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ABSTRACT
In order to provide fast and timely answers to queries in

the context of spatial databases and GIS, we present our

solution for e�ective data migration and tuning strate-

gies in shared-nothing parallel spatial databases. Our

purpose is to improve the performance of the indexes.

Our approach has the following features. First, our

scheme is self-tuning, dynamic as well as query-centric

and it can adapt to dynamically changing user access

patterns. Second, a global distributed R-tree-based in-

dexing method is employed to facilitate e�ective data

migration. Third, unlike traditional partitioning strate-

gies where each processing element (PE) contains data

from a single region of space, we allow each PE to store

data from multiple and disjoint regions. This minimizes

overlap in regions as well as coverage.

We implemented the proposed scheme and conducted

an extensive performance study on Fujitsu's AP3000

machine with 32 workstations using real datasets. Our

experimental results show that our load-balancing strat-

egy can distribute the load e�ectively across the PEs in

the system, thereby reducing response times of incoming

queries.

1. INTRODUCTION
Nowadays, GIS is being deployed in several diverse

applications such as cultural resource management, preser-

vation planning, historic roads, maps and documenta-

tion of resources. The e�ectiveness of GIS in integrating

geo-referenced data, analyzing and retrieving the an-

swers to complex spatial queries, and integrating spatial

features with attribute data has resulted in tremendous

popularity of GIS.

In order to provide fast and timely answers to user
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queries, the spatial data needs to be indexed eÆciently.

The typically large sizes of spatial data and the CPU-

intensive nature of spatial operations pose signi�cant

challenges to the eÆcient indexing of spatial data. An

extremely popular and widely used spatial indexing struc-

ture is the R-tree [2]. A substantial amount of research

work [3] has been done to exploit parallelism to provide

better performance in the context of R-trees. Our work

also exploits parallelism in case of R-trees to provide

faster response times.

The deployment of shared-nothing parallel systems [1]

is an attractive option for handling spatial data because

of their cost-e�ectiveness (such systems are built from

high performance and low-cost commodity hardware)

and scalability. Such systems comprise of processing

elements (PEs), each of which has its own memory and

disk. Data are typically declustered across the PEs and

indexed to facilitate speedy retrieval of data.

However, a well-known problem with such shared-

nothing parallel systems is the workload skews among

the various PEs caused by dynamically changing user

access patterns that render the initial data placement

ine�ective. Hence the data needs to be reorganized

[4, 6] online for load-balancing purposes. The problem

becomes more challenging because spatial objects may

overlap one another in space, thereby making it more

diÆcult to determine a good placement scheme.

In this paper, we present our solution for e�ective

data migration and tuning strategies in shared-nothing

parallel spatial databases for purposes of improving the

performance of the indexes. Our approach has the fol-

lowing features:

1. Our scheme is self-tuning, dynamic as well as query-

centric. Hence, it can adapt to dynamically chang-

ing user access patterns.

2. We adopt a global distributed R-tree-based index-

ing scheme. The index has two tiers. In the �rst

tier, information on the regions allocated to each

PE is maintained. In the second tier, each PE in-

dexes the data assigned to it using an R-tree. Such

a structure turns out to facilitate migration easily:

sub-branches of the R-tree at the overloaded PE

can be \pruned" and migrated to a lightly loaded

PE to be integrated to the R-tree there.
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3. Unlike traditional partitioning strategies where each

PE contains data from a single region of space,

our approach allows each PE to contain data from

multiple regions, that may be far apart in space.

This minimizes overlap in regions as well as cov-

erage, thereby leading to reduced response times.

We implemented the proposed scheme and conducted

an extensive performance study on Fujitsu's AP3000

machine with 32 Sparc Workstations using real datasets.

Our performance results show that our proposed ap-

proach is e�ective in distributing the load across the

PEs in the system, thereby reducing the response times

of the incoming queries.

2. DISTRIBUTED R-TREE-BASED INDEX-
ING SCHEME

Our proposed system architecture is a shared-nothing

system comprising of a set of PEs, each of which has its

own memory and disk. The PEs are connnected in a

Local Area Network (LAN) and they are centrally con-

trolled by a Master PE, to which all the PEs periodically

send messages concerning their load status. Whenever

the Master PE detects any imbalance in the system, it

initiates migration of data from the overloaded PEs to

the lightly loaded PEs.

We propose a two tier distributed indexing scheme

(shown in Figure 1) in which the �rst tier maintains

information on the regions indexed by each PE. This is

simply a set of Minimum Bounding Rectangles (MBRs)

of the regions allocated to each PE. Since each PE has

the exibility of indexing data from multiple disjoint

regions in space, it is possible for a PE to have more

than one MBR in the �rst tier. The �rst tier resides at

the Master PE.

 

PE1 PE2

PE3 PE4 PE5

First Tier Index

Second 
Tier
Index

Figure 1: Our proposed two-tier distributed in-

dexing scheme for multidimensional data

At the second tier, each PE indexes the data allocated

to it using an R-tree [2]. An R-tree is a height-balanced

structure for indexing spatial data.

We relax the �ll factor of our R-tree to the point where

each node may contain as few as one element. This is

done so as to minimize the coverage required to enclose

non-overlapping regions.

Consider the example shown in Figure 2. In Fig-

ure 2(a), we have four regions R1, R2, R3 and R4 such

that R1 and R2 overlap, and R3 and R4 overlap, but

there is no overlap between the (R1,R2) pair and the

(R3,R4) pair. Traditionally, if all the MBRs of the

four regions �t into a single node, then the parent node

will have an MBR that bounds the four regions, and a

pointer pointing to it (see Figure 2(b)). In our R-tree

version, we store the regions R1 and R2 in one node, and

R3 and R4 in another. Thus, there will be two MBRs

at the parent node instead | MBR X bounding the

regions R1 and R2, and MBR Y bounding the regions

R3 and R4 (see Figure 2(c)). From Figure 2, it is clear

that under the traditional R-tree structure, the MBR at

the parent node would have been MBR Z, which has a

much larger false enclosing space than that of our R-tree

version. Minimizing coverage allows us to prune away

some searches quickly, thereby facilitating the eÆciency

and e�ectiveness of our data migration strategies.

While the search and delete operations follow stan-

dard R-tree algorithms, we distinguish between two types

of insertions: single record insertions and sub-tree inser-

tions. The former deals with newly added data that are

inserted one at a time, and a standard insertion algo-

rithm can be employed. The latter handles the special

case when a large number of objects are to be inserted as

a result of data migration during reorganization. In our

work, the set of objects to be inserted are bulkloaded

into an R-tree structure �rst. We shall refer to this R-

tree as the R-subtree. The R-subtree is then integrated

into the existing R-tree at the PE. (An alternative ap-

proach is to maintain multiple R-trees at a PE.) Let the

heights of the R-subtree and the R-tree be h1 and h2
respectively. There are essentially two cases to consider:

(The case for h1 > h2 can be dealt with by exchanging

the role of the R-subtree and the R-tree.)

1. h1 = h2: In this case, if a single node can contain

all the entries of the two root nodes, we can inte-

grate the two root nodes into one. Otherwise, we

create a new root node that has the two trees as

sub-trees.

2. h1 < h2: In this case, we `extend' the height of

R-subtree (by creating dummy parent nodes) un-

til it is equal to h2 and adopt the solution above.

For typical database sizes, the height of an R-tree

is not very large, so we do not expect the di�er-

ence in height between R-subtree and R-tree to be

signi�cant enough to degrade performance.

Note that the R-subtree is not combined with other

nodes because we expect the migrated data to be clus-

tered together and such a combination is likely to lead

to large and ine�ective coverage.

The initial placement of the data across the PEs is

done as follows. One single R-tree is created at one

PE to index all the existing data. Then data is ex-

tracted from the branches of this R-tree and sent over
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Figure 2: Minimizing coverage in the R-tree

to the PEs in the system. For example, assume that

the number of PEs in the system is 3 and the number

of root-level branches of the initial single R-tree is 9. In

this scenario, the data from branches 1, 2 and 3 will be

sent to PE1; the data from branches 4, 5 and 6 will be

sent to PE2 and so on. Note that all the PEs will not

receive the same amount of data, in case the number

of root-level branches of the initial single R-tree is not

exactly divisible by the number of PEs in the system.

3. SELF-TUNING STRATEGY
In this section, we address several issues that arise

when supporting migration of multidimensional data.

In our case, we have de�ned Load of a PE as the number

of disk accesses at that particular PE.

When the system load is imbalanced (i.e., some PEs

are heavily loaded while others are lightly loaded), data

are migrated from the heavily loaded PEs to the lightly

loaded PEs. We adopt a centralized decision-making ap-

proach in which each PE periodically sends its workload

statistics to a designated Master PE and the Master

PE initiates migrations when necessary. Our approach

is simple and enables the Master PE to make better

load-balancing decisions since it has a global view of the

workload statistics. Morever, we allow multiple source

PEs to migrate data to multiple destination PEs concur-

rently. Also, there is no restriction on the destination

PEs, thus allowing us the exibility to migrate data to

any PE that is lightly loaded.

Once a source PE and a destination PE have been

selected, the data to be migrated must be determined

eÆciently. The migrated data are obtained from sub-

trees in the index structure. This facilitates easy prun-

ing of the migrated data from the tree (simply remove

the branch), and easy integration of the data into the

tree at the destination PE.

The proposed scheme also calls for some statistics to

be maintained. Speci�cally, for each R-tree at a PE, for

each entry in the root node, we keep track of the number

of accesses on that sub-tree. While we can maintain

more detailed information, we feel that the increased

overhead of maintaining such detailed statistics would

make the approach less attractive.

The amount of data to migrate depends on the degree

of load imbalance. We have maintained the number of

accesses for each sub-tree at the root node of the PE. We

can thus determine the number of sub-trees that should

be migrated, starting from the most heavily loaded sub-

tree.

4. ALGORITHMS
In this section, we give a brief overview of our algo-

rithms for balancing the loads of the PEs and the mi-

gration of spatial data. Periodically, each PE sends its

workload statistics to a particular PE, which is desig-

nated as the Master PE. Our load-balancing algorithm

executes in two phases and requires the use of 2 param-

eters Thresholdmin and Thresholdmax. Thresholdmin

is essentially application-dependent and also depends

on the desired degree of load-balancing. The essence of

this parameter is that when the di�erence in load be-

tween two PEs exceeds this parameter, it implies that

the load imbalance is heavy enough to necessitate mi-

grations. The signi�cance of Thresholdmax is that when

the di�erence in load between two PEs exceeds this pa-

rameter, it implies that more than one destination PE

should be selected for the given source PE for migration

purposes because the source PE is severely overloaded.

Thresholdmax is given by the following:

Thresholdmax = (TotalLoadofthesystem)=(NumberofPEs)

� Phase 1: First, the Master PE sorts the PEs in

descending order according to their load values.

Then it �nds out the di�erence in load values be-

tween the �rst PE in the sorted list and the last

PE in the sorted list. If the di�erence exceeds

Thresholdmin, the �rst PE in the sorted list is

added to the src list, which is a list of all source

PEs and the last PE in the list is added to the

dest list, which is a list of all destination PEs. The

amount of data to migrate is determined by the

load imbalance between the two PEs under con-

sideration and it is stored in num list. If the di�er-

ence in load values of the two PEs under considera-

tion does not exceed Thresholdmin, then both the

PEs are added to Extra DestList, provided their

respective loads are less than Thresholdmax. If
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the di�erence in load values of the two PEs un-

der consideration exceeds Thresholdmax, the more

heavily loaded PE is added to Extra SrcList. For

�nding the number of destination PEs (nmig) in

this case, we use the following formula:

nmig = (Load Difference)=(Thresholdmax)

Note that each PE in Extra SrcList may have dif-

ferent values of nmig.

Similarly, the Master PE determines the di�erence

in load values between the second PE in the list

and the second-to-last PE in the list and so on.

Each time, the Master PE notes down the neces-

sary migration information, in case any migration

is required.

� Phase 2: The PEs in Extra SrcList are sorted in

descending order according to their loads. Also,

we sort the PEs in Extra DestList in ascending or-

der of their loads. We designate the current num-

ber of existing elements in the Extra DestList as

ndest.

We take the most heavily loaded PE from Ex-

tra SrcList and see the number, ndest, of desti-
nation PEs available in Extra DestList. If Ex-

tra DestList is empty, the algorithm stops its ex-

ecution, otherwise the heavily loaded PE under

consideration is added to src list. If ndest is less
than the value of nmig for this PE, we extract

all the items from Extra DestList and add these

items to dest list with an indication that these

items correspond to the source PE currently un-

der consideration. If ndest is greater than nmig

for this PE, we extract the �rst nmig items from

Extra DestList and add them to dest list. Items

that have been extracted from Extra DestList are

deleted and the value of ndest is updated accord-

ingly.

This algorithm is repeated with the other PEs in

Extra SrcList and it terminates when Extra DestList

becomes empty. In this manner, the Master PE

uses Extra SrcList and Extra DestList to involve

more PEs in the migration procedure so that the

load may get more evenly distributed. At the end

of Phase 2, the Master PE encodes these lists into

a message and broadcasts this message to all the

PEs in the system.

After receiving the encoded message from the Master

PE and decoding this message, each PE has a copy of

the migration information. (Note that our algorithm

precludes the possibility of a particular PE being both

a destination PE and a source PE at the same time.)

If a particular PE �nds its own rank number in the

src list, it identi�es its corresponding destination PE

from the dest list and �nds out how much data it should

migrate to its corresponding destination PE from the

corresponding entry in the num list. Then it extracts

the required amount of data from the branches or sub-

branches of its own R-tree and transmits the data to its

corresponding destination PE.

If a PE �nds its own rank number in the dest list, it

�nds out its corresponding source PE from the src list

and the amount of data that it should receive from the

num list. Once the migrated data has arrived, it per-

forms the bulkloading of this migrated data in order to

incorporate the migrated data smoothly and eÆciently

into its own index structure.

5. PERFORMANCE STUDIES
Our performance evaluation consists of experiments

on our implementation of the distributed spatial indexes

on the Fujitsu AP3000 machine.

The Fujitsu AP3000 machine that we used is a mas-

sively parallel processor system based on 32 Sun Ultra-

Sparc Workstations connected by Fujitsu's proprietary

high speed switch(200 Mbyte/s), the APnet. Fujitsu's

Parallel Server AP3000 series is a distributed memory

parallel server based on powerful 64-bit UltraSPARC

technology. The AP3000 series is scalable and it can

be expanded from the entry-level four-node con�gura-

tion up to a 1,024-node supercomputing con�guration.

Given the high bandwidth of the network, it is hardly a

bottleneck during reorganization. Our experiments en-

able us to investigate how our techniques perform in a

real multi-user environment with competing processes.

In our study, we focus on window queries only. To

model skewed workload, queries are directed to regions

following a Zipf distribution. In practice, more queries

are processed by each PE due to overlapping regions of

di�erent PEs. A low zipf factor (such as 0.1) implies

a very highly skewed query distribution, in which most

of the queries will be directed to only a few PE in the

system, and we designate such PEs as the `hot' PEs.

Our default experimental setup involves 32 PEs in

the system, 30 PEs for indexing the data and 2 PEs for

acting as coordinators. Initially, the size of the dataset

in each of the 30 PEs is kept above 200000 rectangles.

Hence, for a system of 30 PEs, the dataset comprises of 6

million rectangles. Even though we have performed ex-

periments on other datasets, owing to space constraint,

we only present the results of a representative set of ex-

periments that we have performed on a real-life dataset

(Greece-Roads) which we had enlarged for the purpose

of our experiments. For more details about the results

of our performance studies, please see [5]. As default,

we set the zipf factor at 0.1 and the interarrival rate of

the incoming queries at 10 microseconds. The system

checks the load situation periodically after every 10000

queries.

� Performance of our proposed migration strat-

egy: In this experiment, we analyze the perfor-

mance of our algorithms. Figure 3a shows the

average response time of the system over time af-

ter certain number of queries have been processed,

while Figure 3b shows the disk I/Os incurred at

the `hot' PE in the same experiment. Figure 4

shows the e�ectiveness of our load-balancing strat-

egy in distributing the load across di�erent PEs in

the system.

From Figure 3a, we see that when the number of

queries is small ( < 30000 ), the average response
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Figure 3: Performance of our proposed migration strategy

time for our proposed scheme is slightly higher

due to migration-related disturbances to the PEs

and overhead costs of migration. Overhead costs

of migration refers to data extraction cost in case

of source PEs and bulkloading cost for destina-

tion PEs. As the number of queries increases, we

observe that our proposed scheme outperforms the

no-migration scheme by a signi�cant margin. This

is because of the reduction in disk I/O activity of

the `hot' PE as shown in Figure 3b.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

D
is

k 
I/

O

PE

 

Proposed Migration Strategy
No-Migration Strategy

Figure 4: Load Distribution at interval of the

50000th to the 60000th query

From Figure 4, we observe that our proposed scheme

can distribute the load more evenly than the no-

migration scheme (especially, reducing the loads

of the `hot' PEs, namely, PE1, PE2 and PE3).

Hence, from Figure 3 and Figure 4, we conclude

that our approach is e�ective in correcting the

degradation in system performance owing to the

overloading of certain PEs by a skewed query dis-

tribution.

� Cost of Migration: The migration process has

its own inherent costs and causes disturbances to

the normal query processing work of the PEs in

the system. The data extraction step causes dis-

turbances only to the source PE, while the bulk-

loading step causes disturbances only to the des-

tination PE. Figure 5a shows the cost of data ex-

traction in terms of the time taken for extracting

a speci�ed number of root-level branches of the R-

tree at a particular source PE, while Figure 5b

shows the cost of bulkloading in terms of the time

taken for bulkloading a speci�ed number of root-

level branches of the R-tree at a destination PE.

By root-level branches, we mean the branches em-

anating from the root node of the R-tree at a par-

ticular PE. We did this experiment on the R-tree

of a particular PE, where the number of root-level

branches was 64 and each root-level branch was in-

dexing around 4096 rectangles. As shown in Fig-

ure 5, both the cost of data extraction and the cost

of bulkloading increase linearly with the increase

in the number of root-level branches of the R-tree

under consideration. Although this implies that

cost of migration is high, our experiments illus-

trate that the bene�t of our proposed approach far

outweighs the overhead costs of migration. Hence,

migration is still an attractive option for correct-

ing query skews across the PEs.

6. CONCLUSION
This paper proposes an index-based tuning technique

for eÆcient indexing of multidimensional data. The

technique is based on migrating data from heavily loaded

PEs to lightly loaded PEs such that the waiting times

of queries at the heavily loaded PEs are reduced to a
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Figure 5: Experimental Results for Cost of Migration

considerable extent. Our approach is dynamic and any

imbalance in the system is detected automatically and

migrations are also initiated automatically without any

intervention on the part of the user. Our experimental

results show that our proposed load-balancing strategy

can distribute the load e�ectively across the PEs in the

system, thereby reducing response times of incoming

queries.
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