85-92, 1999.
[FK99-2] H. Feelifl and M. Kitsuregawa. “The Simulation Evaluation of Heat
Balancing Strategies for Btree Index over Parallel Shared Nothing Machines”
Technical report of IEICE, DE99-88,1999-10, pp. 7..12.,
[OV91] M.T. Ozsu and P. Valduriez. “Principles of Distributed Database
Systems” , Prentice Hall, 1991.
[SD92] B. Salzberg and A. Dimock. “Principles of transaction-based on-line
reorganization”. Procs. of the 18th Inter. Conf. on VLDB, pages 511-520, 1992.
[SWZ93] P. Scheuermann, G. Weikum, P. Zabback. “Adaptive Load
Balancing in Disk Arrays” . Proceedings of the 4th Inter. Conf. on Foundations
of Data Organization and Algorithms (FODO), 1993
[TOK97] T. Tamura, M. Oguchi, M. Kitsuregawa “Parallel Database
Processing on a 100 Node PC Cluster: Case for Decision Support Query
Processing and Data Mining.” Proc. Of SC97: High Performance Networking
and Computing, 1997..
 [WZS91] G. Weikum, P. Zabbak, and P. Scheuermann. “Dynamic file
allocation in disk arrays” . Procs. of the ACM SIGMOD Conference, 1991.
[YKM99] H. Yokota, Y. Kanemasa, J. Miyaazaki. “Fat-Btree: An Update-
Conscious Directory Structure” . Procs. of IEEEthe 15th IEEE Conf. on Data
Engineering, pp. 448-457,1999.
[ZS96] C. Zou and B. Salzberg. “On-Line Reorganization of Sparsely-
Populated B+ Trees” . Procs. ACM, pages 115-124,1996.
[V93] P. Valduriez, "Parallel Database Systems: Open Problems and New
Issues," Distributed and Parallel Databases 1, No. 2, 137-165 (April 1993),
Kluwer Academic Publishers, Boston, MA.

Figure 7: The ring configuration effect on the PEs’ migration
workload.

Figure 8: Effect of the hot-spot location on the system’s migration
cost.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hot-spot location

S
ys

te
m

’s
 m

ig
ra

tio
n

co
st

 in
 s

ec
on

ds

Linear configuration

Ring configuration

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PE

M
ig

ra
tio

n
w

or
kl

oa
d

in
 s

ec
on

ds

Linear configuration

Ring configuration

10

(a)

(b)
Figure 9: Comparison of configuration’s migration cost under
variable skew access patterns. (a) PE0 is the hot spot PE. (b)

average hot-spot location measurement.

Figure 10: Migration cost on clusters of 32 and 64 PEs.

Figure 11: The considered system without reorganization:
Query’s average response time with its arrival rate.

(a)

(b)
Figure 12: Migration cost effect on the system performance
during reorganization process (a) arrival rate =20, arrival

rate=25.

(a)

(b)
Figure 13: Threshold effect on the ring-configuration

performance (a) Migration decisions cost (b) System response
time during reorganization process.

0

500

1000

1500

2000

2500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Skew factor

S
ys

te
m

’s
 a

ve
ra

ge
 m

ig
ra

tio
n

co
st

 in
 s

ec
on

ds Linear configuration

Ring configuration

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2

Threshold value

S
ys

te
m

 m
ig

ra
ti

o
n

 c
o

st
 (

in
 s

ec
o

n
d

s)

Skew =0.3

Skew = 0.4

Skew=0.5

Skew=0.3

0

1000

2000

3000

4000

5000

0 5 10 15 20 25

Arrival rate per second

Q
ue

ry
 a

ve
ra

ge
 r
es

po
ns

e
tim

e
in

 m
s

Without reorganization

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000

Time in seconds

Q
ue

ry
’s

 a
ve

ra
ge

 r
es

po
ns

e
tim

e
in

 m
s

Linear configuration

Ring configuration

Skew=0.3, arrival rate =20 per second

Migration Initiation
To steady state values

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000

Time in seconds

Q
ue

ry
’s

 a
ve

ra
ge

 r
es

po
ns

e
tim

e
in

 m
s

Linear configuration

Ring configuration

Skew=0.3, Arrival rate =25.0 per second
Migration Initiation

to staedy states values

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Skew factor

S
ys

te
m

’s
 m

ig
ra

tio
n

co
st

 (
in

 s
ec

on
ds

)

Linear configuration

Ring configuration

0

500

1000

1500

0 1000 2000 3000

Time in seconds

Q
ue

ry
’s

 a
ve

ra
ge

 r
es

po
ns

e
tim

e
in

 m
s

Threshold=0.07

Threshold=0.1

Threshold=0.15

Skew=0.3, Arrival rate = 20 per second

0

5000

10000

15000

20000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Skew factor

S
ys

te
m

’s
 a

ve
ra

ge
 m

ig
ra

tio
n

co
st

 in
 s

ec
on

ds Ring configuration -32 PEs
Linear configuration - 32 PEs
Ring configuration - 64 PEs
Linear configuration - 64 PEs

