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Abstract— The ever-increasing popularity of mobile applica-
tions coupled with the prevalence of spatial data has created
the need for efficient processing of spatial queries in mobile
environments. While different types of spatial queries (e.g.,
spatial select queries, spatial join queries and nearest neighbour
queries) need to be addressed in mobile environments, this work
specifically addresses the processing of spatial select queries (i.e.,
window queries) on anyk relations among N spatial relations.
We designate such window queries on anyk relations among
N spatial relations askNW queries. Notably, the processing of
kNW queries is much more challenging in mobile environments
than in traditional environments primarily due to the mobility of
the clients which issue the queries to the respective base stations.
The main contribution of this work is the proposal of the kNR-
tree, a single integrated novel R-tree-based structure for indexing
objects from N different spatial relations. Notably, the kNR-tree
facilitates efficient processing ofkNW queries. Our performance
evaluation demonstrates that our proposed technique, which
is based on the kNR-tree, is indeed effective in reducing the
response times ofkNW queries in mobile environments.

I. INTRODUCTION

The ever-increasing popularity of mobile applications cou-
pled with the prevalence of spatial data has created the need
for efficient processing of different types of spatial queries
(e.g., spatial select queries, spatial join queries and nearest
neighbour queries) in mobile environments. Such mobile en-
vironments typically comprise a set of base stations, each of
which is responsible for storing and managing the data of
mutually disjoint spatial regions, and mobile clients that issue
queries to the base stations within their communication range.
This work focusses on the processing of spatial select queries
(i.e., window queries) on any k relations among N spatial
relations. We designate such window queries on any k relations
among N spatial relations as kNW queries.

The reason for addressing kNW queries instead of just
considering window queries on a single relation is that in
practice, a single client may be interested in objects from
a number of different relations and different clients may be
interested in different numbers as well as different kinds of
relations. This is more so in case of mobile environments
where there are likely to be multiple relations and the de-
mographics of the client population may vary considerably.
For example, a particular mobile client X may wish to issue
the following query: Find all bookshops, restaurants and car-
parks which I will encounter nearby me during my next 10

minutes of travelling. Another mobile client Y may issue the
following query: Find all bus stations and shopping centres
which I will encounter nearby meduring my next 15 minutes
of travelling. Notably, during the time interval between the
time of issuing the query and the time of the client receiving
the results, since the client is continuously moving, there may
be some objects of interest to the client nearby him, but the
client would only know about these objects after receiving
the query results by which time the client may have already
moved past these objects. Hence, to ensure the usefulness of
the results to the client, reduction of query response time is
of paramount importance.

Our work differs from existing works in three major ways.
First, since we do not have a priori knowledge of the mobile
client’s position when the query results would be ready, the
window of the query is speculative (not known in advance)
i.e., the processing done by some of the base stations may not
contribute to the final results that are returned to the client.
Second, unlike existing works [1], [2], [3] on load-balancing
in the context of a single relation, we address load-balancing
for multiple relations. Third, in contrast with load-balancing
proposals in traditional environments, base stations containing
query-related replicas in mobile environments may not always
be able to return the results directly to the client because
mobile clients can only communicate with base stations within
their communication range1.

The main contribution of this work is the proposal of the
kNR-tree, a single integrated novel R-tree-based structure for
indexing objects from N different spatial relations. Notably,
the kNR-tree facilitates efficient processing of kNW queries.
Our performance evaluation demonstrates that our proposed
technique, which is based on the kNR-tree, is indeed effective
in reducing the response times of kNW queries in mobile
environments. The remainder of this paper is organized as
follows. Section II presents an overview of the problem, while
Section III discusses the processing of kNW queries in mobile
environments. The kNR-tree index structure is proposed in
Section IV. Section V reports the performance evaluation
and Section VI discusses relevant existing works. Finally, we
conclude in Section VII with directions for future work.

1This implies added costs of returning the results to the client via another
base station that is currently within the client’s communication range.



II. PROBLEM FORMULATION

This section discusses the formulation of the problem. The
problem statement is as follows: Given a set of base stations,
each of which stores and manages the data (from N spatial
relations) of mutually disjoint spatial regions and a set of
mobile clients, the mobile client wishes to find the results of
spatial window queries (on any k of the N relations) nearby
himself within the duration of the next T time units.

In our proposed system, the universe is divided into a set
of mutually disjoint rectangular spatial regions, the data of
each spatial region being stored and managed by only one
particular base station. We define a region R as being within
the domain of a base station BR if BR is responsible for
storing and managing the data associated with R. Figure 1
depicts an illustrative example of how the universe is statically
divided into four rectangular spatial regions. In Figure 1,
suppose regions 1, 2, 3, 4 are within the domains of base
stations B1, B2, B3, B4 respectively. Moreover, we assume
that a mobile client M currently in region R can communicate
only with the base station BR within whose domain R is in i.e.,
all other base stations are outside the communication range of
M . For example, in Figure 1, M issues a query from point
PIssue (in B1’s domain), so M has to issue the query to B1.

All the base stations can communicate among themselves.
We define two base stations as neighbours if their commu-
nication time is less than a pre-defined threshold. Moreover,
we define the load LBi of a base station Bi as the number
of queries waiting in Bi’s job queue. We assume that each
base station has an index for tracking mobile objects within
its domain. Any existing index structure for mobile indexing
[4], [5], [6], [7] can be used for this purpose.

Every object is represented by its centroid, the implicit
assumption being that all objects are points in space. This
assumption is consistent with real-life situations primarily
because the area encompassed by a given object is usually
negligible with respect to that of the area of the universe. The
spatial relations are numbered as 1 to N . Each object is of
the form (OID, Loc, Obitmap) where OID represents the
unique identifier associated with the object. OID is generated
by concatenating the base station’s identifier with a unique
integer generated by the base station within whose domain
the object is located. Loc specifies the coordinates where the
object is located, while Obitmap is the object bitmap which is
an array of N bits, each entry position of which corresponds
to a specific spatial relation i.e., position 1 of Obitmap relates
to relation 1, position 2 is associated with relation 2 and so on.
For each relation associated with the object, the corresponding
entry in the bitmap is marked as ‘1’, all other entries being
‘0’. Note that we number bitmap positions starting from 1 (not
from 0). For practical reasons, we allow an object to belong to
multiple relations e.g., a bookshop that has a cafeteria would
belong to both relations, Bookshop and Cafeteria.

Client queries are of the form (queryID, clientID, PIssue,
SpeedMax, Qbitmap, δ, τ ) where queryID is the unique
identifier for a query, clientID is the unique identifier of

Fig. 1. Problem description

the client M , PIssue is the point (location) from which the
query was issued, and SpeedMax specifies the M ’s maximum
speed. Qbitmap is the query bitmap (an array of N bits),
whose structure is exactly the same in terms of entry positions
of relations as that of the object bitmap. Entries in Qbitmap

corresponding to query-related relations are marked as ‘1’, the
others being marked as ‘0’. δ quantifies the distance from M ’s
current location which M considers to be ‘nearby’ himself.
Understandably, the notion of ‘nearby’ can vary significantly
between mobile clients. τ indicates the duration of time (after
issuing the query) during which the client would wish to
receive the query results.

III. WINDOW QUERY PROCESSING IN MOBILE

ENVIRONMENTS

We define Qcircle as a circle drawn with PIssue as centre
and ( τ × SpeedMax + δ) as radius. Let us refer to the
MBR of Qcircle as QMBR. An illustrative example of Qcircle

and QMBR is shown in Figure 1. Qcircle encompasses the
entire spatial region that can possibly be associated with
the client’s query, thereby implying that QMBR should be
specified as the window query for the client’s next τ time
units of travelling. However, given that the client may not
be travelling at his maximum speed in all directions at once,
QMBR is a speculative and conservative estimate of the query
window, thereby indicating that some of the processing done
by the base stations would be unnecessary.

Intuitively, it is possible for QMBR to intersect with the
domains of base stations other than the base station from
whose domain the query had been issued. For example,
Figure 1 indicates that QMBR intersects with the domains
of both B1 and B3, even though the query had been issued
from within B1’s domain. Hence, given that a mobile client M
issues a query to a base station Bi within its communication
range, we have the following two cases:

1) QMBR falls completely within Bi’s domain: Bi pro-
cesses QMBR on its own and sends results to M . We
defer the discussion concerning how QMBR is processed
by an individual base station to Section IV.

2) QMBR intersects with the domain of at least one base
station other than Bi: Bi determines the set R of base
stations with whose domains QMBR intersects. For each
member r of R, Bi determines the intersecting rectan-
gular part between QMBR and r’s domain, and sends
the intersecting rectangular part to each r. Let us refer to



such intersecting rectangular parts as subQMBRs. After
processing its respective subQMBR, each r sends a
COMPLETE message to indicating that it has completed
processing its subQMBR. Incidentally, during the time
interval between the time that the query was issued and
the time of Bi receiving the COMPLETE message from
each r, M may have moved into the domain of any one
of the members of R. Hence, Bi sends a message to each
r enquiring whose domain M is currently in. Each r
checks its index for tracking mobile objects to determine
whether M is currently in its domain and the member
rcurrent of R which determines that M is currently in
its domain sends a message to Bi. Bi sends a message to
each r asking them to send their results to rcurrent. Now
rcurrent receives all the results from every r, checks the
time t that has elapsed since the query was issued and
computes a circle using the client’s current location as
the centre and ((τ -t) × SpeedMax + δ) as radius. Then
rcurrent runs the MBR of this circle as a spatial select
condition on the results to obtain the result set, which
is returned to the client.

IV. KNR-TREE: A SINGLE INTEGRATED INDEX FOR

OBJECTS FROM N DIFFERENT SPATIAL RELATIONS

This section presents the kNR-tree, a single integrated
R-tree-based structure for indexing objects from N spatial
relations. In our study, we have used the R-tree structure
[8], although it can be substituted by other base structures
or variants of the R-tree [9], [10].

Non-leaf nodes of the kNR-tree contain entries of the form
(ptr, mbr, Nbitmap) where ptr is a pointer to a child node in
the kNR-tree and mbr is the MBR that covers all the MBRs in
the child node. Nbitmap consists of array of N entry bits, each
of which corresponds to a specific spatial relation. Notably,
the structure of Nbitmap is exactly the same as that of the
object bitmaps and the query bitmaps in terms of the entry
positions of the spatial relations. If the node contains at least
one object from a particular relation, the corresponding entry
in its Nbitmap is marked as ‘1’, otherwise it is marked as
‘0’. Leaf nodes of the kNR-tree contain entries of the form
(oid, loc, Nbitmap), where oid is a pointer to an object in the
database and loc is the location of the object. The structure
of Nbitmap for the leaf nodes of the kNR-tree is essentially
the same as that of the structure of Nbitmap for the non-leaf
nodes.

Creation of the kNR-tree uses the R-tree insertion algorithm
[8], the only difference being that whenever an object to be
inserted traverses down the kNR-tree, an OR operation should
be executed between the object’s bitmap and the existing
bitmap at the nodes which fall in the path of the object’s top-
down kNR-tree traversal. Insertion and deletion algorithms for
the kNR-tree also follow standard R-tree algorithms with the
handling of node and leaf-node MBR bitmaps being the only
difference, thereby indicating that the kNR-tree can support
incremental insertions and deletions efficiently.

Figure 2 depicts an illustrative example of the kNR-tree.
In Figure 2, the universe is divided into three rectangular
spatial regions A, B and C. As depicted in the figure, H ,
P , J and S stand for hotel, presentation room, jacuzzi and
shopping centre respectively. The root node’s bitmap H ,P ,J ,S
= (0,1,1,1) indicates that the universe comprising A,B and C
contains a presentation room, a jacuzzi and a shopping centre,
but not a hotel. For the sake of convenience, we have used this
notation throughout this figure. A is further divided into three
rectangular spatial regions D, E and F respectively. The figure
indicates that the region covered by D, E and F also contains
a presentation room, a jacuzzi and a shopping centre without
having any hotel. D is further divided into three rectangular
spatial regions O, Q and R. The figure displays that the region
encompassed by O, Q and R contains a presentation room and
a jacuzzi, but neither a hotel nor a shopping centre. Similarly,
B and C are further divided into G, I , K and L, M , N
respectively. Note that for the sake of clarity, we have not
shown MBRbitmap and Accessbitmap in Figure 2.

Fig. 2. Illustrative example for the kNR-tree

Algorithm Spatial Window ( R, W , Qbitmap )

Inputs: 1) A kNR-tree whose root node is R.

2) A query window W

3) Qbitmap, the query bitmap

Output: Spatial window query results

if R is not a leaf node

if R satisfies Qbitmap

Find each MBR entry M of R intersecting W

for each M

execute Spatial Window ( Childptr, W , Qbitmap )

/* Childptr is the pointer to M ’s child node */

else

if R satisfies Qbitmap

Find a list L of MBR entries of R that intersect W

for each MBR entry M in L

Check each object within M

Add each object satisfying Qbitmap to the result set

end

Fig. 3. Spatial window query processing algorithm for the kNR-tree

kNW Query Processing using the kNR-tree

Our strategy for processing kNW queries using the kNR-
tree comprises a top-down traversal involving only those nodes



whose MBRs intersect with the query window such that the
bitmap of every node, which falls in the path of the top-down
kNR-tree traversal, is checked against the query bitmap to
decide whether to go further down the branches emanating
from the node. The result set consists of k linked lists,
each linked list storing the objects retrieved for one of the
k relations. Whenever any object is retrieved, the algorithm
first determines which relation(s) it belongs to and then adds
the object to the linked list(s) associated with the object2.
The kNW query processing algorithm for the kNR-tree is
presented in Figure 3. In Figure 3, we define a node (or leaf-
node MBR) as satisfying a query bitmap if the node (or leaf-
node MBR) contains at least one of the k relations associated
with the query. Observe how the algorithm in Figure 3 uses
MBRbitmap for the leaf nodes to facilitate effective pruning.

V. PERFORMANCE STUDY

This section reports the performance evaluation of our pro-
posed techniques. The machine used for the experiments had
processing capacity of 1.7 GHz (Pentium-4), main memory of
768 Mbytes and disk space of 40GB. We ran the experiments
under the Redhat Linux (version 7.3) operating system using
LAM-MPI (version 7.00) for message-passing. To model com-
munication between base stations, we assigned transfer rates
between base stations (designated as TransferR) randomly in
the range of 0.5 Megabit/second to 1 Megabit/second. We used
a maximum of 4 neighbouring base stations corresponding to
each base station. The interarrival time between queries, which
we designate as InterT, at each base station was fixed at 5
seconds.

We have used a real-life dataset ‘Greece Roads’[11] for
our experiments. The ‘Greece Roads’ dataset contains 23268
rectangles representing the data of roads in Greece. First, we
computed the centroid of these rectangles to obtain a dataset of
23268 points before enlarging this dataset by translating and
mapping the data. Each of the base stations had more than
200000 points (objects), each point being associated with at
least one spatial relation from the set of 20 relations used for
our experiments. We used 16 base stations, each of which
indexed the points in its domain using the kNR-tree. We
assumed that one kNR-tree node fits in a disk page (page size
= 4096 bytes). Hence, kNR-tree node capacity is the same
as page size in our case. We used a fan-out of 64 for the
kNR-tree.

For our experiments, the area encompassed by each base
station’s domain was approximately equal. We define the size
of a query QSIZE as the percentage of a base station’s domain
that a query covers. For example, QSIZE = 20 implies that
the query covers 20% of the area associated with the base
station’s domain. Table I summarizes the parameters used for
our performance study.

We numbered the relations as 1 to N . Each object was
associated with at most 3 relations. For deciding the number

2If an object belongs to multiple relations, it will appear in the linked lists
of all the relations that it belongs to.

Parameter Default value Variations
No. of kNW queries 500

Total no. of relations N 20
Number of queried relations k 5 1, 10, 15, 20

Query size QSIZE 20 40, 60, 80,100
InterT 5 seconds

TransferR 0.5 Mb/s to 1 Mb/s

TABLE I

PARAMETERS USED IN PERFORMANCE STUDY

of relations associated with a particular object, we generated a
random number q between 1 and 3 so that the object belongs
to q relations. Then we generate q distinct random numbers
between 1 and N and assign the object to the q relations whose
relation numbers match with these generated numbers. For
generating queries, we see the value of k in a particular query
Q and associate k relations with Q by choosing k distinct
random numbers between 1 and N . Then we select a point
randomly in the domain of the base station under consideration
and draw a rectangle of area QSIZE using the point as the
centroid of the rectangle. This rectangle is our query window.
For all our experiments, we had run the system for an initial
period of time to obtain access statistics information and once
the system had reached a stable state (after replication has
been performed), we noted down the results.

Performance of the kNR-tree

To understand the performance of the kNR-tree, let us
now focus on a kNR-tree at a specific base station. Notably,
different values of SpeedMax and τ result in window queries
of different sizes (areas). In our experiments, variations in
SpeedMax and τ are modeled by varying the respective query
window sizes characterized by QSIZE. Moreover, for this set
of experiments, the query windows were selected such that
they only overlap with the domain of the base station under
consideration i.e., they do not overlap with the domains of
any other base station. As reference, we adopt a traditional
approach which uses N different R-trees to index N relations
i.e., one R-tree for each relation. Let us designate it as the ‘N
R-trees’ approach.

Figure 4 shows the effect of variations in QSIZE when k
is fixed. Figures 4a and 4b presents the results concerning
query response time T and total number of disk I/Os incurred
for k=5. When QSIZE increases, more branches of the index
structures need to be traversed, thus explaining the reason for
higher number of disk I/Os and consequently higher query
response times for increasing values of QSIZE. While the
kNR-tree requires only one traversal from its root node to
its leaf nodes, the ‘N R-trees’ approach needs to make one
traversal from the root node to the leaf nodes for each of the R-
trees corresponding to the queried relations, thereby incurring
significantly higher number of disk I/Os (shown in Figure 4b)
and hence much higher response times (depicted in Figure 4a)
than the kNR-tree. Moreover, if an object satisfies q relations,
it would be retrieved only once in case of the kNR-tree, while



it would be retrieved q times from q different R-trees in case
of the ‘N R-trees’ approach.

Figure 5 depicts the effect of variations in k when QSIZE
is fixed. Figures 5a and 5b show the query response times
T and disk I/Os for QSIZE=20. As k increases, kNR-tree’s
performance gain over the ‘N R-trees’ approach also increases
due to lower number of disk accesses incurred by the kNR-
tree as discussed above. Interestingly, the results in Figure 5a
indicate that the kNR-tree performs slightly worse than the
‘N R-trees’ approach when k=1. A detailed examination of the
experimental results log revealed that this may be attributed to
two reasons. First, the height of the kNR-tree can be expected
to be larger than at least some of the individual R-trees in the
‘N R-trees’ approach. Second, unlike the ‘N R-trees’ approach,
the kNR-tree needs processing time to handle the bitmaps of
its nodes during the traversal. Since the results in Figures 4
and 5 demonstrate that our proposed kNR-tree significantly
outperforms the ‘N R-trees’ approach, we shall not discuss
the ‘N R-trees’ approach any further.
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VI. RELATED WORK

Traditional R-tree-based indexes such as the R-tree [8],
the R+-tree [9] and the R*-tree [10] are not adequate for
indexing mobile objects because such indexing entails frequent

updates causing a large number of node-splits and/or node-
merges. Hence, several R-tree-based structures such as the
time-parameterized R-tree (TPR-tree) [4], the Spatio-Temporal
R-tree (STR-tree) and Trajectory-Bundle tree (TB-tree) [5],
Lazy Update R-tree (LUR-tree) [6], and the Multiversion 3D
R-tree(MV3R-tree) [7] have been proposed specifically for
indexing moving objects. A good survey on spatio-temporal
databases can be found in [12].

Load-balancing has been extensively researched in the tradi-
tional domain e.g., in clusters. Several dynamic load-balancing
techniques [3] have been proposed specifically for clusters.
In the context of spatial databases, dynamic load-balancing
techniques have been proposed in [2], [1].

VII. CONCLUSION

The increasing popularity of mobile applications coupled
with the prevalence of spatial data has created the need for
efficient processing of spatial queries in mobile environments.
In this paper, we have addressed the processing of spatial select
(window) queries on any k relations among N spatial relations.
Our solution involves the use of our proposed kNR-tree
and a strategy for load-balancing (via replication) among the
base stations. Our performance evaluation has demonstrated
the effectiveness of our proposed techniques in reducing the
response times of kNW queries in mobile environments. In
the near future, we intend to make more detailed performance
comparisons of our indexing and load-balancing techniques
with relevant existing techniques.
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