
Parallel R-tree Spatial Join for a Shared-Nothing Architecture

Lawrence Mutenda and Masaru Kitsuregawa
Institute of Industrial Science

University of Tokyo
Tokyo, Japan�

mutenda,kitsure � @tkl.iis.u-tokyo.ac.jp

Abstract

The growing importance of spatial data has made it im-
perative that spatial operations be executed efficiently. The
most expensive operation is the join for spatial databases.
This paper proposes a Replicated Parallel Packed R-tree
and its use in performing the parallel R-tree join. We
examine performance using the Digital Chart of the World
Data on a shared nothing machine. Our experimental re-
sults show that the proposed tree and heuristics for load
balancing improve Parallel R-tree join.

1 Introduction

The past two decades have seen an explosive growth in
the use of spatial data in various fields like Earth Sciences,
cartography, remote sensing, car navigation systems and
land information systems. Data sets in such areas are
characterized by large size (sometimes of the order of
terabytes). Spatial databases also support data structures
like points, lines and polygons. Storing, managing and
manipulating such data is more expensive in comparison
to ordinary business applications, since spatial objects are
typically large, with polygons commonly consisting of
thousand of points apiece. The volume of such GIS data
sets will continue to grow. A good example of such growth
is the expected geo-spatial petabyte data set for NASA’s
EOSDIS project which will hold rater images arriving at the
rate of 3-5Mbytes per second for 10 years from satellites
orbiting the earth.

It is important that a spatial database be able to effi-
ciently store and manage such large data sets enabling high
performance operations on the data. The spatial join is the
most important and is also the most expensive[15] operation
in spatial databases. The main reasons are that unlike the
join operation in a one-dimensional data-set, the spatial join
involves computationally demanding geometric algorithms
like plane sweep [1]. Secondly, candidate objects are large,

sometimes of the order of thousands of coordinate points
and therefore I/O expensive.

Given the growing importance of GIS data and the
imperativeness of spatially enabling user databases, it is
important that spatial operation performance be improved.
In this paper we focus on the join operation. We focus
on the spatial join using the ubiquitous R-tree and propose
a novel parallel R-tree structure, the Replicated Parallel
Packed-R-tree for a shared nothing architecture. We apply
this structure in a parallel R-tree spatial join operation and
propose dynamic load-balancing algorithms for the parallel
join. We include experimental results, on real-world spatial
data, The Digital Chart of the World (DCW) data [4], on
the IBM SP2 multicomputer that show that our algorithms
lead to improvement in the join operation.

The rest of this paper is organized as follow. Section 2
gives a brief overview of related work. The Replicated Par-
allel Packed-R-tree is described in section 3. Performance
evaluation is described in section 4. In section 5 we discuss
results and conclude.

2 Related Work

One of the first attempts to apply parallel processing to
the spatial join operation was the work Hoel and Samet[7]
which describes the use of a PMR Quadtree for join pro-
cessing. It also describe the use of the ��� for parallel join
processing. This work focuses on a main memory database
for a Thinking Machines architecture. The data set that was
use was small and I/O costs are ignored. Brinkhoff et. al.[3]
then proposed the use of the parallel, R-tree on a virtual
shared memory machine. This work discusses issues of load
balancing and minimization of communication. This work
is similar to ours but the difference lies in the fact that we
propose the the use of a packed R-tree, efficient for static
data, instead of the dynamic R-tree they use. Our data sets
are also larger compared to the ones they use.

The R-tree, as proposed by Guttman [6], is geared for a
situation with dynamic deletions and insertions. However

static data sets appear in many situations [8]. Examples
include cartographic databases, CD-ROM published map
data like DCW etc. In these situations data is rarely
modified and therefore an R-tree variant, the packed R-tree.
that can be bulk-loaded statically was proposed. In the
structure, rectangles are ordered on the value of the lower-
left coordinate ���	��
����� and space usage is 100%. Kamel
et. al. [8] used this idea and proposed to sort rectangles
using the Hilbert curve. Rectangles are sorted based on
the Hilbert value assigned to their mid-point coordinate.
Further work was done by Leuteneger et. al.[12] in which
they proposed the Sort-Tile-Recursive (STR) algorithm for
sorting rectangles during packing. These researches on the
packed R-tree show that packing improves performance for
an R-tree compared to ordinary R-trees. Our work uses the
STR packing algorithm for the Replicated Parallel Packed
R-tree.

Parallel R-trees have been proposed in various re-
searches. Kamel et. al. [9] proposed one of the earliest
Parallel R-tree structures. The main premise of the pro-
posal given is that for spatial processing the CPU time is
negligible compared to disk I/O time. Therefor a single
processor/multiple disk system is envisaged. R-tree nodes
are then stored on different disks, ensuring a distribution
that equalizes the load across all disks. Similarly, Koudas et.
al.[11] proposed a parallel R-tree to support range queries
in a multi-computer. In the proposal, a master machine
contains all the internal nodes of the parallel R-tree. The
leaf nodes and the actual objects are stored in the slave
machines. The portion of the R-tree at the master machine
contains pointers to the machines holding the leaf nodes.
This idea was extended in [14], which proposes a Master-
Client R-trees where the clave machine also store inner tree
nodes. However both R-tree structures are not optimized
for join operations which is what we focus on in this paper.
Our proposed Replicated Parallel Packed-R-tree efficiently
supports join operations.

Based on the premise that there are situations in which
R-tree index structure are not available(e.g intermediate
data from other database operations) and are expensive to
compute dynamically, Zhou et al [15] proposed a parallel
spatial join algorithm that assume that no SAM (spatial
access method) exists. The universe of the join query is
divided into a grid of cells into which spatial objects are
inserted based on their spatial characteristics. For two
spatial data sets � and � , objects inserted into these cells
are joined using a nested-spatial join algorithm. Our work
basically assumes that most spatial data will have a SAM
and therefore we should use this to advantage.

3 Replicated Packed Parallel R-tree

The Master Parallel R-tree was proposed by Koudas et.

Tree Leaf Pages
Declustered
to SLAVES

 Inner Pages
Stored at MASTER

MASTER Parallel
Packed Rtree

S1 S2 S1 Sn S4

Figure 1. A Master Rtree

al [11] and is shown in fig. 1. In a multinode machine, one
node, the master, stores all the inner nodes of the R-tree
and the leaf nodes are distributed across all slave machines.
Then when the master receives a range query it traverses
the R-tree until it reaches its ‘‘leaf’’. At this point it can
identify the slave which stores this leaf page. It then sends
a message to this slave to continue the query and it awaits
results. The Master R-tree was improved into the Master-
Client R-tree[14]. Here it is argued that the master can
become a bottle-neck therefore it is propose to shed some of
its load to slaves. This is done by allowing the slaves to build
a sub-tree of their own for the data they store. The Master
then only needs to traverse its R-tree whose leaf nodes will
identify the object storing the identified rectangle. Both
the Master-R-tree and Master-Client R-tree use packing.
However they are built to support range queries and would
not efficiently support the R-tree join algorithm, commonly
based on synchronous R-tree traversal [2].

Our proposed Replicated Parallel Packed-R-tree (RPP-
R-Tree) structure is shown in fig.2. The RPP-R-Tree is
built using a packing algorithm as described below. The
synchronous R-Tree traversal join algorithm takes two R-
trees and examines the root nodes for intersecting pairs
of entries. Each intersecting pair of entries, Minimum
Bounding Rectangles (MBR) are then recursively traversed
until the leaf is reached. It is obviously necessary that
both trees be easily accessible. This is not the case for the
Master-Client R-tree. The location of the client R-trees is not
necessarily the same for 2 different trees. The Master R-tree
fulfills the accessibility requirement but again this becomes
a bottle neck as each slave has to wait for the Master to
finish traversing both trees. To reduce this bottleneck, we
propose, for a shared-nothing architecture, to replicate the
whole R-tree structure across all the slave nodes, which we
call the join nodes.

The main drawback of this scheme might be storage costs
but however we believe that the benefit of improving the join
operation outweigh the costs. Its should also be noted that

2

� � � � � � � � � �� � � �� � � � �

� � � � ! " # $� % & ! ' � (" ! $! " !) ' ! * $ " # +, " ! ! � ! - $) # * !. / - " 0 #) 0) 1 2) 0 3

� � / � � � � 4 � �/ � � 5 � �/ � � � � � � � � 4 � � �

� ! 6 � 0 ' - ! */ # " 0 #)

� 6 - 0 - �� % & ! ' �. � ! ' � � � ! " ! * 3

� � (, � � (7 � � (8 � � ()

. � / / (� 4 " ! ! 3

� 6 - 0 - � � % & ! ' � - - � 0 � " 0 % � 0 #) 0) / - " - � � ! � � # * ! �
� # * ! , � # * ! 7 � # * ! �
9 : : ; 9 < = > > 9 : : ; 9 < = > >9 : : ; 9 < = > >

? @ A > B C D E F D G H I J > K E: D = E F E F @ L ? @ A > B C D E F D G H I J > K E: D = E F E F @ L? @ A > B C D E F D G H I J > K E: D = E F E F @ L

Figure 2. A Replicated Parallel Packed-R-tree

storage itself is becoming cheaper all the time. Replication
will not be a drawback due to insertions and deletions. The
simple explanation is that geographical data is highly static
and for many data sets modification is hardly needed if at
all. In the RPP-R-Tree structure the leaf nodes are stored
together with the inner nodes. However the actual data
objects themselves are stored separately and are declustered
across the system. One of the attractions of packed R-trees
is the possibility of utilizing space maximally. The other
advantage is the loading time which is reduced significantly.
In generally is has been shown that packed R-trees perform
better than other R-tree variants.

3.1 RPP-R-Tree Creation

There are three main algorithms for R-tree packing in
the literature, namely Nearest-X, Sort-Tile-Recursive(STR)
and Hilbert sorting[12]. It is shown in [12] that Nearest-
X performs the worst but STR and Hilbert sorting are
equivalent. To create the RPP-RTree we propose to use the
STR algorithm because it is simpler to implement but we
intend to examine the performance difference of the two in
future. The process of building the RPP-R-Tree is similar
to that of building a B-tree from a set of keys. Let M be the
maximum number of entries per R-tree node. Let N be the
number of spatial data objects:

1. Calculate the MBR of each spatial object and create N
input entry rectangles. Record page identifier of object

in entry. The pointer refers to an object uniquely in the
system.

2. Order the OQPRN entries using a defined order, inS OUTVMXW consecutive groups of M rectangles - last
group may have fewer.

3. Load the
S OUTYMXW groups of rectangle in to a disk page.

record the page pointer and the MBR of the page into
an array.

4. Recursively oder and pack the out put of the previous
step until the root is created.

To sort and order using the STR algorithm, take a set of O
rectangle entries and determine the current number of pagesZ P S OUTVMXW . Sort the set of entries on the � coordinate of
the MBR’s center. Partition the set into �[P S]\ Z W slab.
A slab has M_^�� consecutive rectangles. Sort the each
slab by the ` coordinate of the MBR’s center. Once the
RPP-R-Tree is created it can then be replicated to each node
in the system. Node the location of each spatial object is
included in the leaf node of the tree in the form of an acb
which identifies the node and the disk location of the spatial
object.

3.2 Spatial Data Declustering

Partitioned parallelism is the main source of parallelism
in a parallel shared-nothing system[5], and is achieved by
declustering data across multiple nodes in the system and
running operators at each of these nodes. There are three
main requirements for achieving this kind of parallelism
effectively. Firstly, the declustering technique applied must
evenly distribute data across the systems nodes. Secondly,
most of the data that an operator running at a particular
node accesses must exist locally at that node to minimise
inter-node communication overhead. Thirdly, since no
declustering technique can predict access all future patterns
correctly, effective dynamic load balancing techniques must
be applied, that introduce minimum overhead and allow
nodes to fairly share the operating load.

One method for achieving declustering is the R-tree
Leaf-Node cluster method. This is illustrated in fig.2. In
this method all the objects referenced from a leaf node are
considered a cluster and are used as the unit of declustering.
The node of the R-tree guarantees a degree of spatial locality
for all the objects and STR packing further enhances this
locality. Our experiments with DCW data show that the
sizes of these clusters range from 13kbytes - 26kbytes for
a packed RPP-R-Tree. In fig.2 the clusters are labelled
Cl-i. Since the cluster size is small, in our experiments
we use the cluster as the buffer-disk transfer unit as well,
since only one seek operation is required and the probability
that the objects in the cluster will be used closely in time

3

is high. The assignment of the clusters to nodes can the
done in the using Round-Robin assignment, where clusterd

in the sorting order is assigned to node aeP d
mod f .

Size-balancong can also be used where the size of each
node in terms of the number of co-ordinates or total area
covered is balanced. Hashing can also be used. In this
paper we evaluated the R-tree Leaf-Node cluster method
with round-robin partitioning.

4 Parallel R-tree Join

g h i i j k h i i j
g l g m
g n k o

g o
g p g q

k l k m

k n

k p
g h i i j

g l g m g n g qg pg o

k h i i j

k l k m k pk ok nr s t u t v w x g l y k l z y x g m y k m z y x g n y k n z y x g o y k o z y x g p y k p z y x g q y k p z {| t } ~ i t j v w l � y o y p y q y o y m {m � � i � � � s h s � � � � � s � � � � �r s t u � � t j h � � � j � i �g i � � � � g i � � � � � t j h � � � j � i �
� i � � l � i � � mx g l y k l zx g n y k n zx g p y k p z

x g m y k m zx g o y k o zx g q y k p zr i j } | } ~ i t j � l � r i j } | } ~ i t j � l m

k j s j � � � i s � � s � s � � � � �
� i � � l � i � � mx g l y k l zx g p y k p zx g q y k p z

x g m y k m zx g n y k n zx g o y k o zr i j } | } ~ i t j � l pr i j } | } ~ i t j � l q
Figure 3. Filter Task Creation and Distribution in
Parallel R-tree Join

In this section we describe the algorithm for the RPP-
R-Tree R-tree join. We assume a shared-nothing parallel
computer with f join nodes and a Master node which
controls the execution of the spatial join operation. Each
node has its own buffers and accesses its own disk. A high
speed communication network connects the different nodes.
A user of the spatial join operation interacts with the Master
node which will the initial the spatial join and return the
results to the user.

A spatial join operation has two main phases: the filter
phase followed by the refinement phase[13]. In the filter
phase approximations of the spatial objects, eg the MBR,
are used to filter out those objects that have no possibility
of satisfying the topological relation (e.g. intersect). If
we define the set ��M���������acb���� for spatial object a as key-
pointer data for the object, The output of this phase is a set
of pairs of key-pointer data �� ¡M[�¢� ��£ acb ��¤ ;]M¥�¢�§¦¨��a©bª¦ ¤ �
such that M[����� intersects M[��� ¦ for a the intersect

topological relation. Each such pair is called a candidate
pair. In the refinement phase, for each such pair the
corresponding objects are retrieved from disk and tested
for actual intersection. Those that intersect are returned as
part of the final result. A good filtering scheme will filter
out the majority of non-intersection objects, before they
are retrieved from disk. In the algorithm described here
filter phase is done is parallel using the RPP-R-Tree. The
candidates so produced are used in the refinement phase
which is also done in parallel.

At The MASTER:
TaskCreate(Rtree R, Rtree S)
ReadNode(«¬©®�®�¯�°�±²¬¡®�®�¯)

FOR(all ³´¶µ�«·¬©®©®�¯)
FOR(all ³¹¸ºµº± ¬©®�®�¯)

IF (³ ´ µ»³ ¸)
add ¼½³¹´U°�³ ¸¿¾ as ¼ÁÀ «§°©À ± ¾¡Â to À¹Ã¨ÄÆÅªÇÉÈ¡ÄËÊ

FOR all ¼ÁÀ «§°©À ± ¾ Â µ¢À¹ÃÌÄÆÅªÇÉÈ¡ÄËÊ
calculate ÀÎÍ ®�Ïc¯
assign ¼ÁÀ «§°©À ± ¾ Â using best-fit decreasing strategy

all nodes have approximately equal total cost
SEND task sets to all Ð¿ÑÓÒ�ÔºÔºÑÓÕe³×Ö 1 ØÙÈÚØÛÔ
RECEIVE query results from Ð¿ÑÓÒ�ÔºÔºÑ§Õe³×Ö

Figure 4. Filter Task Creation

The algorithm we describe here is a the synchronous
R-tree traversal algorithm described in [2]. The input to our
version of the algorithm is 2 RPP-R-trees as shown in fig.5.
The Master creates a number of sub-tasks and allocates
these sub-tasks to the join nodes. Each subtask is pair of
intersecting MBRs from the two R-tree roots and a node
receiving such a task will independently synchronously
traverse the 2 subtrees represented by these two MBRs.
When the leaf is reached, for any intersecting leaf MBRs,
the corresponding rectangles are retrieved. It is possible that
a required object is stored in different node. In such a case
the node requiring that object will send an object request
to the home node and once it receives the object, it then
performs the actual join.

There are various types of spatial joins but without loss
generality, in this paper we focus on the intersection join.
An example which we use in our experiments is answering
the query: Find which rivers intersect with which roads,
for a rivers data set and a roads dataset. We assume
the spatial objects have already been declustered across
nodes as described in the previous section. To simplify
the description we assume that the RPP-R-trees for the 2
data sets are of equal height. The algorithm can be easily
modified to handle situations where the heights of the tree
are different.

4

At each ÜÌÝ×ÞYß�ß�Ý¹àâá Ö 1 ã�ä�ãåß
ReceiveFrom MASTER æVçéè ê¹ë½è ì�í Â : 1 ãåî§ã»ï

is a pair of intersecting Rtree nodes ð
Begin: JoinSpatial(RtreeNode è ´ , RtreeNode ì)
FOREACH (çéè ê¹ë½è ì�í Â

SynchronousTraverse(è êñ òôóÁõ , è ¸ ñ òôóÁõ)
perform space restriction
produce candidates
IF (DYNAMIC LOAD BALANCE == FALSE)

RefineCand locally
Request Remote object over network
FOR EACH candidate pair
NestedJoin ç]çÁö¶÷ê Ö ë]äùø Ö í¡ë�çÁöú÷ê²ûªë]äÁø�ûôí]í
Send Joined Object to Master

END
IF (DYNAMIC LOAD BALANCE == TRUE)

Sendcandidates to slaves and master
depending on Heuristic

Receive candidates from slaves and master
depending on Heuristic

FOR EACH candidate pair
NestedJoin ç]çÁö¶÷·ê Ö ë]äÁø Ö í¡ë�çÁöú÷¹ê û ë½äÁø û í]í
Send Joined Object to Master

END

AT MASTER
Receive join pairs from all ÜÌÝ×ÞYß�ß�Ý¹àâá Ö 1 ã»ä�ã»ß

Assign join pairs depending on
assignment plan Ü�ÝüÞYß�ß�Ý¹àýá Ö

Increase Cost at each Node by êUþËÿ�ä���þ Í ®�Ïc¯�� � Ö û�� ;
Send candidates to slave nodes

END

Figure 5. Parallel Spatial Join

4.1 Filter Task Creation

Filter task creation is performed at the Master node.
The master examines the root nodes of the two RPP-R-
Trees � and � . All the intersecting pairs of tree node
elements are produced. Each of these constitutes a filter
task �� �¢��� � ¤
	 , as in fig 4.

4.1.1 Static Load Balancing

To ensure that the load for executing tasks �� ����� � ¤ 	
is shared evenly among the nodes a static load balancing
scheme is employed. The RPP-R-tree stores the number of
coordinate points contained in the subtree under a tree node
entry. Each entry in the root node will store the number
of coordinates under it. This is an indicator of the cost
associated with traversing that subtree. Fig. 3 illustrates the
process of calculating the cost and allocating the tasks to
nodes. The following cost function is used in determining
the cost of traversing two intersecting subtrees ������ and� ���� :

� �§Nô
���������� P fú�� Z O����_
�Nô��
�]� ������
� ���� ¤ T� ��ÓNô��
�]� ���� ¤� �ÓN¨�
]� ���� ¤�¤

f¶�� Z O!� is the total number of points in the two
subtrees. Intersecting the root node will generally give a
number of subtasks. Static load balancing tries to equalize�ýN¨
Ì���"�#�$� across all nodes. In the case that the root node
gives an insufficient number of tasks, the task allocation
algorithm descends the two RPP-R-trees to the next level.
Only one task, the one with the highest cost is chosen for
further decomposition. The allocated tasks are then sent the%!&�' f f &�(*) � for execution. The MASTER then waits
for results.

Each join node will then proceed, independently, to
traverse the RPP-R-tree, since each node has its own copy
of the R-Trees, and will produce key-pointer data pairs,��]M¥��� � ��a©b �c¤ ; ¡M¥���Ó¦¨��acbª¦ ¤ � as candidates where . The
commutation cost incurred in sending the filter task to%!&�' f f &�(*) � is very small and the overhead of waiting
for the Master to create filter tasks is small since only it
examines only few nodes. In addition the root nodes of
the RPP-R-tree are pinned in memory. In our experiments
enough filter tasks are created only by examining the root
nodes.

4.1.2 Refinement Operation

There are two options when implementing refinement in the
parallel join algorithm:

1. Refine candidates where they are produced.

2. Execute a load balancing phase to equalise the refine-
ment workload.

In the first option, each node will refine the candidates
as it produces them. Since some objects may be remotely
located, nodes may need to send object requests to the
objects’ home nodes. It is unlikely that the number of
candidates produced at each node is equal. This coupled with
the significant cost of refinement, can and, in experiments,
did result in severe load imbalance. There dynamic oad
balancing is essential in the refinement phase. First we
define a cost function for estimating the cost of refining a
candidate pair. If the number of coordinate points in object� � is � , the number of points in object �²¦ is O and the cost
of transmiting a point across the network is �
+ , the

' T & cost
per point is � �-, , the actual join cost per point is �½¦ , then����.²acOÚ� +/, �/0/132 � ¦54 for candidate is given as follows:

���6.�a¡OÚ� +/, �/0/132 � ¦54 P (1)

� ^� �� �-, ��7 ¦ ��^�� + ¤8 O ^¨ 9� �-, � ¦ ;: ^<� + ¤
where

= � P 0 � : P 0 if � �
�OÚb¢� � is local resp.� P 1 � : P 1 otherwise

5

Note that the actual join operation is done as a nested
loop operation.

In dynamic load balancing the master node and
the slaves cooperate in producing a new redistribu-
tion of the produced candidates. For each candidate��]M[��� � ��a©b �c¤ ; ¡M[�¢� ¦¨��acbª¦ ¤ � , that it receives, the mas-
ter uses one the following two hueristics.

Assignment 1 Assign a candidate]�¢� � ¤ to the node: if both objects in �� ¡M[�¢� � ��acb � ¤ ;]M¥�¢� ¦ ��a©b ¦ ¤ �
point to that node. If not then assign�� ¡M ��� � ��a©b � ¤ ; ¡M¥��� ¦ ��acb ¦ ¤ � to the node with the
smallest load so far. Increment the load of the node tod ��a¡O!>?�#�$� � ¡M[� ������acb�� ¤ ; ¡M¥�¢� ¦ ��acb ¦ ¤�¤ . if at the end
of assignment any nodes are outside @ 10% of average
load, move candidates to lightly load nodes from heav-
ily loaded nodes, to bring the load cost at each node
within that range.

Assignment 2 Always send a pair to the home node of
the the entry from the biggest data set. If at the end
of assignment any nodes are outside the @ 10% of
average move candidates to lightly load nodes from
heavily loaded nodes, to bring the load cost at each
node within that range.

In generating the whole candidate distribution plan we
identify the following 6 heuristics. We assume that the data
set � is the larger of the two data sets participating in the
join.

Heuristic 1 Each slave send 100% of the candidates it
produces to the saster node. The master node uses
heuristic assigment 1, to determine where to allocate
each received candidate.

Heuristic 2 Each slave send 100% of the candidates it
produces to the master node. The master node uses
heuristic assigment 2, to determine where to allocate
each received candidate. In this case � is the larger
data set.

Heuristic 3 Each slave sends 50% of the candidates it
produces to node : where if the home node of the
object from set � is nide : . The rest are sent to the
master. In addition each node calculate the refinement
cost of those 50% sent to sllave nodes and send this to
the master. The master uses assignment 1 to determine
plan.

Heuristic 4 Same as Heuristic 3 but uses assignment 2 to
determine plan.

Heuristic 5 Same as Heuristic 3 but send 75% to slave
and 25% to master. The master uses assignment 1 to
determine plan.

Heuristic 6 Same as Heuristic 5 but the master uses as-
signment 2 to determine plan.

After calculating the load balancing plan, the Master
then transmits the candidate pairs to their respective nodes
where refinement is performed. Simulataneously the slaves
begin refining candidates that they receive from other slave.
One of the disadvantages of the Heuristics 1 and 2 is the
centralization of the balancing plan generation. This can
limit the scalability of the algorithm in a massively parallel
machine with for example 100 nodes [10]. In this case the
load balancing plan generation load can be decentralised by
ensuring a certain percentage are sent directly from slave
node to another slave node, whilst the rest are sent to the
master to allow the master to perform global load balancing.
The rational behind keeping the larger data set stationary is
that this helps to reduce communication overhead.

5 Experimental Evaluation;

5.1 Experiment Data Sets

Table 1. DCW Data Characteristics

Data Set Size (MB) Object Count Number of Coordinates

Rivers 94.3MB 964,533 11,405,491
Roads 41.7MB 557,007 4,908,784

Railroads 7.1MB 111,674 815,939

Table 2. Replicated Parallel Rtree Characteristics

Node Size Rivers Roads Railroads

8kbytes Number of 3783 2185 438
(255 entries) Leaf Nodes

Number of 31 19 4
Inner Nodes
Avg Cluster 26159.1 20012.0 16942.7
Size (bytes)
No of Levels 3 3 3

We conducted experiments using our RPP-R-tree. We
used the IBM SP2 machine with each machine accessing
its own disk and memory and connecting via a high speed
switch. One of the characteristics of spatial data is large
size. We felt it is important for us to use the largest data set
we could found. Large data sets has received little attention
in the literature so far. This turned out to to be the Digital
Chart of the World, provide by the US Defence Mapping
Agency. This data was available in ARC/INFO format but
we ungenerated it using the ungenerate function, into text
data and then loaded into our system. We selected the rivers,
railroads and roads data and the sizes are shown in tables

6

A
B A A
C A A
D A A
E A A
F A A
G A A

E H B C B EI J K L M

NO PQR ST U V W V X YZ L [\ X M V X Y CZ L [\ X M V X Y EZ L [\ X M V X Y G

Figure 6. Execution Time versus the Number of
processors: Rivers/Roads

1. The rivers data is the largest at 94.3MB, with nearly 1M
lines. For all the data sets the more than 60% of the lines
have 10 points or less. The sizes of the R-trees are shown in
table 2.

5.2 Join Experiments

We conducted experiments for static load balancing and
dynamic load balancing using the heuristics described in
section 4.1.2. We performed the join operation for the
rivers/roads, rivers/rails and the roads/rails combinations.
Figures 6, 7 and 8 show the execution times for some
of the heuristics. For all the data static load balancing
results in resonable excution time but the application of
dynamic load balancing heuristics improves performance
by about 10 - 25%. In all the data sets the Heuristics which
used assignment 1 in generating the plan resulted in worse
performance that their counterpart using assignment 2. This
can be explained by the fact assigment 1 moves the large
data set and this results in large communication overhead.
In addition we proved that heuristic 6 performs the best for
all the data sets except for the Roads/Rails set.

Tables 3 and 4 give a comparison of the different time
componets for the static case and the case for heuristic 6 for
rivers/roads join. The static case gives wide difference in
time between the slowest node (S) and the fastest node (F).
The slowest node also has a lot of communication overhead.
With heuristic 6 the time difference between (S) and (S)
is drastically reduced and communication time is reduced
equalized between the nodes (F) and (S). We also plotted the
speedup for static, heuristic 2, 4 and 6 load balancing in fig.
9. There is progressive increase in speedup characteristics
from the static to heuristic 6. The can be explaned from

]
^]
_]]
_ ^]
`]]
` ^]

a b _ ` _ ac d e f g

hi jkl mn o p q p r st f u v r g p r s `t f u v r g p r s at f u v r g p r s w

Figure 7. Execution Time versus the Number of
processors: Rivers/Rails

the fact that parallelism is facilitaed if the slave nodes can
begin to process refine operations immidieately rather that
waiting for the Master.

6 Conclusion

We have presented a new Parallel R-tree structure, the
Replicated Semi-packed Parallel R-tree. We have shown
how it can be applied in the implementation of a parallel
R-tree join. We have conducted experiments on a real
machine using real world large data sets. We are planning
to compare the performance of the various data declustering
methods, for example tiling the universe space. We are
planning to move our implementation to a large PC cluster
to further evaluate performance[10].

References

[1] Bentley J.L. and Ottman, Algorithms for Reporting and
Counting Geometric Intersections. IEEE Transactions
on Computers, C-28(9), (1979), 642-647.

[2] Brinkhoff T., Kriegel H.P., Seeger B., Efficient Pro-
cessing of Spatial Joins using R-trees. Proc. ACM
SIGMOD 93.(1993), 237-246.

[3] Brinkhoff T., Kriegel H.P., Seeger B., Parallel Pro-
cessing of Spatial Joins Using R-trees. Proc IEEE
13th International Conference on Data Engineering.
(1996), 258-265.

[4] Digital Chart of the World for use with ARC/INFO
software, Enviromental Systems Research Institute,
Inc., (1993).

7

x
y x
z x
{ x
| x
} x x
} y x
} z x
} { x

z | } y } z~ � � � �

�� ��� �� � � � � � �� � � � � � � � � y� � � � � � � � � z� � � � � � � � � {

Figure 8. Execution Time versus the Number of
processors: Roads/Rails

� �

¡¡ ¢ £ ¤
¤ ¢ £¥
¥ ¢ £¦
¦ ¢ £§

§ ¨ ¤ ¥ ¤ §© � � � �

ª «¬¬ ®«

� ¯ � ¯ � ° ± � � � � ¯ � ° ¥ ± � � � � ¯ � ° § ± � � � � ¯ � ° ²

Figure 9. Speep Up versus the Number of pro-
cessors:Rivers/Rivers

[5] DeWitt D.J., Gray J., Parallel Database Systems: The
Future of Database Processing or a Passing Fad?.ACM
SIGMOD RECORD, Vol. 19, No. 4 (1990), 104-112.

[6] Guttman A., R-trees: A Dynamic Index Structure
for Spatial Searching, Proc. ACM SIGMOD (1984),
47-57.

[7] Hoel E.G., Data-Parallel Spatial Join Algorithms. Proc
of the 23rd Intl. Conf. on Parallel Processing (1994),
227-234.

[8] Kamel I., Faloustsos C., On Packing R-trees, Proc.
2nd International Conference on Informations and
Knowledge Management (CKIM-93), (1993), 47-499.

Table 3. Detailed Time Analysis for Static Load
Balancing :Rivers/Roads

4S 4F 8S 8F 12S 12F 14S 14F
CPU 464 236 316 112 190 55 159 35
Rtree 59 46 36 18 27 15 21 17

Disk I/O 18 17 8 9 5 5 4 3.9
Comm 20 182 16 167 10 110 9 97
Ld/Bal 0 0 0 0 0 0 0 0

Table 4. Detailed Time Analysis Load Balancing
with Heuristic 6:Rivers/Roads

4S 4F 8S 8F 12S 12F 14S 14F
CPU 359 350 190 175 122 112 108 82
Rtree 62 43 35 18 22 6 17 17

Disk I/O 23 24 12 12 8 8 7 6
Comm 7 31 2 29 6 26 4 24
Ld/Bal 5 2 5 1 2 1 2 1

[9] Kamel I., Faloustsos C., Parallel R-trees, Proc. ACM
SIGMOD 92, (1992) 195-204.

[10] Kitsuregawa M., Tamura T. and Oguchi M.: Parallel
Database Processing/Data Mining on Large Scale Con-
nected PC Clusters, Proc. of Parallel and Distributed
Systems Euro-PDS’ 97, pp313-320, (1997).

[11] Koudas N., Faloutsos C., Kamel I., Declustering
Spatial Databases on a Multi-computer Architecture,
EDBT 96, (1996) 592-614.

[12] Leuteneger S.T., Lopez M., Edgington J., STR: A
Simple and Efficient Algorithm for R-tree Packing,
Proc. 14th International Conf of Data Engineering
(ICDE 97), (1997) 497-506.

[13] Patel J.M., DeWitt D.J., Partition Based Spatial-
MergeJoin. Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data 96, (1996).

[14] Schnitzer B., Leutenegger S.T., Master-Client R-trees:
A New Parallel R-tree Architecture, 11th Intl. Conf.
Scientific and Statistical Databases, (1999).

[15] Zhou X., Abel D.J., Truffet D., Data Partitioning
for Parallel Spatial Join Processing. Proc. 5th Intl.
Symposium on Spatial Databases (SSD’97), LNCS
1262, Springer-Verlag (1997), 178-196.

8

