
SPECULATION TO INCREASE THE CONCURRENCY OF
NESTED TRANSACTIONS

P. Krishna Reddy and Masaru Kitsuregawa

Institute of Industrial Science
The University of Tokyo

7-22-1, Roppongi, Minato-ku, Tokyo 106, Japan
{reddy, kitsure}@tkl.iis.u-tokyo.ac.jp

ABSTRACT

We have proposed an improved concurrency control
protocol for nested transactions based on speculation.
In the proposed speculative nested locking (SNL)
protocol, whenever a sub-transaction finishes work
with a data object (produces after-image), it's parent
inherits the lock. The waiting sub-transaction carries
out speculative executions by accessing both before-
and after-images of preceding sub-transaction. It then
selects appropriate execution after the termination of
preceding sub-transactions. In this way, by carrying
out multiple executions for a transaction, SNL
increases concurrency. The SNL approach requires
both extra processing power and main memory to
support speculative executions. In this paper, we have
presented the SNL approach and explained how it
increases both intra- and inter-transaction concurrency
by trading extra resources as compared to Moss's
nested locking protocol.

1 INTRODUCTION

The traditional transaction model, although suitable for
conventional database applications such as banking
and airline reservation systems, does not provide much
flexibility and high performance when used for
complex applications such as object oriented systems,
long-lived transactions, or distributed systems. Nested
transactions have been proposed [18] to overcome the
limitations of flat transaction model. Nested
transactions extend the notion that transactions are flat
entities by allowing a transaction to invoke atomic
transactions as well as atomic operations. They
provide safe concurrency within transaction, allow
potential internal parallelism to be exploited and offer
an appropriate control structure to support their
execution. Also, they provide finer control over
failures by limiting the effects of failures to a small
part of the transaction. This property is achieved by
allowing transactions within a given transaction to fail
independently of their invoking transaction. Nested
transactions were implemented in system R [9], Argus
[15], Clouds [6], Locus [19] and Eden [12], and are
widely accepted as a suitable mechanism for reliable
distributed transaction processing systems.

In nested locking (NL) protocol proposed by Moss
[18] each leaf-transaction follows two-phase locking
(2PL) protocol [8] for concurrency control. If a sub-
transaction obtains a write lock, its parent inherits the
lock only after its commit, as per 2PL rules. To
access the locked data object, a (sub) transaction has to
wait until termination of a lock holding transaction.
Therefore, in nested transactions, data contention
increases lock waiting time, which decreases the
throughput performance of the system. In this paper
we propose speculative nested locking (SNL) protocol
to increase concurrency by supporting multiple
executions for a transaction with extra computing
resources. In SNL whenever a sub-transaction Ti
finishes work with a data object (produces after-image),
it's parent inherits the lock. The waiting (sub)
transaction accesses both before- and after-images of
Ti and then carries out speculative executions.
However, the order is maintained; i.e., the waiting
transaction selects appropriate execution only after
termination of Ti. As such, there is no limitation on the
number of levels of speculation but this number
depends on the system's resources, such as the size of
main memory and processing power. In SNL, the
number of speculative executions carried out by a
transaction increases exponentially as data contention
increases. By trading extra resources SNL increases
concurrency of nested transactions.

As compared to NL, the SNL approach increases
concurrency by allowing a sub-transaction to release
the lock before its termination without causing
cascading aborts. (In this approach on termination of
earlier transaction the waiting transaction drops invalid
execution(s) and retains the valid one. However, this is
different from abort of a transaction) Further, if data
objects accessed by a transaction are pre- declared,
SNL increases both intra- as well as inter- transaction
parallelism without violating serializability criteria.
Under simplified assumptions, we analyze the scope of
SNL to increase concurrency among sub-transactions
under limited resource environments.

The work is motivated by the fact that with the
continual improvement in hardware technology, we
now have systems with significant amounts of
processing speed and main memory, but more time is
spent by transaction waiting for data (both I/O and
remote data) than performing actual computations.
Consequently, a (sub) transaction keeps locks for

longer times if Moss's NL [18] is followed. As a
result, throughput is decreased. Since the cost of both
CPU and main memory is falling, we believe that extra
processing power and memory could be added to the
system at reasonable cost. The strength of SNL is that
it offers the potential to increase concurrency by
trading extra main memory and processing resources
without violating seralizability as correctness criteria.
Also, the speculative processing is transparent to the
user. (In this paper we are not considering extension
of speculation to interactive transactions.) Since SNL
is lock-based, it could be integrated with existing
applications based on Moss's NL with little effort.

In the next section we discuss related work. In section
3 we explain nested transaction model and the NL
protocol. In section 4, we present the SNL approach
and discuss its variations. In section 5 we explain how
SNL increases concurrency through an example. In
section 6, we informally discuss the correctness of the
SNL approach. In section 7, we perform concurrency
analysis under simplified assumptions. In section 8,
we extend SNL under limited resource environments.
The last section consists of summary and conclusions.

2 RELATED WORK

Several protocols exist to synchronize the execution of
nested transactions. Reed developed a time-stamp
based technique for nested transactions [21]. In [18],
Moss presented a concurrency control algorithm using
2PL for a nested transaction environment. In [20]
theoretical framework has been presented to prove the
serializability of synchronization protocols for nested
transactions. In [16], overview of research in the area
of nested transactions is given. In [10], a concept of
downward inheritance is introduced to improve the
parallelism within the nested transaction. In [17] the
pre-write operation is introduced to increase
concurrency in a nested transaction processing
environment. This model allows some particular sub-
transactions to release their locks before their ancestor
transaction's commit. This allows other sub-
transactions to acquire required locks earlier. However,
it is assumed that once the sub-transaction pre-writes
the value, it will not abort.

In the context of flat transactions, there are approaches
to increase concurrency based on early (before
completion) release of locks. The ordered sharing
protocol [1], allows multiple flat transactions to hold
conflicting locks on data objects as long as operations
are executed in the same order as that in which locks
are acquired. But this protocol suffers from cascading
abort problem. The altruistic locking protocol [22]
allows transactions to donate previously locked objects,
once they are done with them but before the object is
unlocked. Another transaction may lock a donated
object, but to ensure serializability it should remain in
the wake of the original transaction. This protocol is

proposed to synchronize long-lived flat transactions.
This protocol also suffers from cascading aborts.

In the context of flat transactions, speculation has been
employed in [2] to increase the transaction processing
performance for real-time centralized environments
that employ optimistic algorithms for concurrency
control. In [4], a branching transaction model has been
proposed for parallel database systems where a
transaction follows alternative paths of execution in
case of a conflict. In that paper the operation in limited
resource environments is not analyzed. In [11] a
proclamation-based model is proposed for cooperative
environments in which a cooperative transaction
proclaims a set of values, one of which a transaction
promises to write if it commits. The waiting
transactions could access these proclaimed values and
carry out multiple executions. This approach is mainly
aimed at cooperative environments such as design
databases and software engineering. In [13], a
transaction processing approach has been proposed for
distributed database systems where a transaction
releases locks after completing execution by
employing static 2PL. In [14], speculation is
employed to increase concurrency in mobile
environments, with the assumption that a mobile host
could support a reasonable number of executions.

The SNL approach differs from above approaches, as it
is a lock based approach and proposed for nested
transactions. Also, in the SNL approach, transaction
releases locks before execution and cascading aborts
do not occur.

3 NESTED TRANSACTIONS AND
LOCKING

3.1 Nested transaction model

We employ X,Y, … to represent data objects.
Transactions are represented by Ti, Tj, …; where, i, j,
… are integer values. In nested transaction model [18]
a transaction may contain any number of sub-
transactions, which again may be composed of any
number of sub-transactions- conceivably resulting in
an arbitrary deep hierarchy of nested transactions. The
root transaction that is not enclosed in any transaction
is called the top-level transaction (TLT). Transactions
having sub-transactions are called parent transactions
(PTs), and their sub-transactions are their children.
Leaf-transactions (LTs) are those transactions with no
children. The ancestor (descendant) relation is the
reflexive transitive closure of the parent (child) relation.
We will use the term superior (inferior) for the non-
reflexive version of the ancestor (descendant). The
children of one parent are called siblings. The set of
descendants of a transaction together with their
parent/child relationships is called the transaction's
hierarchy. In the following, we will use the term
`transaction' to denote TLT, PT, and LT. The hierarchy

of a top-level transaction (TLT) can be represented by
a transaction tree. The nodes of the tree represent
transactions, and the edges illustrate the parent/child
relationships between the related transactions. In the
transaction tree shown in Figure 1, T1 represents TLT
or root. A children of sub-transaction T3 are T4, T6, and
T7 and the parent of T3 is T2.

Figure 1. Example of a Transaction tree.

The properties defined for flat transactions are
atomicity, consistency, isolated execution, and
durability (ACID properties). In the nested transaction
model, the ACID-properties are fulfilled for TLTs,
while only a subset of them are defined for sub-
transactions. A sub transaction appears atomic to the
other transactions and may commit and abort
independently. Aborting a sub-transaction does not
effect the outcome of the transactions not belonging to
the sub-transaction's hierarchy, and hence sub-
transactions act as firewalls, shielding the outside
world from internal failures. The durability of the
effects of a committed sub-transaction depends on the
outcome of its superiors. Even if a sub-transaction
commits, aborting one of its superiors will undo its
effects. A sub-transaction's effect becomes permanent
only when its TLT commits.

Assumptions We assume only LTs perform data
manipulation operations and issue lock requests to
obtain locks and PTs act as a place holders for the
locks [18]. An LT is a flat transaction as defined in [3];
i.e., it is a representation of execution that identifies
Read and Write operations and indicates the order in
which these operations are executed. It is assumed that
no transaction reads or writes data objects more than
once. Also, a transaction reads before it writes any
data object.
Knowledge of after-image : Normally, an LT copies
data objects through read operations into private
working space and issues a series of update operations.
For the SNL approach, we assume that for any data
object X, write operation is issued whenever it

completes work with the data object. This assumption
is also adopted in [1, 22].

3.2 Nested locking protocol

In this section we will summarize the NL protocol
proposed by Moss [18]. Conventional locking
protocols offer two modes of synchronization - Read,
which permits multiple transactions to share an object
at a time, and Write, which gives the right to a single
transaction for exclusively accessing an object.
Possible lock modes on an object are NL-, R-, and W-
mode. The null mode (NL) represents the absence of a
lock request for or a lock on the object. A transaction
can acquire a lock on object X in some mode M; then
it holds lock in mode M until its termination. Besides
holding a lock, a transaction can retain a lock. When a
sub-transaction commits, its PT inherits its locks and
then retains them. If a transaction holds a lock, it has
the right to access the locked object (in the
corresponding mode), which is not true for retained
locks. A retained lock is only a placeholder. A
retained W-lock, indicates that transactions outside the
hierarchy of the retainer can not acquire the lock, but
that descendants of the retainer potentially can. That is,
if a transaction Ti retains an W-lock, then all non
descendants of Ti can not hold the lock in either W-
or in R-mode. If Ti is a retainer of an R-lock, it is
guaranteed that a non-descendant of Ti can not hold
the lock in W-mode, but potentially can in R-mode. As
soon as a transaction becomes a retainer of a lock, it
remains a retainer for that lock until it terminates.

The NL rules for a transaction Ti are as follows.

NL1: Ti may acquire a lock in R-mode if

• no other transaction holds the lock in W-mode,
and

• all transactions that retain the lock in W-mode
are its ancestors.

NL2 : Ti may acquire a lock in W-mode if

• no other transaction holds the lock in W- or
R-mode, and

• all transactions that retain the lock in W- or
R-mode are its ancestors.

NL3: When Ti commits, its parent inherits its (held or
retained) locks. After that, Ti's parent retains the locks
in the same mode (W or R) in which Ti held or retained
the locks previously.

NL4: When Ti aborts, it releases all locks it holds or
retains. If any of its superiors holds or retains any of
these locks they continue to do so.

Note that the inheritance mechanism (Rule NL3) may
cause a transaction to retain several locks on the same
object. In such a case, a transaction retains a most
restrictive lock.

T1

T2 T9

T3 T8

T4
T7 T6

T5

Hierarchy of T3

4 SPECULATIVE NESTED LOCKING

4.1 Lock modes and commit dependency

In the SNL approach, the duration of lock in W-mode
is partitioned into three modes, EW- (Executive
Write)-, PSW-(Passive Speculative Write) and ASW
(Active Speculative Write)-mode. The LTs request
only R- or EW-mode lock. Also, note that an LT holds
a lock, and a PT (or TLT) retains a lock.

An LT requests a lock in R-mode to read a data object
and in EW-mode both to read and write a data object.
Lock conversion from R- to EW-mode is not allowed1.
An LT converts lock from EW-mode to PSW-mode
whenever it produces after-image and holds the lock in
the same mode until its termination. Whenever an LT
holds lock in PSW-mode, its parent inherits and retains
a lock in an ASW-mode.

Let Tj be a PT and retains a lock in ASW-mode on a
data object. As per NSL rules (explained in the section
4.2), Tj converts lock from ASW-mode to PSW-mode
and retains in the same mode. Whenever Tj retains a
lock in PSW-mode its parent inherits and retains lock
in ASW-mode.

For X, a retained ASW-lock indicates that descendants
of the retainer potentially can acquire lock in EW-
mode, but all non-descendants of the retainer can
acquire a lock only after it converts lock from ASW-
mode to PSW-mode. Similarly, a hold/ retained lock
in PSW-mode indicates that any other transaction
which obtains lock in R- or EW-mode forms a commit
dependency with lock holding transaction. If Ti forms
a commit dependency with Tj then Ti is committed
only after termination of Tj. Let Ti be an LT and Tj be
any sub-transaction (an LT, PT or TLT) such that Tj is
a non-ancestor of Ti. In SNL Ti forms commit
dependency with Tj under the following situations.

1. If Ti obtains the lock in R-mode while Tj
holds/retains a lock in PSW-mode on a data
object, Ti forms a commit dependency with
Tj.

2. If Ti obtains the lock in EW-mode while Tj
holds/retains a lock in R-mode or PSW-
mode on a data object, Ti forms a commit
dependency with Tj.

(Note that as per nested rule a parent (ancestor)
commits only after termination of transactions in its
hierarchy. Therefore, even though an LT obtains a
lock in R- or EW-mode while its parent (ancestor)
retains a lock in PSW-mode (as per SNL rules in

1 However one can observe that lock conversion can be easily
incorporated.

section 4.2), we do not form commit dependency with
ancestor transactions.)

4.2 Speculative nested locking protocol

We first explain the data structures used in the SNL
protocol.

• treeX : We employ a tree data structure to

organize the uncommitted versions of a data
object produced by speculative executions. The
notation Xq (q≥1) is used to represent the q’th
version of X. For a data object X, its tree is
denoted by treex. It is a tree with committed
version as the root and uncommitted versions as
the rest of the nodes.

• Depend_seti : Depend_seti is a set of transactions

with which Ti has formed commit dependencies
for all the data objects it has accessed.

We now present SNL synchronization rules. Each data
object X is organized as a tree with X1 as a root. We
use the notation Tim to represent the m’th (m≥1)
speculative execution of Ti. Note that deadlock
handling [18] algorithms needs to be initiated
whenever a deadlock occurs.

SNL1 : Lock acquisition: Note that during lock
acquisition whenever Ti forms a commit dependency
(as per commit dependency rules) with Ti, the identity
of Tj is included in depend_seti. (The rules 1.b and 2.b
increase intra-transaction concurrency. Also, rules 1.c
and 2.c increase inter-transaction concurrency.)

1) Ti may acquire a lock in R-mode if

a) no other transaction holds the lock in EW-
mode, and

b) all transactions that retain the lock in ASW-
mode are ancestors of Ti and

c) no other transaction retains the lock in ASW-
mode and for each transaction that
retains/holds a lock in PSW-mode, its TLT
retains a lock in PSW-mode.

2) Ti may acquire a lock in EW-mode if
a) no other transaction holds the lock in R- or

EW-mode and
b) all transactions that retain the lock in R- or

ASW-mode are ancestors of Ti and
c) no other transaction retains the lock in ASW-

mode and for each transaction that
retains/holds a lock in R-/PSW-mode, its TLT
retains a lock in R-/PSW-mode.

SNL2 : Execution and inheritance

1) Execution: Suppose Ti be an LT, and is carrying

out m speculative executions and obtains a lock in
EW-mode on X. Let treex contains n versions.

Then, each Tiq (q=1 … m) splits into n speculative
executions (one for each version of treex).

Lock conversion: Whenever an LT (Ti) produces
after-images during its execution, after including
each after-image of X as a child to the
corresponding before-image of X's tree, it converts
the lock in EW-mode to PSW-mode and holds in
the same mode.

2) Inheritance The inheritance can be separated into

two types: LT to PT and PT to PT.

a) LT to PT : Whenever an LT holds a lock in
R-/PSW-mode, its parent (Tj) inherits and
retains the lock in R-/ASW-mode2.

Lock conversion by a PT: When all sub-
transactions of a PT (Tj) finish work on X, if
only one LT in Tj's hierarchy holds lock in
PSW-mode, Tj converts the lock from ASW-
to PSW-mode and retains in the same mode
without waiting for the commit of other
transactions in its hierarchy.

Otherwise, if more than one LTs of Tj holds a
lock on X in PSW-mode, then Tj converts the
lock from ASW- to PSW-mode only after all
LTs which have accessed X have been
committed3.

b) PT to PT : Whenever a sub-transaction retains
a lock in R-/PSW-mode, its parent inherits and
retains a lock in R-/ASW-mode.

SNL3 : Termination

1. Commit: A transaction Ti commits by selecting

appropriate execution only after termination of all
transactions in depend_seti. Each locked data
object is updated with after-image produced by Ti
as the root. The Ti's identity is removed from
depend_set of all remaining transactions. Also, the
waiting transactions drop speculative executions
carried out by reading before-images of Ti.

2. Abort: When Ti aborts, it releases all the locks it

holds or retains. If any of its superiors holds or
retains any of these locks they continue to do so.
Also, each tree of a data object (accessed by Ti) is
updated by removing after-images (with sub-trees)

2 To avoid inconsistency, the two actions, lock conversion from EW-
to PSW-mode by LT and lock inheritance by its PT should be carried
out atomically. To be safe, an LT converts EW- to PSW-mode only
after its parent inherits in ASW-mode.
3In this protocol we assume that a sub-transaction either commits or
aborts. If aborts, it releases all the locks both hold/retained. Next, it
is resubmitted. This process repeats until it commits. However, an
abort of a nonessential LT is allowed in nested environment [18].
We are not considering such option here. However, one can observe
that SNL can be extended under such environments.

which were included by Ti. Its identity is removed
from the depend_set of all waiting transactions.
The waiting transactions drop speculative
executions carried out by reading after-images of
Ti.

4.3 SNLnp and SNLp approaches

In SNL, after inheriting a lock from a sub-transaction
(as per rule SNL2), a PT can not donate the locks in
turn to its PT, unless all sub-transactions in its
hierarchy finish the work with corresponding data
object. Without having knowledge of data objects
accessed by its sub-transactions, a lock is held by a PT
until termination of all transactions in its hierarchy.
Therefore, based on the prior knowledge of data
objects accessed by a transaction, SNL can adaptively
operate in two modes: SNLnp (SNL-no-predeclaration)
and SNLp (SNL-predeclaration).

In SNLnp mode, a lock is held by a PT till termination
of all transactions in its hierarchy. Therefore, SNLnp
increases only intra-transaction parallelism (up to only
one level in the nested hierarchy).

On the other hand, in SNLp-mode, once inherited the
speculative locks from an LT, its PT (Ti) checks if any
of its other sub-transactions requires access to
corresponding data object. If none, then Ti's PT inherits
the locks on the corresponding data object. In this way,
speculative locks are donated outside nested
transaction before its termination (under rule 1.c and
2.c of SNL1).

As a result, SNLp could increase both intra- as well as
inter-transaction concurrency.

5 EXAMPLE

Consider follwing two transactions T1(T2(T4:{V, X},
T5:{X,Y}) , T3:{U,V}) and T6 (T7 :{U}, T8 :{Z})
which are simultaneously entered into the system (see
Figure 2). Consider that all request locks in EW-mode.
The processing employing NL and SNLp is as follows.

• NL : Figure 3(a) depicts the processing employing

NL. (In Figure 3, an arrow from a to b, indicates b
happens after a.) T4 obtains lock on X only after
termination of T5. Similarly T3 obtains lock on V
only after the abort of T4 or the commit of both T4
and T2. Similarly, T7 obtains lock on U only after
the abort of T3 or the commit of both T3 and T1.

• SNL : Figure 3(b) depicts the processing with

SNLp. At first, T5, T4, T3, and T8 obtain locks in
EW-mode on X, V, U, and Z respectively.
Whenever T5 and T4 produces after-images of X
and V, respectively, T2 inherits the lock in ASW-
mode and whenever T3 produces after-images of
U, T1 inherits the lock on ASW-mode. Next, T4

obtains lock in EW-mode and carries out two
speculative executions by accessing both before-
and after-images of X. Due to pre-declared
assumption (since T5 will not access V), T2
decides that it has finished work with V and
therefore changes lock on V from ASW- to PSW-
mode. Then, T1 inherits lock in ASW-mode on V
and retains in the same mode. Next, T3 obtains
lock on V in EW-mode and carries out two
speculative executions. Due to pre-declaration
assumption (no other transaction will access U),
T1 decides that it has finished work on U, and
converts lock from ASW- to PSW-mode. T7
obtains lock in EW-mode (under rule 2.c of
SNL1) carries out two executions by accessing
before- and after-images of X.

In this way SNLp increases both intra- and inter-
transaction parallelism of nested transactions.

6 CORRECTNESS

In this section we informally argue that the histories
produced by the SNL protocol are serializable like
histories produced by NL protocol [18].

In nested transactions ACID-properties are fulfilled for
TLTs. Therefore, the execution of a group of TLTs is
correct if it is equivalent to a serial execution of same
TLTs. However, within TLT, each set of sibling
transactions runs as if all the transactions that have
committed ran in a serial order and all the transactions
that aborted did not run at all. Since we assume all sub-
transactions essentially commit (after re-submissions)
the correctness criteria can be stated as follows. Let Ti
be a TLT or a PT with `k' siblings (children). Ti's
execution is correct, iff it is equivalent to a serial
execution of `k' sibling transactions.

We briefly argue that the commit dependency rules
and NSL rules preserve the correctness. Consider Ti
and Tj are LTs that conflict (write-write) on X under
the same TLT. Suppose Tj first obtains a lock in EW-
mode on X. When Ti converts its lock into PSW-mode,
its parent inherits in ASW-mode. As per inheritance
rules, the lock propagates to least common ancestor
(lca) of both Ti and Tj. The Tj obtains lock and carries
out speculative executions by accessing before and
after-images. Also, Tj forms commit dependency with
Ti and its ancestors, which are in lca's hierarchy. When
Tj forms a commit dependency, it commits only after
termination of Ti and its ancestors which are in lca's
hierarchy. If Ti commits, it selects appropriate
speculative execution that ensures the order Ti « Tj. In
this way a conflict among any two LTs within a TLT,
forces a serial order among siblings of lca. In this way
between any two conflicting transactions, the SNL
forces a serial order through corresponding lca .

Similarly, TLTs execute in a serial order by forcing
the commit dependency among TLTs.

7 CONCURRENCY ANALYSIS

In the SNL approach, speculative executions of a
transaction depends on its speculation level and
number of data objects it conflicts with other
transactions. In this section we consider a set of flat
transactions under same parent and analyze increase of
concurrency employing SNL.

We first define the term speculation level, which is
used to quantify the parallelism that could be achieved
using SNL.

Definition. Speculation level: For Tj, the speculation
level is denoted by ρj. If Tj executes without conflict,
ρj=0. Let Tj speculatively reads a set of data objects,

Figure 3. Depiction of processing (a) NL (b) SNLp

T1

T2 T3: U, V

T5: X, Y

T6

T7:U T8:Z

T4: V, X
Figure 2. Transactions T1 and T6 .

say, spec_set updated by n transactions. Each X ε
spec_set is updated by some Tk, at speculation level ρk.
Let ρmax be the maximum of all ρk, where Tk has
updated a data object in spec_set. Then, ρj= (ρmax +1).

Now we derive relationship between speculative
executions of a transaction and its speculation level.

Let Ti conflicts on m (m ≥ 0) data objects with other
transactions. When Ti obtains lock on first data object
with v1 nodes in its tree, it carries out v1 executions.
When it accesses the second object having v2 nodes in
its tree, each one of the v1 executions carries out v2
executions. Following this, after accessing all m
objects, the total number of speculative executions
carried out by Tj =v1× v2×….×vm. Note that, if a
transaction has no conflict with other transaction on
the k’th data object, vk is one. Otherwise, if a
transaction obtains the lock on k’th data object in
speculative mode (some other transaction has updated
the object tree), vk>1. For the sake of simplicity, let c
be the mean of number of data objects that a
transaction conflicts, ρ be the mean speculation level.
Also, let vρ be the mean of number of versions in the
tree of a data object and Nρ be number of executions at
level ρ. Then,

Nρ= (vρ)c …. (1)

From Equations 1 and 2, given N and c we can
estimate ρ. Database systems vary with respect to
available resources and data contention. We discuss
how SNL increases concurrency in such environments

• Single conflict (Hot spots): From Equations 1 and

2, with c=1, the relationship between ρ and Nρ is,
Nρ =2ρ. Therefore, ρ=log Nρ. From Fig. 4, it can
be observed that, in single conflict environments,
even we support eight speculative executions for a
transaction (i.e., with N=8 and c=1), concurrency
can be increased up to three speculation levels.

• Multiple conflicts (long transactions): From

Equations 1 and 2, with ρ=1, the relationship
between c and N1 is, N1=2c. Thus in database
environments in which majority of transactions
conflict on multiple data objects, if we support 2c
speculative executions for a transaction,
concurrency could be increased up to one
speculation level. So, SL achieves 1-level
speculation with manageable extra resources.
However, at multiple conflicts (c>2) and higher
speculation levels (ρ>2), the value of N explodes.

8 LIMITTED RESOURCES

ENVIRONMENTS

In the SNL approach, the number of speculative
executions of a transaction increases exponentially as
data contention increases. Since each speculative
execution needs separate workspace, the size of main
memory available in the system limits the number of
speculative executions that could be carried out. With
this limitation, processing cost may not be considered
as a considerable overhead as current technology
provides high speed parallel computers at low cost.
Under limited resource environments the number of
speculative executions of a transaction could be limited
as follows. Let amount of memory required to carry
out single execution be one unit. Based on the
available memory units, we decide the feasible number
of speculative executions that could be carried out by a
transaction. During processing if the number of
executions crosses the decided value, the transaction is
either put to wait or aborted.

9 SUMMARY AND CONCLUSIONS

In this paper we have proposed concurrency control
approach based on speculation for nested transactions.
In the SNL approach, a (sub) transaction releases a
lock on the data object when it produces after-image.
In this approach a transaction carries out multiple
executions to increase concurrency. It requires extra
computing resources for speculative executions to
increase concurrency. By trading extra resources SNL
increases concurrency without violating serializability
criteria. Through example we illustrated how SNL

For the sake of simplicity we make two worst-case
assumptions. First, we assume that transaction requests
only write locks and releases these locks after completing
execution. And second when a transaction carries out Nρ
executions, Nρ distinct versions are included to the tree of
each data object it accessed after its execution. Then, the
number of versions at the next level vρ+1 is given below.

vρ+1= vρ+ Nρ where v0=1 and N0=1 …..(2)

Figure 4. Number of levels versus speculative
executions

increases concurrency over NL. Also, we have
analyzed how SNL increases concurrency under
limited resource environments. As a part of future
work, we evaluate the performance through simulation
experiments and formally prove correctness.

ACKNOWLEDGEMENTS

This work is partially supported by Grant-in-Aid for
Creative Basic Research # 09NP1401: ``Research on
Multimedia Mediation Mechanism for Realization of
Human-oriented Information Environments'' by the
Ministry of Education, Science, Sports and Culture,
Japan and Japan Society for the Promotion of Science,
Japan.

REFERENCES

[1] D.Agrawal, A.El Abbadi, and A.E.Lang, The

performance of protocols based on locks with
ordered sharing, IEEE Transactions on
Knowledge and Data Engineering, vol.6, no.5,
October 1994, pp. 805-818.

[2] Azer Bestavros and Spyridon Braoudakis, Value-
cognizant speculative concurrency control, proc.
of the 21th VLDB Conference, 1995, pp. 122-
133.

[3] P.A.Bernstein, V.Hadzilacos and N.Goodman,
Concurrency control and recovery in database
systems(Addison-Wesley, 1987).

[4] A.Burger and P.Thanisch, Branching transactions:
a transaction model for parallel database systems,
Lecture Notes in Computer Science 826.

[5] P.K.Chrysanthis and K. Ramamritam. A formalism
for extended transaction models. In proc. of 17th
VLDB conference, 1991.

[6] P.Dasgupta, R.Liblanc Jr, and W.Appelbe. The
clouds distributed operating system. In
proceedings of 8th International Conference on
Distributed Computing Systems, San Jose, CA,
1988.

[7] A.K.Elmagarmid (ed.), Database transaction
models for advanced applications, Morgan
Kaufmann, 1992.

[8] J.N.Gray, Notes on database operating systems:
in operating systems an advanced course,
Volume 60 of Lecture Notes in Computer
Science, 1978, pp. 393-481.

[9] J.Gray. et all. The recovery manager of the system
R database manager, ACM Computing Surveys,
13, pp.223-244, 1981.

[10] T.Harder and K.Rothermel, Concurrency control
issues in nested transactions, The VLDB Journal,
vol.2, no.1, pp.39-74, 1993.

[11] H.V.Jagadish, and O.Shmueli, A proclamation-
based model for cooperation transactions,
proceedings of the 18th VLDB Conference,
Canada, 1992.

[12] W.H.Jessop, D.M.Jackobson, J.Baer, and C.Pu.
An introduction to the Eden transactional file

system. In proceedings of 2nd IEEE Symposium
on Reliability in Distributed Software and
Database Systems, Pittsburgh, PA, 1982.

[13] P.Krishna Reddy and Masaru Kitsuregawa,
Improving performance in distributed database
systems using speculative transaction processing,
in proceedings of The Second European Parallel
and Distributed Systems conference (Euro-
PDS'98), 1998, Vienna, Austria.

[14] P.Krishna Reddy and Masaru Kitsuregawa,
Speculative Lock Management to Increase
Concurrency in Mobile Environments, The First
International Conference on Mobile Data Access
(MDA'99), Hong Kong, December 17-18, 1999,
to appear in Lecture Notes in Computer Science,
Springer Verlag.

[15] B.Liskov, Distributed computing in Argus,
Communications of ACM, 31, pp.300-312, 1988.

[16] S.K.Madria, A study of the concurrency control
and recovery algorithms in nested transaction
environment, The Computer Journal, vol. 40,
no.10, pp.630-639, 1997.

[17] S.K.Madira, S.N.Maheswari, B.Chandra and
Bharat Bhargawa, Crash Recovery algorithm in
open and safe nested transaction model, Lecture
Notes in Computer Science, vol. 1308, Springer-
Verlag, 1997, pp. 440-451.

[18] J.E.B.Moss, Nested transactions: An approach to
reliable distributed computing. Cambridge, mass,
MIT Press, 1985.

[19] E.T. Mueller, J.D.Moore, and G.Popek. A nested
transaction mechanism for Locus. In proceedings
of 9th ACM Symposium on Operating Systems
Principles, Bretton Woods, USA, 1983.

[20] R.F.Resende, Synchronization in nested
transactions, Ph.D thesis, University of California,
Santa Barbara, 1994.

[21] D.P.Reed, Naming and synchronization in a
decentralized computer system. Ph.D thesis.
Technical report MIT/LCS/TR-205, MIT
Laboratory for Computer Science, MA.

[22] K.Salem, H.Garciamolina and J.Shands,
Altruistic locking, ACM Transactions on
Database Systems, vol. 19, no.1, March 1994, pp.
117-165.

