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Abstract. Publish/subscribe system captures the dynamic aspect of
the specified information by notifying users of interesting events as soon
as possible. Fast response time is important for event filtering which
requires multiple step processing and is also one of important factors to
provide good service for subscribers.
Generally the event arrival rate is time varying and unpredictable. It is
very possible that no event arrives in one unit time and multiple events
arrive in another unit time. When multiple events with different work-
loads arrive at the same time, the average response time of multiple-event
filtering depends on the sequence of event by event filtering.
As far as we know, significant research efforts have been dedicated to the
techniques of single event filtering, they can not efficiently filter multiple
events in fast response time. In this paper, we first propose a multiple-
event filtering algorithm based on R-tree. By calculating relative work-
load of each event, event by event filtering can be executed with short-job
first policy so as to improve average response time of multiple-event fil-
tering. Furthermore, a self-adaptive model is proposed to filter multiple
events in dynamically changing environment.
The multiple-event filtering algorithm and the self-adaptive model are
evaluated in a simulated environment. The results show that the average
response time can be improved maximum up to nearly 50%. With the
self-adaptive model, multiple events can be filtered with average response
time always same as or close to the possible best time in the dynamically
changing environment.

1 Introduction

Publish/subscribe system provides subscribers with the ability to express their
interests in an event in order to be notified afterwards of any event fired by a
publisher, matching their registered interests [7]. It captures the dynamic aspect
of the specified information. Fast response time is very important for the event
filtering which requires multiple-step processing, there the events need to be
filtered out first as the inputs of operator like join in continuos query, and is also
one of important factors to provide good service for subscribers.

Generally the event arrival rate is time varying and unpredicatable. For exam-
ple, traffic monitoring, ticket reservation, internet access, stock price, weather



reports, etc.. In contrast to stable arrival rate, it’s very possible that multiple
events arrive in one unit time and no event arrives in another unit time.1

In the context of event filtering, even many index techniques such as event
filtering algorithms based on multiple one-dimensional indexes [5] [8] [11] [18]
[21] and event filtering algorithms based on multidimensional index [19][22], have
been proposed, all these techniques are designed to filter single event instead of
multiple events at one time. They can not filter multiple events directly in fast
average response time if those events arrive at the same time with different
workloads. Meanwhile, we found that event filtering based on multidimensional
index [19] [22] is more efficient and flexible than that based on multiple one-
dimensional indexes.

In order to improve average response time of multiple-event filtering, we first
propose a R-tree [4] [9] based multiple-event filtering algorithm. Furthermore a
self-adaptive model is proposed to filter multiple events in a dynamically chang-
ing environment with average response time always same as or close to the best
possible time.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of this paper. Section 3 describes the algorithm to improve average re-
sponse time. Section 4 proposes the self-adaptive model. In Section 5, the event
filtering algorithm and the self-adaptive model are evaluated in a simulated en-
vironment. Section 6 discusses the related work. Finally, conclusions and future
work are given out in Section 7.

2 Background

In this section, we first explain the reason why R-tree [4] [9] is chosen, and then
introduce the event filtering based on R-tree briefly. We assume that readers
have enough knowledge about R-tree.

– The reasons to choose R-tree
There are two reasons to choose R-tree here. One is performance; another is
space partition strategy.
As introduced in [19] [22], event filtering based on multidimensional index (
UB-tree [2] [3] or R-tree [4] [9] ) is feasible, and is much efficient and flexible
than that based on Count algorithm [21], which is one representative event
filtering algorithm based on multiple one-dimensional indexes. Fig.1 shows
a snapshot of performance differences with two examples.2 That’s the first
reason to choose R-tree.
Further UB-tree and R-tree have different partition strategies. Generally, the
search algorithms (except point query) of both index structures traverse mul-
tiple paths from root node to leaf nodes. UB-tree partitions space with space
filling curve. UB-tree’s search algorithm is depth-first and it is not easy to
calculate the number of multiple search paths at one specified middle level.
Contrary to UB-tree, R-tree decomposes the space in a hierarchical manner.
Its search algorithm does not have to be depth-first, so it is easy to calculate

1 Even logically for most of the events, there exist absolutely different arriving times,
in this paper, we regard the events arriving in the same unit time as the events
arriving at the same time. For example, positions reported every 30 seconds or the
stock prices sampled every second.

2 For details, please refer to [19] [22].
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Fig. 1. Performance Examples of Event Filtering Based on Different Index Techniques

the number of multiple search paths at one specified middle level. Because the
number of multiple search paths will be used to estimate workload of event
filtering in our proposal, we choose R-tree here.

– Event Filtering based on R-tree
The event filtering based on R-tree is executed as a point enclosed query. Sub-
scriptions are hypercubes and events are points here. The dimension number
means the number of attributes used in pub/sub system.
By the way, even the other multidimensional indexes, for example, multilevel
grid file [20], are applicable, as the purpose of this paper is concerned, we will
conentrate on the main idea to filter multiple events with unstable arrival rate
in fast response time.

3 Algorithms to Improve Average Response Time

3.1 Motivation and Main Algorithm

Short-Job First(SJF) is one well-known policy used to improve average response
time while scheduling multiple jobs. The critical thing is to estimate workloads
properly. Meanwhile, the search algorithm of R-tree traverses multiple paths
from root to leaf nodes. Apparently, the number of the multiple search paths
reflects workload relatively.

Our motivation is that, in order to improve average response time of multiple-
event filtering, first estimate workloads of multiple events relatively according to
their numbers of search paths, and then filter these multiple events sequentially
with SJF policy.

Fig.2 shows the pseudo codes of main algorithm. The algorithm is called
BatchSearch. It is an algorithm to filter multiple events, one of whose in-
puts is one array of events (EventArray) instead of one event. The parameter
Level controls the depth to estimate workloads starting from root node Root.
In WorkloadTable (to be introduced later), the events will be sorted in ascending
order of the number of search paths stopped at Level. Line 1 corresponds to
workload estimation. Line 2-6 correspond to event by event filtering with SJF
policy.



Fig. 2. Main Algorithm BatchSearch

Line 4 filters one event with an algorithm similar to the original R-tree point
enclosed query. The differences are that it starts from the nodes obtained at line 3
instead of Root in original point enclosed query, and the point enclosed query is
executed many times (same as the number of nodes corresponding to the search
paths) instead of one time. For this reason, in the following, we only describe
the data structures and algorithms newly defined for workloads estimation which
corresponds to Line 1 of Fig.2.

3.2 Data Structures Used to Estimate Workloads

Two data structures called WorkloadTable and IntersectBuffer, are newly defined
for workloads estimation.

(a) WorkloadTable (b) IntersectBuffer

Fig. 3. Data Structures Used to Estimate Workloads

WorkloadTable is an array of items with structure shown in Fig.3-a. Each item
corresponds to one event. The workload is the number of search paths(nodes)
stopped at the specified Level. ”List of nodes” are pointers of the corresponding
nodes. Only one WorkloadTable is used while estimating workloads.

IntersectBuffer (Fig.3-b) is used to record events whose Minimum Bounding
Rectangles (MBR) intersect with those of the items inside one R-tree node.
Each level uses one intersectBuffer while estimating workloads. The items in one
intersect buffer correspond to those of one R-tree node.



3.3 Algorithms to Estimate Workloads

The algorithm (corresponding to line 1 of Fig.2) to fill WorkloadTable is shown
in Fig.4. In function EstimateWorkload, line 1 initializes the IntersectBuffer
of level 0, there is only one item with one pointer pointing to the root node
and all events are assumed to intersect with the MBR of this item, because the
item is root. Line 2 calls a recursive procedure named BatchIntersect to fill
the WorkloadTable. Line 3 sorts the WorkloadTable according to the workloads
in ascending order.

In the procedure BatchIntersect, line 1-2 read the parent item of current
node from the IntersectBuffer of last level (the level near to root) and get all
event IDs kept in the item. Line 3 checks the ending condition of the recursive
search and line 4 fills the WorkloadTable with the event IDs obtained at line 1-2
and CurrentNode. Line 7-16 fill the IntersectBuffer of CurrentLevel. Line
18-20 check next level by accessing children nodes of CurrentNode.

Fig. 4. Algorithms to Estimate Workload



4 Self-Adaptive Model

While filtering multiple events with BatchSearch, for the same multiple events,
the average response time depends on the value of Level which controls the depth
to estimate workloads. The number of multiple events arriving at the same time
is not fixed, and the size and data distribution of index change dynamically also.
In this section, we will propose a self-adaptive model to filter multiple events in
the dynamically changing environment.

4.1 Relationship Between Average Response time and Level

Fig.5-a and Fig.5-b show two examples which reflect the relationship between
average response time and Level. For the details of experiment environment,
please refer to Section 5.1. In order to avoid overlap of results, the time here is the
sum of average response times obtained with different numbers of times(loop).
”Same events” means same EventArrays are used for different Levels. ”Dif-
ferent events” means different EventArrays are used. The height of the index
tree is 7 with 1.5 million subscriptions. The difference of two examples is the
number of multiple events (size of EventArray).

(a) Event number=4 (b) Event num-
ber=64

(c) Changing of Average Re-
sponse Time

Fig. 5. Relationship between Average Response Time and Level

The point to observe is that, with same EventArrays, the average response
time changes in the shape of concave while level changes from root to leaf. It’s
reasonable considering the two main steps of BatchSearch: estimating work-
loads and event by event filtering with SJF policy. While filtering multiple events
arriving at the same time, time cost to estimate workloads is overhead compared
to the event filtering without workloads estimation. The overhead becomes larger
with value increment of Level. At the same time, because the higher the Level
is, the more accurate of the workloads estimation is. Consequently the efficiency
of SJF becomes more and more higher with value increment of the Level. That
is the reason why the average response time changes in the shape of concave.



Based on the concave, we can say that the best level exits for multiple-event
filtering with BatchSearch if the number of events is fixed. The best level is
the level to get the shortest average response time while using BatchSearch.

On the basis of the above observations (Fig.5-a and Fig.5-b) and analyses.
The logical relationship between average response time and Level is expressed
in Fig.5-c by the line marked Logical. As shown in Fig.5-a and Fig.5-b, the best
level changes with different event numbers. It also depends on the size of index
as shown in the evaluation (Fig.7-a).

In order to get possible best average response time, the BatchSearch should
run with Level valued best in the dynamically changing environment.

4.2 Adjust Best Level Dynamically According to Statistic
Information

The self-adaptive model is shown in Fig.6. The function of the self-adaptive
model is to adjust the best level dynamically for multiple-event filtering in the
dynamically changing environment. It is built for filtering multiple events with
same event number. For multiple events with different event numbers, their
statuses ( current best level, numbers of updates, etc.) will be kept in different
buffers.

Fig. 6. Self-Adaptive Model

If the current level is best, we call system is stable. In stable status, Batch-
Search is executed with Level valued best. As shown in the right of Fig.6, for
arriving EventArrays (with same event number), same level CurrentLevel is
used. In stable status, the average response time is the possible best time be-
cause CurrentLevel is best level. The number of update operations (insert and
delete) is monitored and counted in stable status. After a lot of update opera-
tions, the height of the index tree or its data distribution might be changed, it is
necessary to check the best level or adjust it if it changed. The system becomes
unstable then. The Threshold shown in Fig.6 is the number to determine the
time when the system enters unstable status from stable status.

Unstable status is the status in which the best level should be checked. In
unstable status, the best level can be checked and gotten by trying all levels



with same EventArrays naively, but it’s not acceptable for a dynamic system in
practice. The overhead is not neglected for a higher index tree or EventArrays
with larger size.

Our solution is that, check the average response times of current level and its
upper level and its lower level (totally 3 levels), based on the ”Logical” concave
line in Fig.5-c. There, BatchSearch filters different EventArrays (same size)
with Level values changed in a loop of round-robin way as shown in the right
of Fig.6. N is the loop counter. In unstable status, multiple events are filtered
with Level valued same as or close to the best level.

The average response times of three different levels are summed up (called
CTime, UTime, LTime in Fig.6 which correspond to current level, upper level
and lower level) and checked after the loop ends. Note that, the EventArrays
are different each time and one EventArray is filtered just one time. If

CTime < UTime && CTime < Dtime
is true, the system will enter stable status, because the current level is the best
according to the concave changes of average response time against level value.
Otherwise, adjust the current level towards to the direction of to best level
(bottom of the concave line marked ”logical”, Fig.5-c) according to the concave
shape and restart a new loop.

Because the contents of EventArrays are different, so it is possible that the
average response times obtained at different levels do not change logically when
the loop counter N is very small, for example, the lines marked by ”Different
events” with loop counter valued 4 and 16 in Fig.5-a . In this case, as expressed
by the line of ”Practical” in Fig.5-c, it is possible for system to enter stable
status even the current level (A) is not best level (C). It is also possible that

CTime > UTime && CTime > LTime
is true as shown at level (B). The self-adaptive model can not work well in these
cases. But, if the value of loop counter N is larger enough, for example 64, the
”Practical” line will change in the same concave shape or close up to ”Logical”
line statistically as shown in Fig.5-a and Fig.5-b. The loop counter is manageable
for a long time running pub/sub system.

5 Results of Evaluation

5.1 Environment

The algorithm is evaluated in main memory structure. Both subscriptions and
events are created randomly. The index size (number of subscriptions) changes
from 0.5 million to 3.0 millions. The number of events arriving at the same time
changes from 2 to 128. The BatchSearch algorithm is implemented on R-tree3

with index node capacity 10 and leaf node capacity 20 in a 12D space.4 The
hardware platform is Sun Fire 4800 with 4 900MHz CPUs and 16G memory.
The OS is Solaris 8.
3 Version 0.62b. http://www.cs.ucr.edu/ marioh/spatialindex
4 The performance doesn’t change drastically if the dimension number is located in

a reasonable range as shown in Fig.1. Dimension number and node capabilities in-
fluence the performance of R-tree itself but do not influence the improvement of
average response time and effectiveness of the self-adaptive model which are mainly
concerned in this paper.



(a) Best level of differ-
ent sizes of index

(b) Best level of differ-
ent numbers of events

(c) Effectness of
BatchSearch with
different sizes of
index

(d) Effectness of
BatchSearch with
different numbers of
input

(e) Performance of
unstable status (event
number=8)

(f) Performance of un-
stable status (event
number=32)

Fig. 7. Evaluation Results of BatchSearch and Adaptive Model

5.2 Evaluation of BatchSearch Algorithm

Changing of Best Level Fig.7-a shows that the best level changes slowly with
increment of index size. It means the Threshold in Fig.6 can be set larger, for
example 100,000, if the insert operation is more frequent than delete operation.
For pub/sub system with balanced insert and delete operations, the value of
Threshold is implementation-dependent. Generally, the update operations are
much less than filtering operation. So in most of time, system can run in stable
status. Fig.7-b shows that the smaller the number of events is, the lower the best
level is.

Improvement of Average Response Time Fig.7-c and Fig.7-d compare
the average response time of BatchSearch with Level valued best to that
without considering about workloads (”no BatchSearch”. BatchSearch is not
used, multiple events are filtered event by event with original point enclosed



query in a random sequence). Fig.7-c shows that the improvement of average
response time has good scalability with increment of index size. Fig.7-d shows
that the larger the number of events is, the more the average response time
can be improved. The reason is that for the events with uniform distribution of
workloads, the larger the number of events is, the more the SJF can be benefited.
The maximum improvement is nearly up to 50% in our evaluation. Both Fig.7-c
and Fig.7-d also show that the cost to estimate workload (algorithms shown in
Fig.4) can be neglected compared to the improvement of average response time.

Effectiveness of Self-Adaptive Model Fig.7-e and Fig.7-f compare the per-
formance with the self-adaptive model to that without the self-adaptive model
(same as ”no BatchSearch” in Fig.7-c and Fig.7-d) and the possible best per-
formance. There, the size of index changes from 0.5 million to 2.6 millions, the
Threshold is 300,000, and the loop counter is 64. When the system becomes
stable, 300,000 subscriptions are inserted into the index. So Fig.7-e and Fig.7
show the performance of unstable status. The difference is the number of events.

Fig. 8. One Piece of Unstable Status Performance (event number=8, index
size=2,000,000)

We can find that the average response time with the self-adaptive model is
much better than that without the self-adaptive model (BatchSearch is not
used), the time differences are almost at the same level as those shown in Fig.7-c
and Fig.7-d which are obtained with best level. Even in unstable status, the time
obtained by using self-adaptive model is very close to the possible best time as
shown in Fig.7-e and Fig.7-f. The time difference compared to the possible best
time is so small that is hard to make difference in Fig.7-e and Fig.7-f. Fig.8
shows a piece of details of Fig.7-e where index size is 2 millions (the range of
sequential number is about 1550-3000).

We can say that with the self-adaptive model, multiple events can be filtered
with average response time same as or close to the possible best time.



6 Related Work

A lot of algorithms related to event filtering have been proposed. They are pro-
posed for publish/subscribe systems [1] [8] [12] [18] [19] [21] [22], for continuous
queries [5] [6] [15] and for active database [10] [11].

Predicate indexing techniques have been widely applied. There, a set of one-
dimensional index structures are used to index the predicates in the subscrip-
tions. Mainly, there are two kinds of multiple one-dimensional indexs based algo-
rithms: Count algorithm [21] and Hanson algorithm [10] [11]. The performances
of Count algorithm and Hanson algorithm have same complexity order, they dif-
fer from each other by whether or not all predicates in subscriptions are placed
in the index structures. Meanwhile in [19] [22], event filtering based on multidi-
mensional index is proved to be feasible and efficient compared to the popular
Count algorithm. The conclusions of [19] [22] are the basis of this paper.

The testing networking based techniques [1] [12] initially preprocess the sub-
scriptions into a matching tree. Different from predicate index, [1] and [12] built
subscription trees based on subscription schema. They suffer from the problem
of space and maintenance.

Event filtering is one critical step of continuous queries. In [5], predicate index
is built based on Red-Black tree, there algorithm is similar to bruteforce which
scans the total Red-Black tree every time when event arrives. In [6], Count
algorithm is used. Adaptivity is applied in [15], it implements routing policies to
let faster operators filter out some tuples before they reach the slower operators.
In [17], queries are optimized based on rate of input to minimize response time
by introducing event arrival rates into the optimizer cost model.

As far as we know, the problem of adaptively improving average response time
for multiple events arriving at the same time has not been addressed yet.

7 Conclusions and Future Work

In this paper, in order to improve the average response time of pub/sub sys-
tem with unstable event arrival rate, we first proposed a multiple-event filtering
algorithm based on R-tree. The relative workload of each event is estimated
according to the number of search paths so as to utilize short-job first policy.
Further a self-adaptive model is designed to filter multiple events in dynamically
changing environment.

According to the evaluation results, the improvement of average response time
has good scalability with index size and the larger the number of events is, the
more the average response time can be improved. The average response time
can be improved maximum up to nearly 50%. The results also show that the
overhead derived from workloads estimation can be neglected compared to the
improvement of average response time. With the self-adaptive model, multiple
events can be filtered with average response time always same as or close to the
possible best time.

Because the proposed idea and self-adaptive model can be applied to other
multidimensional index structure also, for example, multilevel grid file [20], in the
future, we will try other applicable multidimensional indexs in different update
scenarios and real data.
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