
Implementation and Evaluation of Parallel
Data Mining on PC Cluster and Optimization of its

Execution Environments
Masato Oguchi, Masaru Kitsuregawa

Abstract— Personal Computer/Workstation clusters have
been studied intensively in the field of parallel and dis-
tributed computing. In the viewpoint of applications, data
intensive applications such as data mining and ad-hoc query
processing in databases are considered very important for
high performance computing, as well as conventional scien-
tific calculations. We have built and evaluated PC cluster
pilot systems, especially SAN-connected PC cluster, and im-
plemented parallel data mining on them. Several optimiza-
tion, including dynamic data allocation, is discussed for the
execution of this application.

Keywords— PC cluster, Data Mining, Storage Area Net-
work, Optimization, Dynamic data allocation.

I. Introduction

Recently personal computer/workstation (PC/WS) clus-
ters have become a hot research topic in the field of parallel
and distributed computing. They are considered to play an
important role as large scale parallel computers in the next
generation, for good scalability and cost performance ratio.
The reason is as follows:
Components of today’s high performance parallel com-

puters are evolving from proprietary parts, e.g. CPUs,
disks, and memories, into commodity parts. This is be-
cause technologies for such commodity parts have ma-
tured enough to be used for high-end computer systems.
While an interconnection network has not yet been com-
moditized thus far, Some common-purpose networks, e.g.
Fast/Gigabit Ethernet and ATM-LAN are the strong can-
didates as a de facto standard of high speed communication
networks. With the progress of high performance networks,
future parallel computer systems will undoubtedly employ
commodity networks as well. Examining these technologi-
cal trends, Fast Ethernet and/or ATM-connected PC clus-
ters are considered promising platform for future high per-
formance parallel computers.
In the viewpoint of application, we believe that data in-

tensive applications, such as data mining and ad hoc query
processing in databases, are extremely important for mas-
sively parallel processors in the near future. We previously
developed a large scale ATM-connected PC cluster con-
sists of 100 Pentium Pro PCs, and implemented several
database applications, including parallel data mining, to
evaluate their performance and the feasibility of such ap-
plications using PC clusters[1][2].

M. Oguchi is with the Research and Development Initiative, Chuo
University, Tokyo, Japan. E-mail: oguchi@computer.org .
M. Oguchi and M. Kitsuregawa is with the Institute of Industrial

Science, University of Tokyo, Tokyo, Japan.

Different from the conventional scientific calculations, as-
sociation rule mining, one of the best known problems in
data mining, has a peculiar usage of main memory. It allo-
cates a lot of small data on main memory, and the number
of those areas multiplies to be enormous during the execu-
tion. Thus, the requirement of memory space changes dy-
namically and becomes extremely large. Contents of mem-
ory must be swapped out if the requirement exceeds the
real memory size. However, because the size of each data
element is rather small and all the elements are accessed
almost at random, swapping out to a secondary storage sys-
tem is likely to cause severe performance degradation. We
are investigating the feasibility of using available memory
in remote nodes as a swap area, when application execution
nodes need to swap out their memory contents. We report
our experimental results in this paper, in which nodes ex-
ecuting an application acquire extra memory dynamically
from several remote nodes in the ATM-connected PC clus-
ter. Moreover, a method using distant node’s memory with
remote update operations, which is expected to prevent a
thrashing problem, is proposed and evaluated.
LAN-connected PC clusters are employed as a system

of large scale server sites and/or high performance paral-
lel computers. In both cases, huge volume of data may
be transferred frequently from one node’s disk to another,
for the execution of parallel computing, load distribution,
maintenance of the system, and so on. A LAN cluster is a
shared-nothing system, that is to say, all nodes of the clus-
ter are connected only with a LAN and no disk is shared
among them. Therefore, LANs may become almost always
busy with data management of disks. The bandwidth of
LANs in the cluster should not be flooded with these kinds
of data transfer, because LANs should be used for other
traffic, such as client-server request communication and
parallel/distributed computing among several nodes.
In order to reduce LAN traffic and raise availability of

nodes on the cluster, Storage Area Networks(SANs), e.g.
Fibre Channel, has come to be adopted[3]. SANs link
storage devices directly to all nodes of the cluster, there-
fore, SANs can prevent bandwidth congestion of LANs.
In the case of SAN clusters, different from LAN clusters,
each node does not have to communicate with each other
through a LAN for reading data from other nodes’ disks,
because a pool of storage is shared among all nodes and
can be accessed directly through a SAN without burden to
the other nodes nor LANs.
In this paper, we have also built another PC cluster

which has a SAN-connection as well as a LAN-connection,
and examined its performance features. Basic character-
istics of data transfer on the cluster are evaluated. Per-
formance of parallel data mining application on the SAN
cluster is examined. In the case of SAN cluster, each node
can access all shared disks directly. However, if a lot of
nodes access the same shared disk simultaneously, perfor-
mance of application must degrade due to I/O-bottleneck.
A dynamic data declustering method, in which data is
declustered to several other disks through a SAN during
the execution of application, is proposed and evaluated.
The rest of paper is organized as follows: In Section II,

related works on PC/WS clusters are introduced. Data
mining application and its parallelization are related in Sec-
tion III. Our PC cluster pilot systems are shown and imple-
mentation of parallelized association rule mining on them
are mentioned in Section IV. In Section V, the method of
dynamic remote memory utilization for parallel data min-
ing is explained. Performance results of the evaluation of
proposed mechanisms are shown and analyzed in Section
VI. In Section VII, a dynamic data declustering method,
which is expected to prevent I/O-bottleneck situation in
use of shared disks, is proposed and evaluated. Final re-
marks are made in Section VIII.

II. Related works

Initially, the processing nodes and/or networks were
built from customized designs, since it was difficult to
achieve good performance using only off-the-shelf prod-
ucts[4][5]. Such systems were interesting as research pro-
totypes, but most failed to be accepted as a common plat-
form. However, because of advances in workstation and
network technologies, reasonably high performance WS
clusters can be built using off-the-shelf workstations and
high speed LANs[6][7]. Several researches had been made
on PC clusters[8][9], in which some scientific calculation
benchmarks were executed on the cluster. Because perfor-
mance of PCs and networks used in those projects was not
good enough, absolute performance of such clusters was
not attractive compared with high-end massively parallel
processors.
Workstations were overwhelmingly superior to personal

computers until recently, in terms of performance as well
as sophisticated software environments. However, recent
PC technology has dramatically increased its CPU, main
memory, and cache memory performance. While RISC pro-
cessors used in today’s WSs provide better floating point
performance than microprocessors used in PCs, some ap-
plications, such as database processing, primarily require
good integer performance. Since integer performance of
latest PCs is better than that of WSs (e.g. SPECint95 of
800MHz PentiumIII is 38.3, while SPECint95 of 450MHz
UltraSPARC-II is 19.7), PCs have better cost performance
ratios than WSs for database operations. High-speed bus
architectures, such as the PCI bus, have also improved
I/O performance of PCs. Moreover, sophisticated UNIX-
based operating systems have been implemented on per-
sonal computers, which should greatly assist the realiza-

tion of PC clusters. Because the size of the PC market is
much larger than the WS market, further increase in the
cost performance ratio is expected for PC clusters. As the
performance of PCs has increased dramatically, variety of
research projects on PC clusters have been reported until
now[10][11][12][13][14].

III. Data mining application and its

parallelization

A. Mining of association rules

Data mining has attracted a lot of attention from both
research and commercial community, for finding interest-
ing trends hidden in large transaction logs. Data mining
is a method for the efficient discovery of useful informa-
tion, such as rules and previously unknown patterns exist-
ing among data items in large databases, thus allowing for
more effective utilization of existing data.
Large transaction processing system logs have been ac-

cumulated because of the progress of bar-code technology.
Such data was just archived and not used efficiently un-
til recently. The advance of microprocessor and secondary
storage technologies allows us to analyze vast amount of
transaction log data to extract interesting customer behav-
iors. For very large mining operations, however, parallel
processing is required to supply the necessary computa-
tional power.
One of the best known problems in data mining is mining

of association rules from a database, so called “basket anal-
ysis”[15][16][17]. Basket type transactions typically consist
of a transaction identification and items bought per trans-
action. An example of an association rule is “if customers
buy A and B, then 90% of them also buy C”. The best
known algorithm for association rule mining is the Apri-
ori algorithm proposed by R. Agrawal of IBM Almaden
Research[18][19][20].
Apriori first generates so-called candidate itemsets

(groups consisting of one or more items), then scans the
transaction database to determine whether the candidates
have the user-specified minimum support. In the first pass
(pass 1), support for each item is counted by scanning the
transaction database, and all items that achieve the mini-
mum support are picked out. These items are called large
1-itemsets. In the second pass (pass 2), 2-itemsets (pairs of
two items) are generated using the large 1-itemsets. These
2-itemsets are called the candidate 2-itemsets. Support for
the candidate 2-itemsets is then counted by scanning the
transaction database. The large 2-itemsets that achieve
the minimum support are determined. The algorithm goes
on to find the large 3-itemsets, the large 4-itemsets, and
so on. This iterative procedure terminates when a large
itemset or a candidate itemset becomes empty. Associa-
tion rules that satisfy user-specified minimum confidence
can be derived from these large itemsets.

B. Parallelization of association rule mining

In order to improve the quality of the rule, we have to
analyze very large amounts of transaction data, which re-

TABLE I

Each node of the ATM-connected PC cluster

CPU Intel 200MHz Pentium Pro
Chipset Intel 440FX
Main memory 64Mbytes
IDE hard disk WesternDigital Caviar32500 2.5Gbytes
SCSI hard disk Seagate Barracuda 4.3Gbytes
OS Solaris 2.5.1 for x86
ATM NIC Interphase 5515 PCI Adapter

quires considerable computation time. We have previously
studied several parallel algorithms for mining association
rules[21], based on Apriori. One of these algorithms, called
Hash Partitioned Apriori (HPA), is implemented and eval-
uated on the PC cluster. HPA partitions the candidate
itemsets among processors using a hash function, like the
hash join in relational databases. HPA effectively utilizes
the whole memory space of all the processors, hence it
works well for large scale data mining. The steps of the
algorithm are as follows.
1. Generate candidate k-itemsets:
All processors have all the large (k − 1)-itemsets in
memory when pass k starts. Each processor generates
candidate k-itemsets using large (k − 1)-itemsets, ap-
plies a hash function, and determines a destination
processor ID. If the ID is the processor’s own, the
itemset is inserted into the hash table, otherwise it
is discarded.

2. Scan the transaction database and count the support
value:
Each processor reads the transaction database from its
local disk. It generates k-itemsets from those transac-
tions and applies the same hash function used in phase
1. The processor then determines the destination pro-
cessor ID and sends the k-itemsets to it.
When a processor receives these itemsets, it searches
the hash table for a match, and increments the match
count.

3. Determine large k-itemsets:
Each processor checks all the itemsets it has and de-
termines large itemsets locally, then broadcasts them
to the other processors. When this phase is finished
at all processors, large itemsets are determined glob-
ally. The algorithm terminates if no large itemset is
obtained.

IV. Our PC cluster pilot system

A. An overview of our ATM-connected PC cluster

In our first PC cluster pilot system, 100 nodes of 200MHz
Pentium Pro PCs has been connected with an ATM switch
Each node consists of the components shown in Table I.
HITACHI’s AN1000-20, which has 128 port 155Mbps

UTP-5, is used as an ATM switch. Since this switch has 128
port, all nodes can be connected directly with each other,

 UTP−5
(155Mbps)

Ethernet hub

10Base−T
 Ethernet

Personal Computer
(Pentium Pro 200MHz)

128port ATM switch
(HITACHI AN1000−20)

 100 PCs

Fig. 1. An overview of ATM-connected PC cluster pilot system

forming a star topology rather than a cascade configura-
tion. All nodes of the cluster are connected by a 155Mbps
ATM LAN as well as by an Ethernet. An RFC-1483 PVC
driver, which supports LLC/SNAP encapsulation for IP
over ATM[22][23], is used. Only UBR traffic class is sup-
ported in this driver. TCP/IP is used as a communication
protocol. An overview of the ATM-connected PC cluster
is shown in Figure 1.

B. Implementation of parallelized association rule mining

The HPA program described in Section III was imple-
mented on the PC cluster pilot system. Each node of the
cluster has a transaction data file on its own hard disk.
Transaction data was produced using a data generation
program developed by Agrawal, designating some param-
eters, such as the number of the transaction, the number
of different items, and so on[20]. The produced data was
divided by the number of nodes, and copied to each node’s
hard disk. WesternDigital Caviar32500 IDE disks are used
for this purpose.
At each node, two processes are created and executed.

One process makes candidate itemsets from previous large
itemsets, and sends them to the other process, which puts
the data into a hash table. In the data counting phase,
one process generates itemsets by scanning the transaction
data file, and sends them to the other processes on the
nodes selected by the hash function. The target processes
check and increment their hash table values accordingly.
Solaris Transport Layer Interface (TLI) system calls are

used for the inter-process communication. All processes
are connected with each other by TLI transport endpoints,
thus forming a mesh topology. /dev/tcp is used as a trans-
port layer protocol. It is a two-way connection based byte
stream. On the ATM level, Permanent Virtual Channel
(PVC) switching is used, since data is transferred continu-
ously between all processes.
During the execution of HPA, itemsets are kept in mem-

ory as linked structures that are classified by a hash func-
tion. That is to say, all itemsets having the same hash
value are assigned to the same hash line on the same node,
and their structures are connected with each other to form

TABLE II

The number of candidate and large itemsets at each step

C Number of candidate itemsets
L Number of large itemsets

pass C L
pass 1 1023
pass 2 522753 32
pass 3 19 19
pass 4 7 7
pass 5 1 0

TABLE III

Each node of the SAN-connected PC cluster

CPU Intel 800MHz Pentium III
Main memory 128Mbytes
IDE hard disk Quantum Fireball 20Gbytes
SCSI hard disk Seagate Cheetah 18.2Gbytes
OS Solaris 7 for x86
Fast Ethernet NIC 3Com 3C905B-TX
Fibre Channel NIC Emulex LP8000 Host Bus Adapter

a list.
As an example, a result of HPA is shown in Table II. In

this execution, the number of transactions is 10,000,000,
the number of different items is 5,000, and the minimum
support is 0.7%. When the PC cluster using 100 PCs is
employed for this problem, reasonably good performance
improvement is achieved[2]. Several characteristics such as
CPU usage and network performance of the cluster during
the execution of HPA are analyzed and discussed in [24].
It is known that the number of candidate itemsets in

pass 2 is very much larger than in other passes, as can be
seen in the table. This often happens in association rule
mining.

C. SAN-connected PC cluster pilot system

Recently, we have also built a SAN-connected PC cluster
pilot system. 32 nodes of 800MHz Pentium III PCs are
connected with Fast Ethernet as well as Fibre Channel.
Each node consists of the components shown in Table III.
All 32 PCs of the cluster and 32 SCSI hard disks are con-

nected with a Fibre Channel. Seagate Cheetah 18.2Gbytes
is used as SCSI hard disks, and Brocade SilkWorm 2800 is
employed as a Fibre Channel switch. Switching ability of
this device is 200MB/s per port. Hitachi Black Diamond
6800, which has 64Gbps switching ability, is used as a Fast
Ethernet Switch. This switch has more than enough ca-
pacity to connect 32 nodes through Fast Ethernet with no
blocking. In Figure 2, an overview of the SAN-connected
PC cluster is shown.

Personal Computer
(Pentium III 800MHz)

100Base−T
Fast Ethernet

Fibre Channel

 32 PCs

 32 SCSI Disks

Fibre Channel switch
(Brocade SilkWorm)

64Gbps Gigabit switch
(Hitachi Black Diamond)

Fig. 2. An overview of SAN-connected PC cluster pilot system

V. Dynamic remote memory utilization during

the execution of data mining

A. Swapping operation on the PC cluster

The number of candidate itemsets in pass 2 is very much
larger than other passes in association rule mining, as men-
tioned in Section IV. The number of itemsets is strongly
dependent on user-specified conditions, such as minimum
support value, and it is difficult to predict before execution
how large the number will be before execution. Therefore,
it may happen that the number of candidate itemsets in-
creases dramatically in this step so that the requirement
of memory becomes extremely large. When the required
memory is larger than the real memory size, part of the
memory contents must be swapped out. However, because
the size of each data is rather small and all the data is ac-
cessed almost at random, swapping out to a storage device
is expected to degrade performance severely in this case.
In large scale clusters, a large fraction of the memory of
total nodes is not in active use on average[25].

B. Dynamic remote memory acquisition

Remote nodes, whose memories are available for appli-
cation execution nodes, are found dynamically during the
execution. We call them “memory available nodes”. The
mechanism to decide the availability of remote nodes is
shown in Figure 3. On memory available nodes, a pro-
cess is running to monitor the amount of available memory
periodically. “netstat -k” command provided by Solaris
operating system is used to get memory information from
the kernel statistics structure. 1 Each time the process gets
the information, the process broadcasts it to all application
execution nodes.
On application execution nodes, a client process is run-

ning and waiting for the information sent from the memory
monitoring processes running on memory available nodes.
The client process has a memory area which can be shared
with application processes, and the received information
about the amount of memory at each node is written on
the shared memory. The application processes can read

1The “-k” option to netstat command is not documented on the
manual pages. See [26] for more information.

Monitor Client

App. Proc.

Mem. Monitor

Mem. ManageApp. Proc.

App. Proc.

App. Proc.

Monitor Client Mem. Monitor

Application Execution Nodes Memory Available Nodes

HPA program

Shared Memory

memory availability
information

swapping
operation

Mem. Manage data
migration

Fig. 3. Dynamic decision mechanism for remote memory availability

this information at anytime, to decide the policy of swap-
ping operations. For example, when a memory available
node does not have enough memory space, the shortage of
memory is detected by application processes, so that an-
other node is chosen as a swapping destination afterward.
On the other hand, if some other processes begin their exe-
cution on a memory available node which already accepted
swapping operations, the swapped out data must be mi-
grated to other memory available nodes to make space on
its memory for the new processes.
As a method of experiments, a limit value for memory

usage of candidate itemsets is set at each node. When the
amount of memory usage exceeds this value during the ex-
ecution of HPA program, part of contents is swapped out
to available remote nodes’ memory. That is to say, the
application execution node acquires memory area dynami-
cally from one of memory available nodes when it is needed.
When the number of candidate itemsets becomes extremely
large in pass 2 and the amount of memory usage exceeds
a specified value, the node sends some of its memory con-
tents to destination memory available nodes. The unit of
swapping operation is a hash line, which is a listed struc-
tures. The hash line swapped out is selected using a LRU
algorithm. At the memory available node, the received con-
tents are allocated and written in its main memory. Each
memory available node may receive swapped out data from
several application execution nodes.
On the other hand, a pagefault occurs when an ap-

plication execution node accesses an item that had been
swapped out. It sends a request to a memory available
node which holds the data, and the memory available node
sends back the requested hash line. After the application
execution node receives the contents, they are allocated
and written on main memory again, then the execution of
application resumes. Replacements of data are decided by
LRU manner.

C. Remote memory update option

Because most of memory contents are accessed repeat-
edly, the number of pagefaults is considered to become very
high when the memory usage limit is small. A kind of

thrashing may happen in such a case. In order to pre-
vent this phenomenon, we investigate a method to restrict
swapping operations.
When usage of memory reaches to the limit value at an

application execution node, it acquires remote memory and
swaps out part of its memory contents. The contents will
be swapped in again if this data is accessed later. Instead
of swapping, it is sometimes better to send update informa-
tion to the remote memory when a pagefault occurs. That
is to say, once some contents are swapped out to mem-
ory in a remote node, they are fixed at there and accessed
only through a remote memory access interface provided
by library functions. We apply this policy to the itemsets
counting phase, in which the memory access operation is
simple – to compare itemsets with the contents of the hash
table and update the table.

VI. Evaluation of dynamic remote memory

utilization on PC cluster

A. Implementation of the proposed mechanism

The parameters used in the experiment are as follows:
The number of transactions is 1,000,000, the number of
different items is 5000, and the minimum support is 0.1%.
The size of the transaction data is about 80Mbytes in total.
The message block size is set to be 4Kbytes, and the disk
I/O block size is 64Kbytes.
The number of application execution node is eight in

this evaluation. The number of hash line for candidate
itemsets is 800,000 in total, hence about 100,000 hash lines
are assigned to each node during the execution. The unit of
swapping operation is a hash line, which could be contained
in one message block in this experiment.
With the above conditions, the number of candidate

itemsets in pass 2 was 4,871,881 in total. These candi-
date 2-itemsets are assigned to each node using a hash
function. Since each candidate itemset occupies 24bytes
in total(structure area + data area), approximately 14-
15Mbytes of memory are filled with these candidate item-
sets at each node.

B. Dynamic remote memory acquisition

First, a method using available remote nodes’ memory
with simple swapping is examined. The maximum number
of nodes used as memory available nodes is changed from 1
to 16. In this experiment, all memory available nodes are
assumed to have enough memory space to accept requests
of swapping operations. In such a case, all the memory
available nodes are used for swapping operations through-
out the execution of the program and therefore the number
of memory available nodes is constant during the exper-
iment. The execution time of pass 2 in HPA program,
when the number of memory available nodes changes from
1 to 16, is shown in Figure 4. In this figure, the result
of 5 different cases are shown. The upper 4 lines are the
cases of memory usage for candidate itemsets being limited
as 12Mbytes, 13Mbytes, 14Mbytes, and 15Mbytes, respec-
tively. The lowest line is the case with no memory usage

0

5000

10000

15000

20000

25000

30000

1 10

E
xe

cu
tio

n
T

im
e

[s
]

Number of Memory Available Node

Memory usage limit = 12[MB]
Memory usage limit = 13[MB]
Memory usage limit = 14[MB]
Memory usage limit = 15[MB]

No Memory usage limit

Fig. 4. Execution time of HPA program (pass 2)

limit, in which application execution nodes are assumed
to have enough memory for candidate itemsets so that no
swapping occurs. Other mechanisms and conditions are
the same with memory limited cases. Memory monitor
mechanism is running in this case also, for comparison.
When the number of memory available nodes is small,

the execution time is quite long especially when the mem-
ory usage limit size is smaller. Apparently memory avail-
able node(s) become bottleneck in these cases. This bot-
tleneck is resolved when the number of memory available
nodes is 8 - 16 in this experiment.
The execution time becomes longer as the memory usage

limit size becomes small, since the number of swap out in-
creases in such cases. When memory usage is limited, the
execution time is quite longer than that of the no mem-
ory limit case. This is because the number of swap out is
extremely large.
We can calculate the execution time of each pagefault

as follows. We will focus on the case when the number of
memory available nodes is 16, in which memory available
nodes are not considered to be bottleneck. In the case of
memory usage limit being 13Mbytes, for example, the exe-
cution time of the program is 4674.0sec, and the difference
of the execution time between this and the no memory limit
case is 4427.0sec. The total execution time is decided by
the busiest node that does the most swapping operations.
In this case, the maximum number of pagefaults in the
busiest node was 1,896,226. Thus, the execution time of
each pagefault can be obtained by dividing the difference
in execution times by the maximum number of pagefaults,
2.33msec in this example. The other cases are also calcu-
lated in Table IV.
We can compare the pagefault execution time with the

access time of hard disks. According to a state-of-art spec-
ification of SCSI hard disks, Seagate Barracuda 7,200rpm
disks for example, the average seek time for read is about
8.8msec and the average rotation waiting time is about
4.2msec. In the case of latest fast hard disks such as HI-
TACHI DK3E1T 12,000rpm disks, the average seek time

TABLE IV

The execution time for each pagefault (The number of

memory available nodes is 16)

Exec execution time of pass 2 in HPA [sec]
Diff difference in execution time between

this and the no memory limit case [sec]
Max maximum number of pagefaults [times]
PF execution time of each pagefault [msec]

Usage limit Exec Diff Max PF
12MB 7183.1 6936.1 2925243 2.37
13MB 4674.0 4427.0 1896226 2.33
14MB 2489.7 2242.7 1003757 2.22
15MB 757.3 510.3 268093 1.90

for read is about 5msec and the average rotation waiting
time is about 2.5msec. Therefore, it takes at least 13.0msec
in average to read data from 7,200rpm hard disks, and
7.5msec even with the fastest 12,000rpm hard disks.

C. Using remote memory update option

The execution time using this method is shown in Figure
5. This figure shows the execution time of pass 2 of HPA
program, when the number of memory available nodes is
16. The execution times of dynamic remote memory ac-
quisition using remote update operations and using simple
swapping are compared in the figure. The execution time
using hard disks as a swapping device is also shown, for
comparison. Seagate Barracuda 7,200rpm SCSI hard disk
is used for this purpose. In this case, memory contents
are swapped out to hard disks when the memory usage of
candidate itemsets exceeds the limit value. Other condi-
tions and implementations are the same with the case of
dynamic remote memory acquisition.

The execution time using hard disks as swapping de-
vices is very long especially when the memory usage limit
is small, because each access time to a hard disk is much
longer than that of remote memory through the network.
The execution time of dynamic remote memory acquisi-
tion with simple swapping is better than for swapping out
to hard disks. It increases, however, when the memory us-
age limit is small, since the number of pagefaults becomes
extremely large in such a case.

The execution time of dynamic remote memory acquisi-
tion with remote update operations is quite short compared
to these results, even when the memory usage limit is small.
It seems to be effective to provide a simple remote access
interface for the itemsets counting phase, because the num-
ber of swapping operations during this phase is extremely
large. According to these results, performance of the pro-
posed remote memory utilization with remote update op-
erations is considerably better than other methods.

0

2000

4000

6000

8000

10000

12000

14000

12 12.5 13 13.5 14 14.5 15

E
xe

cu
tio

n
T

im
e

[s
]

Memory Usage Limit

Swapping out to hard disks
Dynamic remote memory acquisition with simple swapping

Dynamic remote memory acquisition with remote update

Fig. 5. Comparison of proposed methods

VII. Dynamic data declustering on

SAN-connected PC cluster

A. Dynamic data declustering

Different from the case of LAN-connected cluster, each
node can access all shared disks connected with SAN in the
case of SAN-connected cluster. Applications on each node
do not have to care where data is stored. However, when a
lot of nodes access to shared disks simultaneously, perfor-
mance of application must degrade due to I/O-bottleneck.
If stored data is accessed repeatedly during the execu-

tion of application, the probability of access conflict on the
shared disk may increase. In such a case, it is better to
decluster the data from one disk to many during/after first
access. Each node copies portion of the data which may
be accessed again afterward, from one shared disk to an-
other which can be used exclusively. The copied portion
of the data, instead of the original one, is used after the
declustering is completed. We call this method dynamic
data declustering in the rest of this paper. In some appli-
cations, it is difficult to decluster the data before execution
of program. Using this method, it is possible to decide
which node needs which portion of the data dynamically.

B. Execution of HPA program on SAN-connected PC clus-
ter

The HPA program explained in Section III is imple-
mented on our SAN-connected PC cluster pilot system.
Solaris socket library is used for the inter-process commu-
nication. As a type of socket connection, SOCK STREAM
is used, which is two-way connection based byte stream.
In this experiment, the number of transaction is

10,000,000, the number of different items is 5,000, and the
minimum support is 0.6%. The size of the transaction data
is about 800Mbytes in total. The message block size is
8Kbytes, and the disk I/O block size is 64Kbytes in this
experiment.
The produced transaction data is stored at one of SCSI

hard disks, which is shared by all PCs through Fibre Chan-
nel. During execution of the application, this data is ac-

TABLE V

The number of itemsets and the execution time at each pass

C Number of candidate itemsets
L Number of large itemsets
T Execution time of each pass [sec]

pass C L T
pass 1 − 1219 65.4
pass 2 742371 126 367.8
pass 3 92 52 63.6
pass 4 27 26 63.4
pass 5 8 8 63.1
pass 6 1 0 63.6

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

C
P

U
 u

sa
ge

 [%
]

Time [s]

Usr

Sys

Usr + Sys
Sys

Fig. 6. CPU usage (using 1 Disk)

cessed by all processes concurrently. The contents of the
data are divided by the number of nodes almost equally,
and each node of the cluster reads its own portion during
the execution. The number of nodes used in this applica-
tion is eight. The result of HPA is shown in Table V.
The details of system behavior are investigated when

HPA program is executed on the SAN-connected PC clus-
ter. CPU usage of system during the execution of HPA
program is shown in Figure 6. This figures shows perfor-
mance is bounded by CPU in pass 2, provided that network
operation accounts a considerable part of CPU usage. In
other passes, on the other hand, performance is bounded
by I/O operation rather than CPU.

C. An evaluation of dynamic data declustering method

As mentioned in previous section, We have found pass 2
of HPA using one shared disk is a CPU-bound condition,
but the CPU load is not high in other passes. In those
passes, the accessed shared disks become bottleneck when
the number of disks is small. Dynamic data declustering
method proposed in Section VII-A can be applied in this
situation.
Because each node is able to access all disks in the stor-

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

C
P

U
 u

sa
ge

 [%
]

Time [s]

Usr

Sys

Usr + Sys
Sys

Fig. 7. CPU usage (Dynamic declustering from 1 to 8 disks)

age pool at any time, it is possible to copy its own portion
of the transaction data to another disk, which can be used
exclusively. In this method, portion of the data is copied to
their own disks when the data is read at first in pass 1, then
the copied data, instead of the original one, is used after-
ward. In Figure 8− 10, the execution times of the proposed
dynamic data declustering method are shown. The number
of disks originally store the data is one − four, and the data
is declustered to each node’s own disk (eight disks in total)
in pass 1 dynamically. The proposed method is compared
with the original one in which data is read only from the
same shared disk(s) repeatedly. CPU usage of the system,
when data is declustered from one disk to eight disks, are
also shown in Figure 7
The execution times in pass 1 and pass 2 are almost

equal in both methods. In pass 1, this is because data
must be read from a shared disk in both methods. After
pass 1, the data is declustered to other disks which can be
accessed exclusively. However, because pass 2 is not a I/O-
bound condition, the execution times are almost the same
in both methods. In pass 3 − pass 6, on the other hand, the
execution time in the dynamic data declustering method is
shorter than that of original method. This is because I/O-
bottleneck is resolved by dynamic data declustering.

VIII. Conclusions

In this paper, PC cluster pilot systems are constructed
and evaluated. First, we show and discuss experimental
results in which application execution nodes acquire extra
memory dynamically from available remote nodes in an
ATM-connected PC cluster. The experimental results show
this method is considerably better than using hard disks as
a swapping device. A method of updating remote memory
in order to prevent thrashing was proposed and examined.
This method achieves the best performance.

Fig. 8. Execution time of HPA program (Dynamic declustering from
1 to 8 disks)

Fig. 9. Execution time of HPA program (Dynamic declustering from
2 to 8 disks)

Fig. 10. Execution time of HPA program (Dynamic declustering
from 4 to 8 disks)

SAN-connected PC clusters are suitable for a large scale
server site because data transfer between disks does not
have to depend on a LAN, thus the bandwidth of a net-
work as well as the load of CPUs can be saved. We have
also implemented and evaluated a data mining application
on our SAN-connected PC cluster pilot system. In this
application, transaction data is scanned repeatedly in it-
erative passes. A dynamic data declustering method, in
which data is declustered from shared disks to other disks
during the execution, is proposed and evaluated. As a re-
sult of the experiment implemented on the SAN cluster,
the execution time of each pass becomes shorter, after the
declustering are completed.

Acknowledgments

This project is partly supported by the Japan Society for
the Promotion of Science (JSPS) RFTF Program and New
Energy and Industrial Technology Development Organiza-
tion (NEDO). We would like to thank Tokyo Electron Ltd.
for technical help with Fibre Channel-related issues. Hi-
tachi, Ltd. gave us extensive technical help with Gigabit
switch.

References

[1] T. Tamura, M. Oguchi, and M. Kitsuregawa: “Parallel Database
Processing on a 100 Node PC Cluster: Cases for Decision Sup-
port Query Processing and Data Mining”, Proceedings of SC97:
High Performance Networking and Computing (SuperComput-
ing ’97), November 1997.

[2] M. Oguchi, T. Shintani, T. Tamura, and M. Kitsuregawa: “Op-
timizing Protocol Parameters to Large Scale PC Cluster and
Evaluation of its Effectiveness with Parallel Data Mining”, Pro-
ceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing, pp.34-41, July 1998.

[3] B. Phillips: “Have Storage Area Networks Come of Age?”, IEEE
Computer, Vol.31, No.7, pp.10-12, July 1998.

[4] R. S. Nikhil, G. M. Papadopoulos, and Arvind: “*T: A Multi-
threaded Massively Parallel Architecture”, Nineteenth Interna-
tional Symposium on Computer Architecture, pp.156-167, May
1992.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J.
Sandberg: “Virtual Memory Mapped Network Interface for the
SHRIMP Multicomputer”, Proceedings of the Twenty-First In-
ternational Symposium on Computer Architecture, pp.142-153,
April 1994.

[6] C. Huang and P. K. McKinley: “Communication Issues in Paral-
lel Computing Across ATM Networks”, IEEE Parallel and Dis-
tributed Technology, Vol.2, No.4, pp.73-86, Winter 1994.

[7] D. E. Culler, A. A. Dusseau, R. A. Dusseau, B. Chun, S.
Lumetta, A. Mainwaring, R. Martin, C. Yoshikawa, and F.
Wong: “Parallel Computing on the Berkeley NOW”, Proceed-
ings of the 1997 Joint Symposium on Parallel Processing(JSPP
’97), pp.237-247, May 1997.

[8] T. Sterling, D. Saverese, D. J. Becker, B. Fryxell, and K.
Olson: “Communication Overhead for Space Science Applica-
tions on the Beowulf Parallel Workstation”, Proceedings of the
Fourth IEEE International Symposium on High Performance
Distributed Computing, pp.23-30, August 1995.

[9] R. Carter and J. Laroco: “Commodity Clusters: Performance
Comparison Between PC’s and Workstations”, Proceedings of
the Fifth IEEE International Symposium on High Performance
Distributed Computing, pp.292-304, August 1996.

[10] A. Barak and O. La’adan: “Performance of the MOSIX Parallel
System for a Cluster of PC’s”, Proceedings of the HPCN Europe
1997, pp.624-635, April 1997.

[11] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato: “PM: An Op-
erating System Coordinated High Performance Communication
Library”, Proceedings of the HPCN Europe 1997, pp.708-717,
April 1997.

[12] M. Oguchi, T. Shintani, T. Tamura, and Masaru Kitsuregawa:
“Characteristics of a Parallel Data Mining Application Imple-
mented on an ATM Connected PC Cluster”, Proceedings of the
HPCN Europe 1997, pp.303-317, April 1997.

[13] Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, T. Takahashi,
F. O’Carroll, and H. Harada: “RWC PC Cluster II and SCore
Cluster System Software − High Performance Linux Cluster”,
Proceedings of the Fifth Annual Linux Expo, pp.55-62, 1999.

[14] M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda, and B.
Abali: “Efficient Virtual Interface Architecture (VIA) Support
for the IBM SP Switch-Connected NT Clusters”, Proceedings
of the International Parallel and Distributed Processing Sympo-
sium, pp.33-42, May 2000.

[15] U. M. Fayyad, G. P. Shapiro, P. Smyth, and R. Uthurusamy:
“Advances in Knowledge Discovery and Data Mining”, The MIT
Press, 1996.

[16] V. Ganti, J. Gehrke, and R. Ramakrishnan: “Mining Very Large
Databases”, IEEE Computer, Vol.32, No.8, pp.38-45, August
1999.

[17] M. J. Zaki: “Parallel and Distributed Association Mining: A
Survey”, IEEE Concurrency, Vol.7, No.4, pp.14-25, 1999.

[18] R. Agrawal, T. Imielinski, and A. Swami: “Mining Association
Rules between Sets of Items in Large Databases”, Proceedings
of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, pp.207-216, May 1993.

[19] R. Agrawal, T. Imielinski, and A. Swami: “Database Mining:
A Performance Perspective”, IEEE Transactions on Knowledge
and Data Engineering, Vol.5, No.6, pp.914-925, December 1993.

[20] R. Agrawal and R. Srikant: “Fast Algorithms for Mining Asso-
ciation Rules”, Proceedings of the Twentieth International Con-
ference on Very Large Data Bases, pp.487-499, September 1994.

[21] T. Shintani and M. Kitsuregawa: “Hash Based Parallel Algo-
rithms for Mining Association Rules”, Proceedings of the Fourth
IEEE International Conference on Parallel and Distributed In-
formation Systems, pp.19-30, December 1996.

[22] J. Heinanen: “Multiprotocol Encapsulation over ATM Adapta-
tion Layer 5”, RFC1483, July 1993.

[23] M. Laubach: “Classical IP and ARP over ATM”, RFC1577,
January 1994.

[24] M. Oguchi, T. Tamura, T. Shintani, and M. Kitsuregawa: “Im-
plementation of Parallel Data Mining on an ATM Connected
PC Cluster and Performance Analysis of TCP Retransmission
Mechanisms”, The Transactions of the Institute of Electronics,
Information and Communication Engineers, Vol.J81-B-I, No.8,
pp.461-472, August 1998.

[25] A. Acharya and S. Setia: “Availability and Utility of Idle Mem-
ory in Workstation Clusters”, Proceedings of the 1999 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pp.207-216, May 1993.

[26] A. Cockcroft: “How Much RAM is Enough?”, Sun
World Online, http://www.sunworld.com/sunworldonline/swol-
05-1996/swol-05-perf.html, May 1996.

