
Efficient Querying Relaxed Dominant Relationship between
Product Items based on Rank Aggregation

Zhenglu Yang Lin Li Masaru Kitsuregawa
Info. and Comm. Engineering Department

The University of Tokyo
Tokyo, Japan

{yangzl, lilin, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

Current search engines cannot effectively rank those re-
lational data, which exists on dynamic websites sup-
ported by online databases. In this study, to rank
such structured data, we propose a new model, Re-
laxed Dominant Relationship (RDR), which extends the
state-of-the-art work by incorporating rank aggregation
methods. We propose efficient strategies on building
compressed data structure to encode the core part of
RDR between items. Efficient querying approaches are
devised to facilitate the ranking process and to answer
the RDR query. Extensive experiments are conducted
and the results illustrate the effectiveness and efficiency
of our methods.

Introduction
Many e-Business applications, i.e., online shopping system,
support users by providing optimal solutions. The typical
features of these applications include: (1) the query from
users is based on multiple criteria; and (2) different users
may prefer different answers based on their personal inter-
ests and hence, no single optimal one exists. A practical
system should provide all interesting answers that may sat-
isfy a user’s demand. One reasonable solution is that only a
few “best” goods are recommended by the website’s system
to the users with regard to their preferences. Here we give
an example. Suppose you are looking for one digital cam-
era that is cheap and with light weight on a website. Fig. 1
(a) shows the information of several sample products in 2-
dimensional space, in which the items a and b should be the
candidates recommended to you because all the other items
are worse than these two items with regard the two attributes,
price and weight.

The set of these “best” items is called the Pareto set, ad-
missible points (Barndorff-Nielsen & Sobel 1966), maximal
vectors (Bentley et al. 1978), or skyline points (Borzsonyi,
Kossmann, & Stocker 2001). However, as pointed in (Yang
et al. 2007) all of these works concerned only the pure bi-
nary relationship, i.e., a product item p is whether or not
worse than (dominated by) others. Interestingly, Yang et al.
(Yang et al. 2007) proposed an efficient data structure (i.e.,
ParCube) to analyze a more general dominant relationship,

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(a) (b)

0

200

400

600

0 300 600 900

price ($)

weight (g)
a

e

b

c d

g

(c)

a

d
c

e f

b

f
g

g

b

c
d

a

f

e
f

a

c
d
b

g

e

(d) (e)

Figure 1: Product attributes in 2-dimensional space, corre-
sponding partial order, and possible fused rank lists

that users preferred the details of the dominant relationship,
i.e., an item p is better than (dominates) how many other
items. The general dominant relationship between items can
be compressed into partial orders. For example, Fig. 1 (b) is
the corresponding partial order (encoded as DAG format) of
the product items in Fig. 1 (a). We can easily know any
product’s dominating items by traverse its out-link in the
DAG (i.e., c dominates e).

Although the general dominant relationship analysis plays
an important role in business decisions, it may fails due to
the market adjustment mechanism, that product items are al-
ways complementary to one another, i.e., lightweight cam-
eras tend to be more expensive. Therefore, it may be that
no products are worse than (dominated by) a given query
item, especially when querying in high dimension (attribute)
space. As such, users would like to get the items with high-
est comprehensive scores by fusing the values on different
attributes. For example, Fig. 1 (c) shows one fused rank list
of the sample dataset in Fig. 1 (a)1. Consider you are a man-
ager of a digital camera corporation. You may want to know
the business position of a digital camera c in the current mar-
ket. By checking Fig. 1 (c), you can know that c dominates
e, g and f . Note that the result here is different from that
discovered by general dominant relationship analysis (i.e., c
only dominates e). In this paper, we relax the strict mean-
ing of “dominate” in general dominant relationship analysis
by considering on the comprehensive value of items, which
incorporates rank aggregation methods.

1Borda Count rank aggregation method (Borda 1781) is em-
ployed here.

We find the relaxed dominant relationship analysis can
be efficiently explored based on the partial order. The in-
tuitive idea is that the “strong” ranking in general dominant
relationship can be utilized to induce the “weak” ranking
in relaxed dominant relationship. With the help of partial
order representation (DAG), we can prune some candidate
items earlier and do not need to compute their comprehen-
sive value. To illustrate the idea, here we show a simple
example. Fig. 1 (c)-(e) shows three possible fused rank lists
of the sample product items after applying some rank aggre-
gation method with users’ preferences. We can observe that
no matter which rank aggregation method is employed, the
relaxed dominant relationship between some items do not
change. For instance, the item d always dominates f , g, and
is dominated by a and b. The stable property between these
items can be deduced from the partial order representation
(DAG in Fig. 1 (b)) based on the out-link and in-link of d.
In this paper we formally justify this discovery and more-
over, explore how to efficiently index and query such suc-
cinct representative partial orders. For the purposes of this
paper, we assume the attribute sets of products are available
in structured format.

Our contributions in this paper are as follows:

• We propose a new problem, Relaxed Dominant Relation-
ship Query (RDRQ), which extends the work in (Yang et
al. 2007) by incorporating rank aggregation. RDRQ is
based on a more natural model to rank relational data for
business analysis.

• We propose efficient methods to improve the perfor-
mance of constructing the data cube, ParCube(Yang et
al. 2007), which concisely represents the dominant rela-
tionship as partial order representation (DAGs).

• We introduce efficient query processing strategies, which
is indeed rank-based fusion method, to answer the general
dominant relationship queries with rank aggregation.

• We conduct comprehensive experiments to confirm the ef-
ficiency of our strategies.

The remainder of this paper is organized as follows. After
discussing the related work, we introduce the preliminaries
and then propose several strategies to efficiently construct
data index and then query it to analyze relaxed dominant re-
lationship. The performance analysis is reported in Section
5. We conclude the paper in Section 6.

Related work
Rank Aggregation. Relaxed Dominant Relationship Anal-
ysis is related to the problem of merging rank-ordered lists.
There are mainly two kinds of strategies in merging rank-
ordered lists. One is score-based, that the score is come
from the original score of an item in the rank list, or some
transformation of this score (Aslam & Montague 2003;
Fagin & Wimmers 1997; Lee 1997). The other strategy is
rank-based, that the rank is the original rank of an item as-
signed to the rank list, or some transformation of this rank
(Aslam & Montague 2003; Dwork et al. 2001). As another
category to classify different approaches, some rank fusion
methods rely on training data (e.g., the Bayes-fuse method

(Aslam & Montague 2003), the preference rank combina-
tion method (Fagin & Wimmers 1997) and the probabilistic
model based method (Lillis et al. 2006)), while others not.

Dominant relationship analysis with rank aggregation can
be seen as a special case, that traditional rank aggregation
methods give the order of whole datasets, in contrast, after
combining dominant relationship analysis, the relaxed
dominant relationship analysis issue becomes finding the
order of those items ranked lower than a given item. The
two issues coincide when the given query item is the one
with highest score (rank) in the dataset.

Maximum vector and Skyline. The maximum vector prob-
lem (Kung, Luccio, & Preparata 1975) is a special case of
dominant relationship analysis. There are some other related
issues, i.e., convex hull (Preparata & Shamos 1985) and the
skyline query (Borzsonyi, Kossmann, & Stocker 2001). All
these works concerned only the pure dominant relationship
and, output those items which are not “dominated” by oth-
ers. In contrast, Yang et al. (Yang et al. 2007) proposed
to analyze a general dominant relationship from a microeco-
nomic aspect in dynamic environments. The authors devised
an efficient data structure, ParCube, to compress the gen-
eral dominant relationship.

However, all these works gave strict definition on “dom-
inate” between two items that, i.e., one item a dominates
another item b, if and only if all the attribute values (inferred
by users) of a is not worse than those of b. This criteria is
too strict and leads to such a result that, it is most likely no
items have dominating items, due to the market mechanism
of automatic adjustment. Hence, in this paper, we aim to
study a ranking-relaxed problem, by incorporating rank
aggregation.

Preliminaries
We first introduce some basic notations to present the re-
laxed dominant relationship analysis in a uniform way.
Given a d-dimension (attribute) space S={s1, s2, . . . , sd},
a set of product items D={p1, p2, . . . , pn} is said to be a
dataset on S if every pi ∈ D is a d-dimensional item on S.
We use pi.sj to denote the jth dimension value of item pi.
For each dimension si, we assume that there exists a total
order relationship. For simplicity and without loss of gener-
ality, we assume smaller values are preferred, and are ranked
higher. A dimension with ranked items will be called a rank
list, denoted as τ .

A partial order on D is a binary relation � on D such
that, for all x,y,z ∈ D, (i) x � x (reflexivity), (ii) x � y
and y � x imply x=y (antisymmetry), (iii) x � y and y � z
imply x � z (transitivity). We use (D,�) to denote the
partial order set (or poset) of D.

Definition 1 (dominate) A product p is said to dominate
another product q on S if and only if ∀sk ∈ S, p.sk ≤ q.sk

and ∃st ∈ S, p.st < q.st.

The partial order (D,�) can be represented by a DAG
G = (D, E), where (υ, μ) ∈ E if μ � υ and there does
not exist another value x ∈ D such that μ � x � υ. For

Table 1: Sample Product Items Dataset
a b c d e f g

D1 2 1 6 3 7 4 5

D2 1 4 2 5 3 7 6

D3 3 1 4 2 5 6 7

simplicity and without loss of generality, we assume that G
is a single connected component.

To relax the strict meaning of dominate in Definition 1,
we need to compute each product’s comprehensive value
by fusing product values (scores) on multiple dimensions
(rank lists) into one rank list. Since the values in different
dimensions may be not comparable, normalization is usu-
ally applied before merging dimensions (rank lists) in order
to uniform value distributions to capture within an unique
framework. We can apply any normalization method here 2.
Because Borda Count (Borda 1781) is one of the semi-
nal rank aggregation methods, we employ its normalized
weight. Consider a set S of rank lists (dimensions), a set
D of product items, and let a rank list τ ∈ S. τ(pi) is the
rank of product pi in τ .

Definition 2 (normalized weight (Borda rank)) The nor-
malized weight, ωτ (pi), of a product pi ∈ τ is defined as
follows:

ωτ (pi) =

{
1 − τ(pi)−1

|D| pi ∈ τ
1
2 + |τ |−1

2·|D| otherwise
(1)

Definition 3 (Borda score) The fused rank list τ̂ is ordered
with regard to the Borda score sτ̂ , where the Borda score
of an item pi ∈ D in τ̂ is defined as

sτ̂(pi) =
∑
τ∈S

ωτ (pi) (2)

Definition 4 (relaxed-dominate) A product p is said to
relaxed-dominate another product q on S if and only if the
Borda score of p is larger than the Borda score of q.

Definition 5 (relaxed-dominating set, RDS(p, D, S’))
Given a product p, we use RDS(p, D, S’) to denote the set of
products from D which are relaxed-dominated by p in the
subspace S’ of S.

The problem that we want to solve is as follows:

Problem 1 (Relaxed Dominant Relationship Query (RDRQ))
Given a dataset D, dimension space S’, and a product p,
find RDS(p, D, S’).

Example 1 Consider the 3-dimensional dataset D = {a, b,
c, d, e, f, g} in Table 13. Given a query point c, dimension
space S ′={D1, D2}, the relaxed-dominating set RDS(c, D,
S′) = {e, f, g}. We will use this dataset as a running example
hereafter.

2The aim of this paper is to incorporate rank aggregation mech-
anism, rather than comparing different rank aggregation methods.

3Di denotes the ith attribute. For simplicity, we use small in-
teger to simulate items’ values on the attributes for convenience of
description in this paper.

Table 2: Finding (k+1)-length frequent patterns with opti-
mization

INPUT: DB = the converted sequence DB
OUTPUT: FreMaxPatterns = frequent maximal sequential pat-

terns
Function: Gen Pattern(S)
Parameters: S = Set of k-length frequent patterns
Goal: Generate (k+1)-length frequent sequential pattern

Main():
1. F2 = Scan DB to find 2-length sequential patterns;
2. Call Gen Pattern (F2);
3. FreMaxPatterns = Merge all the atoms in Fi;

Function: Gen Pattern(S)
4. For all atoms Ai ∈ F2
5. Ti = ∅;
6. For all atoms Aj ∈ F2 , with j ≥ i
7. R = Ai ∨ Aj ;
8. Ti = Ti ∪ R;
9. F|R| = F|R| ∪ R;
10. For all Ti �= ∅
11. Call Gen Pattern (Ti);

As illustrated in the Introduction section, with the help
of partial order representation, the Relaxed Dominant Rela-
tionship can be extracted efficiently. In the next sections, we
will first propose several optimized strategies on discovering
partial orders (DAGs), and then give our effective algorithm
to tackle RDRQ problem.

Optimization of ParCube Construction
In this section, we will propose our strategies on optimizing
the partial order data cube (ParCube) construction. We first
introduce the methods proposed in (Yang et al. 2007) and
then present our optimized approaches.

Naive ParCube Building
To get partial orders from spatial datasets, Yang et al.
(Yang et al. 2007) proposed to apply strategies from an-
other research context, sequential pattern mining (Agrawal
& Srikant 1995). There are three processes for ParCube
construction, as illustrated in Fig. 2.

The first process is to convert the spatial dataset to the se-
quence dataset. With a k-dimensional dataset, it is easy to
get a k-customer sequence dataset by sorting the objects in
each customer (dimension) according to their value in as-
cending order. In process 2, the sequential patterns from
the transformed sequence dataset are discovered by apply-
ing PrefixSpan algorithm (Pei et al. 2001), which is the
state-of-the-art method. The patterns are then merged as
local maximal sequential sequences, which are not the
subsequence of other sequential sequences. The resultant
data cube (SeqCube) from process 2 for the sample dataset
is shown in Fig. 2 (c). In process 3, the combinations of
the local maximal sequential sequences are enumerated
to generate partial orders with DAG representation, by ap-
plying the method proposed in (Casas-Garriga 2005). The
resultant data cube (ParCube) for the example dataset is
shown in Fig. 2 (d).

Optimization of Sequential Pattern Mining Among the
three processes of partial orders finding as illustrated in Fig.
2, the second one, sequential pattern mining, is the slowest

(a) Example spatial dataset (b) Transformed sequence dataset (c) The data cube (lattice) whose cuboid consists
 of the local maximal common sequential patterns

(d) DAG representation of partial order in data cube ParCube

Dim. Sequence
 b d a c h g e f1D

2D

3D

a b c d e f g h
D1 3 1 4 2 7 8 6 5
D2 1 4 5 6 2 3 7 8
D3 2 1 3 5 4 6 7 8

 a e f b c d g h
 b a c e d f g h

D1D2D3

D2D3D1D3D1D2

D2D1 D3

 root

<acg>
<ach>
<aef>

<bacef>
<bacg>
<bach>

<acdgh>
<aedgh>
<aefgh>
<bcdgh>

<bdachgef> <aefbcdgh> <bacedfgh>

<bcg>
<bch> <bdf>

D1D2D3

D2D3D1D3
D1D2

D2D1
D3

 root

b d a c h g e f

a e f
b c g

 d h b a c e f
d

<bdg>
<bdh>

<acg>
<ach>
<aef>
<bcg>
<bch>
<bdg>
<bdh>

<bdg>
<bdh>

a e f b c d g h b a c e d f g h

h

a e f
b c g

 d h

g
a e d g h
b c f

Figure 2: The result representation of each process for the example spatial dataset

process although the state-of-the-art algorithm is used. To
improve the efficiency of the whole work, we aim to develop
a new algorithm to fasten the mining process by considering
the special property of the converted sequence datasets.

We find that the converted sequence dataset has one im-
portant characteristic: for each customer sequence (dimen-
sion), one item appears and only appears once. In other
words, there is no two same items existing in the same cus-
tomer sequence (dimension). This is very different from
general sequence, i.e., Web log sequence, customer shop-
ping history or DNA sequence. Based on this discovery, we
have the following two lemmas:

Lemma 1 (Transitivity) Let AB and BC be two sequential
patterns in k-customer sequences, then AC should also be a
frequent sequence in the k-customer sequences.

Lemma 2 (Pattern Growth) Let AB and BC be two se-
quential patterns in k-customer sequences, then ABC should
also be a frequent sequence in the k-customer sequences.

These two lemmas can be easily proofed and we avoid de-
tail here. Based on Lemma 1 and Lemma 2, we can develop
a much more efficient algorithm to find the sequential pat-
terns. The pseudo code of the algorithm is shown in Table
2.

Because every item (point) must exist in each customer
sequence (dimension), we do not need to find 1-length pat-
terns. In line 1, we thus directly find the 2-length sequential
patterns. We scan each item’s suffix database to accumulate
the support of 2-length candidate sequences. Then in line 2,
we recursively call the function Gen Pattern to get those
patterns whose length are larger than 2. We just merge two
atoms together based on their prefix sequences. For exam-
ple, when merging two patterns, i.e., ab and ac, we need
to check the existence of bc or cb in the frequent pattern list.
The pattern abc could be claimed if bc is found. By this way,
we do not need to do DB projecting and scanning operation
in PrefixSpan, which largely reduce the computation cost.
The experimental results illustrates the improvement of this
strategy. In line 3, we merge these sequential patterns to get
maximal ones.

Compression of the ParCube Data Cube The local
maximal sequential sequences compress the data to some

extent, we can further improve the compression by employ-
ing the technique of closed sequence (Yan, Han, & Afshar
2003; Casas-Garriga 2005). If a local maximal sequence l
exists in two subspaces, S1 and S2 where S1 ⊂ S2, then l
is only recorded in S2. For instance, although a sequence,
b → d → g, exists in three subspaces {D1,D2}, {D2,D3}
and {D1,D2,D3}, we only record it in the super-subspace,
i.e., {D1,D2,D3}. This technique can largely reduce the
space consumed to store the DAGs. While querying the re-
laxed dominant in the local subspace, we should also check
the super-subspace because some local sequences are ab-
sorbed by their super-subspace ones.

Efficient Strategies on Relaxed Dominant
Relationship Query
We assume that the query point Pquery is in the dataset D.
With the help of the partial order models, DAGs, we have
the following lemmas:

Lemma 3 Let A be a node on the path from the root to
the query point, Pquery , in the DAG, then Pquery can-
not relaxed-dominate A, no matter which rank aggregation
method is used.

Lemma 4 Let A be a node on the path from the query point,
Pquery , to any leaf node in the DAG, then Pquery relaxed-
dominates A, no matter which rank aggregation method is
used.

Lemma 5 If the aggregate score of a node A is smaller
than the aggregation score of the query point, Pquery ,
with regard to some rank aggregation method (i.e., Borda
Count), then all the child nodes of A in the DAG are
relaxed-dominated by A with regard to the same rank ag-
gregation method.

These three lemmas can be easily proofed and we avoid
detail here. The intuition idea is that the general dominant
relationship has a stronger rank meaning compared with re-
laxed dominant relationship. Therefore the semantic mean-
ing compressed in the partial order representation, DAG, can
be utilized to deduce relaxed dominant relationship with the
help of rank aggregation methods. We next introduce our ef-
ficient algorithm based on Lemma 3, Lemma 4 and Lemma
5. Notice that Borda score is counted as the aggregation

Table 3: Relaxed Dominant Relationship Query Processing
INPUT: Partial order representation DAG, a query point Pquery , a sub-

space S′

OUTPUT: RDRQ(Pquery , D, S′)
1. Insert all points with sorting into the candidate list, Lc, based on

their level value in DAG (from top to bottom)

2. for each parent node cp of Pquery in DAG and its subspace S′

3. remove cp from the candidate list Lc

4. for each child node cp of Pquery in DAG and its subspace S′

5. put ci in the result set RDRQ(Pquery , D, S′)
6. remove cp from the candidate list Lc

7. compute Borda score of Pquery , sq (based on Equation 2)

8. for each candidate point cp in the candidate list Lc (start from the

root node of Lc)

9. compute Borda score of cp, sc (based on Equation 2)

10. if (sc < sq)

11. put cp in the result set RDRQ(Pquery , D, S′)
12. for each child node cn of cp in DAG with subspace S′

13. put cn in the result set RDRQ(Pquery , D, S′)

Figure 3: Execution time comparison between ParCube
and RDRA on data index construction

score of a point. Other rank aggregation method can be also
applied. The pseudo code is shown in Table 3.

In Line 1, we first insert all points into the candidate list
based on their level value in DAG. In fact, this step can be
executed in the pre-processing. The reason why we sort the
points is based on Lemma 5. We fasten the process if the
root of a subgraph is relaxed-dominated by the query point,
and hence, all the nodes in the subgraph can be extracted
immediately.

Line 2 and Line 3 is based on Lemma 3, which prunes
candidates as soon as possible, before we compute their
Borda scores. Lines 4-6 are based on Lemma 4, which
extracts the results before we compute their Borda scores.

From Line 7 to Line 13, we compute and compare the
Borda score of each candidate point with the query point.
This is similar to the traditional rank aggregation process.
The difference is that we give the order of the candidate
points used to compare, that those located in the higher layer
of the DAG will be tested first. By this way, we can enlarge
the probability of pruning points earlier. As the experimen-
tal results illustrate, which will be introduced shortly, our
proposed algorithm largely improves the efficiency of ex-
tracting the relaxed-dominant relationship.

Figure 4: Querying result comparison between RDRA and
ParCube against dimensionality and number of points in
the dataset

Performance Analysis
To evaluate the efficiency and effectiveness of our strate-
gies, we conducted extensive experiments. We performed
the experiments using a Intel(R) Core(TM) 2 Dual CPU PC
(3GHz) with a 3G memory, running Microsoft Windows XP.
All the algorithms were written in C++, and compiled in an
MS Visual C++ environment. We conducted experiments on
both synthetic and real life datasets. However, due to space
limitation, we will only report results on synthetic datasets
here. Results from real life datasets mirror the results of
the synthetic datasets closely. We employ the synthetic data
generator (Borzsonyi, Kossmann, & Stocker 2001) to create
our synthetic datasets. They have independent distribution,
with dimensionality d in the range [3, 7] and data size in the
range [10k, 50k]. The default values of dimensionality were
5. The default value of cardinality for each dimension was
50k.

Detailed implementation of the algorithms used to com-
pare is described as follows:

1. ParCube. ParCube was implemented as described in
(Yang et al. 2007).

2. RDRA4. RDRA was implemented as described in this pa-
per.

Index Data Structure Construction Performance
In this section, we show the comparison between RDRA
and ParCube on building the partial orders (DAGs). Fig. 3
illustrates the execution time for index building against the

4Relaxed Dominant Relationship Analysis.

Figure 5: Execution time comparison of querying between
RDRA and Borda Count against dimensionality and num-
ber of points in the dataset (number of query points=500)

number of points in the dataset. We can see that the RDRA
is much faster than ParCube. The reason why RDRA per-
forms so well, is because we can prune many candidates ear-
lier and avoid to compare the positions of every item.

Query Performance
In this section, we evaluated the query answering perfor-
mance of RDRA compared with ParCube. Note that in
this paper, our major purpose is to provide more natural
candidate items that users may favor, rather than compare
the precision of results between different rank aggregation
methods. To test the effect of RDR query, we randomly se-
lected 500 different points from D and the result is the av-
erage value. For RDRA, given the randomly selected point
p, we queried p’s relaxed dominating points. For ParCube,
we queried p’s general dominating points.

The result is shown in Fig. 4, from where we can see
that RDRA always extracts more dominated points than
ParCube. This is not surprising because we relax the strict
meaning of dominate in ParCube and thus, can give users
more favorable candidate items. When dimensionality in-
creases, as shown in Fig. 4 (a), the size of the result set in
ParCube decreases quickly, since ParCube is sensitive to
the dimensionality. In contrast, RDRA is relative stable on
output result set. When changing the number of points in the
dataset, the result set of RDRA proportionally varies. How-
ever, the result set of ParCube keeps stable. In summary,
compared with ParCube, RDRA outputs more reasonable
candidates items.

The comparison of the execution time on querying relaxed
dominant relationship between RDRA and traditional rank

aggregation (Borda Count) is shown in Fig. 5. The reason
why we compared with Borda Count is that we want to
demonstrate the efficiency of partial orders on querying re-
laxed dominant relationship, rather than comparing two rank
aggregation methods themselves. The latter issue is beyond
the scope of this paper. We can know that RDRA is much
efficient than its competitor for the two cases (varying di-
mensionality and number of points) because of the effect of
partial orders we used.

Conclusions
We have introduced Relaxed Dominant Relationship Query
(RDRQ), which is an extension model based on general
dominant relationship by incorporating rank aggregation.
We found that RDRQ can provide more natural candidates
that users may favor. We have proposed efficient strategies
to build partial order models and to answer RDRQ. The
performance study confirmed the efficiency of our strategies.

References
Agrawal, R., and Srikant, R. 1995. Mining sequential pat-
terns. In ICDE, 3–14.
Aslam, J. A., and Montague, M. 2003. Models for
metasearch. In SIGIR, 276–284.
Barndorff-Nielsen, O., and Sobel, M. 1966. On the dis-
tribution of the number of admissable points in a vector
random sample. Theory of Probability and its Application
11(2):249–269.
Bentley, J. L.; Kung, H.; Schkolnick, M.; and Thompson,
C. 1978. On the average number of maxima in a set of
vectors and applications. Journal of ACM 25(4):536–543.
Borda, J. C. 1781. Mémoire sur les élections au scrutin. In
Histoire del’Académie Royal des Sciences.
Borzsonyi, S.; Kossmann, D.; and Stocker, K. 2001. The
skyline operator. In ICDE, 421–430.
Casas-Garriga, G. 2005. Summarizing sequential data with
closed partial orders. In SDM, 380–391.
Dwork, C.; Kumar, R.; Noar, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In WWW, 613–622.
Fagin, R., and Wimmers, E. L. 1997. Incorporating user
preferences in multimedia queries. In ICDT, 247–261.
Kung, H.; Luccio, F.; and Preparata, F. 1975. On finding
the maxima of a set of vectors. JACM 22(4).
Lee, J. H. 1997. Analysis of multiple evidence combina-
tion. In SIGIR, 267–276.
Lillis, D.; Toolan, F.; Collier, R.; and Dunnion, J. 2006.
Probfuse: a probabilistic approach to data fusion. In SIGIR,
139–146.
Pei, J.; Han, J.; Mortazavi-Asl, B.; and Pinto, H. 2001.
Prefixspan:mining sequential patterns efficiently by prefix-
projected pattern growth. In ICDE, 215–224.
Preparata, F. P., and Shamos, M. I. 1985. Computational
Geometry: An Introduction. Springer-Verlag.
Yan, X.; Han, J.; and Afshar, R. 2003. Clospan: mining
closed sequential patterns in large datasets. In SDM, 166–
177.
Yang, Z.; Li, L.; Wang, B.; and Kitsuregawa, M. 2007.
Towards efficient dominant relationship exploration of the
product items on the web. In AAAI, 1483–1488.

