
Performance Analysis of
Runtime Data Declustering over

SAN-Connected PC Cluster
Masato Oguchi 1,2 and Masaru Kitsuregawa 2

1 Research and Development Initiative, Chuo University
42-8 Ichigaya Honmura-cho, Shinjuku-ku Tokyo 162-8473, Japan

Email: oguchi@computer.org
2 Institute of Industrial Science, The University of Tokyo

ABSTRACT

Personal computer/workstation (PC/WS) clusters
have come to be studied intensively in the field of parallel
and distributed computing. They are considered to play an
important role as a large scale computer system in the next
generation, such as large server sites and/or high perfor-
mance parallel computers, because of their good scalabil-
ity and cost performance ratio. In the viewpoint of applica-
tions, data intensive applications including data mining and
ad-hoc query processing in databases are considered very
important for high performance computing, in addition to
the conventional scientific calculation. Thus, investigating
the feasibility of such applications on a PC cluster is mean-
ingful.

In this paper, a PC cluster connected with Storage
Area Network(SAN) is built and evaluated. In the case of
SAN cluster, each node can access all shared disks directly
without using LAN; thus, SAN clusters achieve much bet-
ter performance than LAN clusters for disk access oper-
ations. However, if a lot of nodes access the same shared
disk simultaneously, application performance degrades due
to I/O-bottleneck. A runtime data declustering method, in
which data is declustered to several other disks dynamically
during the execution of application, is proposed to resolve
this problem.

Parallel data mining is implemented and evaluated on
the SAN-connected PC cluster. This application requires
iterative scans of a shared disk, which degrade execution
performance severely due to I/O-bottleneck. The runtime
data declustering method is applied and characteristics of
the system such as I/O and network operations are evalu-
ated in detail. According to the results of experiments, the
proposed method prevents performance degradation caused
by shared disk bottleneck in SAN clusters.

KEY WORDS
Cluster Computing, Data Mining, Storage Area Network,

Runtime Data Declustering

1 Introduction

Recently, high performance computer systems are using
commodity parts as their components, including CPUs,
disks, and memories, rather than proprietary parts. This is
because technologies for such commodity parts have ma-
tured enough to be used for high-end computer systems.
While an interconnection network between nodes has not
yet been commoditized until now, some common-purpose
networks, e.g. Fast/Gigabit Ethernet, are the strong can-
didates as a de facto standard of high speed communica-
tion networks. With the progress of technologies for such
commodity high speed local area networks(LANs), future
high performance computer systems will undoubtedly em-
ploy commodity networks as well. Thus, Personal com-
puter/workstation (PC/WS) clusters using high speed com-
modity LANs have become an exciting research topic in the
field of parallel and distributed computing. They are con-
sidered to be a promising platform for future high perfor-
mance parallel computers, because of their good scalability
and cost performance ratio.

Data intensive applications including data mining and
data warehousing are extremely important for high perfor-
mance computing in the near future. We previously built
a PC cluster connected 100 Pentium Pro PCs with ATM-
LAN, and implemented several database applications to
evaluate their performance and the feasibility of such ap-
plications using PC clusters[1][2].

LAN-connected PC clusters are used as a system of
large server site and/or a high performance parallel com-
puter. In both cases, huge volume of data might be trans-
ferred frequently from one node’s disk to another, for the
execution of parallel computing, load distribution, mainte-
nance of the system, and so on. In order to reduce LAN
traffic and raise availability of nodes in the cluster, Storage
Area Network(SAN), e.g. Fibre Channel, has come to be
adopted[3]. SAN can link storage devices directly to all
nodes of the cluster, therefore, SAN prevents the conges-
tion of LAN traffic. In the case of SAN clusters, differ-
ent from LAN clusters, each node does not have to com-
municate with each other through LAN for reading data



from other nodes’ disks, because a pool of storage is shared
among all nodes and can be accessed directly through SAN
with no burden to the other nodes nor LAN.

In this paper, we have built a PC cluster which has
a SAN-connection as well as a LAN-connection, and ex-
amined its performance features. Basic characteristics of
data transfer on the cluster are evaluated. Performance of
parallel data mining application on the SAN cluster is ex-
amined. In the case of SAN cluster, each node can access
all shared disks directly. However, if a lot of nodes access
the same shared disk simultaneously, performance of ap-
plication must degrade due to I/O-bottleneck. A runtime
data declustering method, in which data is declustered to
several other disks through a SAN during the execution of
application, is proposed and evaluated.

The rest of paper is organized as follows. In Section
2, one of data mining applications, called Hash Partitioned
Apriori (HPA), and its parallelization are explained. In Sec-
tion 3, an overview of our SAN-connected PC cluster is
shown, and disk-to-disk copy is examined. HPA program
is implemented and evaluated on SAN-connected PC clus-
ter, using multiple shared Fibre Channel disks, in Section
4. A runtime data declustering method, which is expected
to prevent I/O-bottleneck situation in use of shared disks,
is proposed and evaluated in Section 5. Final remarks are
made in Section 6.

2 Data mining application and its paral-
lelization

2.1 Mining of association rules

In terms of applications in parallel and distributed com-
puting, data mining has attracted a lot of attention from
both research and commercial community. Data mining
is a method for the efficient discovery of useful informa-
tion, such as rules and previously unknown patterns exist-
ing among data items in large databases, thus allowing for
more effective utilization of existing data. Large transac-
tion processing system logs have been accumulated as a re-
sult of the progress of bar-code technology. Such data was
just archived and not used efficiently until recently. The ad-
vance of microprocessor and secondary storage technolo-
gies allow us to analyze vast amount of transaction log data
to extract interesting customer behaviors.

One of the best known problems in data mining is
mining of association rules from a database, so called “bas-
ket analysis”[4][5][6]. Basket type transactions typically
consist of a transaction identification and items bought per
transaction. An example of an association rule is “if cus-
tomers buy A and B, then 90% of them also buy C”. The
best known algorithm for association rule mining is the
Apriori algorithm proposed by R. Agrawal of IBM Al-
maden Research[7]. Apriori first generates so-called can-
didate itemsets (groups consisting of one or more items),
then scans the transaction database to determine whether

the candidates have the user-specified minimum support.
In the first pass (pass 1), support for each item is

counted by scanning the transaction database, and all items
that satisfy the minimum support are picked out. These
items are called large 1-itemsets. In the second pass (pass
2), 2-itemsets (pairs of two items) are generated using the
large 1-itemsets, which are called candidate 2-itemsets.
Support for the candidate 2-itemsets is then counted by
scanning the transaction database. The large 2-itemsets
that achieve the minimum support are determined. The al-
gorithm goes on to find large 3-itemsets, large 4-itemsets,
and so on. This iterative procedure terminates when a large
itemset or a candidate itemset becomes empty. Association
rules which satisfy user-specified minimum confidence can
be derived from these large itemsets.

2.2 Parallelization of association rule mining

In order to improve the quality of the rule, very large
amounts of transaction data must be analyzed and this re-
quires considerable computation time. Several parallel al-
gorithms for mining association rules have been previously
studied[8], based on Apriori. One of these algorithms,
called Hash Partitioned Apriori (HPA), is implemented and
evaluated on the PC cluster.

HPA partitions the candidate itemsets among proces-
sors using a hash function, like the hash join in relational
databases. HPA effectively utilizes the whole memory
space of all the processors, and thus, it works well for large
scale data mining. The steps of the algorithm are as fol-
lows.

1. Generate candidate k-itemsets:

All processors have all the large (k − 1)-itemsets in
memory when pass k starts. Each processor gener-
ates candidate k-itemsets using large (k−1)-itemsets,
applies a hash function, and determines a destination
processor ID. If the ID is the processor’s own, the
itemset is inserted into the hash table, otherwise it is
discarded.

2. Scan the transaction database and count the support
value:

Each processor reads the transaction database from its
local disk. It generates k-itemsets from those transac-
tions and applies the same hash function used in phase
1. The processor then determines the destination pro-
cessor ID and sends the k-itemsets to it.

When a processor receives these itemsets, it searches
the hash table for a match, and increments the match
count.

3. Determine large k-itemsets:

Each processor checks all the itemsets it has and de-
termines large itemsets locally, then broadcasts them
to the other processors. When this phase is finished



Table 1. Each node of the PC cluster

CPU Intel 800MHz Pentium III
Main memory 128Mbytes
IDE hard disk Quantum Fireball 20Gbytes
SCSI hard disk Seagate Cheetah 18Gbytes
OS Solaris 8 for x86
Fast Ethernet NIC Intel PRO/100+
Fibre Channel NIC Emulex LP8000 Host Bus Adapter

at all processors, large itemsets are determined glob-
ally. The algorithm terminates if no large itemset is
obtained.

3 SAN-connected PC cluster and its perfor-
mance

3.1 Our SAN-connected PC cluster pilot sys-
tem

Various research projects which develop and examine
PC/WS clusters have been reported. Initially, the process-
ing nodes and/or networks were built from customized de-
signs, since it was difficult to achieve good performance
using only off-the-shelf products[9][10]. Such systems are
interesting as a research prototypes, but most of them failed
to be accepted as a common platform. However, because
of advances in workstation and network technologies, we
can build reasonably high performance WS clusters using
off-the-shelf workstations and high speed LANs[11][12].

Several projects on PC clusters were
reported[13][14], in which some scientific calculation
benchmarks were executed on the cluster. Because perfor-
mance of PCs and networks used in those projects was not
good enough, absolute performance of such clusters was
not attractive compared with high-end massively parallel
processors. However, preferably good cost/performance
has been achieved in these PC clusters[14]. As the perfor-
mance of PCs has increased dramatically afterward, variety
of research projects on PC clusters have been reported
until now[15][16][17][18][19]. Previously, we built a large
scale ATM-connected PC cluster, and implemented and
evaluated several database applications on it[1][2][20].

Recently, we have built a SAN-connected PC clus-
ter pilot system. 32 nodes of 800MHz Pentium III PCs
are connected with Fast Ethernet as well as Fibre Channel.
Each node consists of the components shown in Table 1.

All 32 PCs of the cluster and 32 SCSI hard disks
are connected with a Fibre Channel. Seagate Chee-
tah 18Gbytes is used as SCSI hard disks, and Brocade
SilkWorm 2800 is employed as a Fibre Channel switch.
Switching ability of this device is 200MB/s per port. Hi-
tachi Black Diamond 6800, which has 64Gbps switching

Personal Computer
(Pentium III 800MHz)

100Base−T
Fast Ethernet

Fibre Channel

 32 PCs

 32 SCSI Disks

Fibre Channel switch
(Brocade SilkWorm)

64Gbps Gigabit switch
(Hitachi Black Diamond)

Figure 1. An overview of SAN-connected PC cluster pilot
system

ability, is used as a Fast Ethernet Switch. This switch has
more than enough capacity to connect 32 nodes through
Fast Ethernet with non-blocking. An overview of the PC
cluster is shown in Figure 1.

3.2 Disk-to-disk copy performance of the
system

Disk-to-disk copy performance is measured on the PC clus-
ter pilot system described in the previous subsection. The
following two cases of disk copies are compared in this ex-
periment:

In the first case, data is copied from one disk to the
other just like LAN cluster. That is to say, the source node
reads data from a hard disk, then sends it through Fast Eth-
ernet LAN to the destination node, which receives the data
and writes it to its own hard disk. In this case, although the
hard disks are accessed through Fibre Channel, each node
uses one of shared disks exclusively just like its local disk.

In the second case, one node accesses both the source
disk and the destination disk through Fibre Channel, and
copies the data directly by oneself. (This is so-called
“LAN-free” copy.)

The result of performance at the source and the desti-
nation nodes are shown in Table 2. The volume of copied
data is 100Mbytes, and the block size of LAN transfer is
8Kbytes. As shown in Table 2, Fast Ethernet LAN is oc-
cupied by the transferred data in the first case. Moreover,
CPU usages are relatively high in this experiment, espe-
cially at the destination node. These features are not prefer-
able for a PC cluster used as a large scale server system.
In the second case, on the other hand, the data is copied
only through the source node, so that neither other node
nor LAN is bothered by the copy traffic. This mechanism
is suitable for a PC cluster, which saves bandwidth of LANs
and CPU power for other purposes.



Table 2. Disk-to-disk copy performance of the PC cluster

Case1: Copy through Fast Ethernet LAN
Node Source Destination

CPU(Sys) 20% 40%
LAN(Send) 90Mbps 10Mbps
LAN(Receive) 10Mbps 90Mbps
I/O(Read) 10MB/sec 0
I/O(Write) 0 10MB/sec

Case2: Copy through Fibre Channel
Node Source Destination

CPU(Sys) 20% −
LAN(Send) 0 −
LAN(Receive) 0 −
I/O(Read) 10MB/sec −
I/O(Write) 10MB/sec −

4 Execution of data mining application on
SAN-connected PC cluster

4.1 Implementation and execution of HPA
program

The HPA program explained in Section 2 is implemented
on our SAN-connected PC cluster pilot system. Transac-
tion data is produced using data generation program devel-
oped by Agrawal[7], designating some parameters, such as
the number of transaction, the number of different items,
and so on. The produced data is stored at one of SCSI
FC hard disks, which is shared by all PCs through Fibre
Channel. During execution of the application, this data is
accessed by all processes concurrently. Each node of the
cluster accesses its own portion of the data, which is as-
signed to each node dividing the data by the number of ap-
plication execution nodes almost equally.

Solaris socket library is used for the inter-process
communication. As a type of socket connection,
SOCK STREAM is used, which is two-way connection
based byte stream. All processes are connected with each
other, thus forming mesh topology.

In this experiment, the number of transaction is
10,000,000, the number of different items is 5,000, and the
minimum support is 0.7%. The size of the transaction data
is about 800Mbytes in total. The message block size is
8Kbytes, and the disk I/O block size is 64Kbytes in this ex-
periment. The number of nodes used in this application is
eight. The result of HPA is shown in Table 3.

Using above parameters, the execution of HPA pro-
gram iterates until pass 6. It is known that the number of
candidate itemsets in pass 2 is very much larger than that in
other passes. This often happens in association rule mining.

0

20

40

60

80

100

0 100 200 300 400 500 600

C
P

U
 U

sa
ge

 [%
]

Time [s]

I/O Wait

Sys

Usr

Usr + Sys + Wt
Usr + Sys

Usr

Figure 2. CPU usage (using 1 Disk)

0

10

20

30

40

50

60

0 100 200 300 400 500 600

N
et

w
or

k 
T

hr
ou

gh
pu

t [
M

bp
s]

Time [s]

Send
Recv

Figure 3. LAN Throughput (using 1 Disk)

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

I/O
 T

hr
ou

gh
pu

t [
K

B
yt

es
/s

ec
]

Time [s]

Read
Write

Figure 4. I/O Throughput (using 1 Disk)



Table 3. The number of itemsets and the execution time at
each pass

C Number of candidate itemsets
L Number of large itemsets
T Execution time of each pass [sec]

pass C L T
pass 1 − 1043 64.8
pass 2 543405 504 253.1
pass 3 395 315 74.6
pass 4 172 109 73.3
pass 5 30 29 66.1
pass 6 4 2 66.2

The details of system performance are measured and
analyzed to investigate the behavior of HPA program exe-
cuted on the SAN-connected PC cluster. CPU usage, LAN
throughput, and I/O throughput of one node of the clus-
ter are shown in Figure 2 − 4. These three figures are re-
sults measured on the same node. They indicate that perfor-
mance is bounded by different factors from phase to phase
during the execution of HPA program. According to Fig-
ure 2, Performance is bounded by CPU in pass 2. In pass 2,
not only the user mode but also the system mode accounts
a considerable part of CPU usage, which is supposed to be
consumed for network operation, as shown in Figure 3. In
other passes, on the other hand, performance is bounded
mostly by I/O operation instead of CPU, as shown in Fig-
ure 2 and Figure 4. The characteristic of pass 3 is somewhat
between CPU-bound and I/O-bound conditions.

4.2 Using multiple shared Fibre Channel
disks

The influence of access conflicts at a shared disk is inves-
tigated in the next experiment. Transaction data is divided
manually and copied to several disks before the execution
of the program. This reduces the probability of read access
conflicts at the shared disk.

The number of disks used in the experiment is two
and four. The contents of data are divided by two/four al-
most equally, and copied to SCSI FC disks manually before
the execution of HPA program. During the execution, each
node reads its own portion from a designated disk. For ex-
ample, four nodes access the same disk in the case of two
FC disks being used.

In Figure 5, execution time of HPA program is shown,
when one − four disks are used. According to the result,
the execution time becomes shorter when the number of
disks changes from one to four. As the number of disks
increases, disk accesses are distributed so that less read ac-
cess conflicts could happen. As shown in this figure, the

Figure 5. Execution time of HPA program using 1 − 4
Disks

execution time becomes shorter in pass 1 and passes 3 − 6.
On the other hand, the execution time of pass 2 is almost
equal in all cases. This is because pass 2 is a CPU-bound
condition rather than a I/O-bound condition, as mentioned
in the previous subsection.

5 An evaluation of runtime data declustering
on SAN-connected PC cluster

5.1 Runtime data declustering method

In SAN-connected PC cluster, each node can access all
shared disks through Storage Area Network. Thus, an ap-
plication on each node does not have to care where data is
actually located; in a local disk or remote. However, when
a considerable number of nodes access to the same shared
disk simultaneously, application performance must degrade
due to I/O-bottleneck.

If stored data is accessed repeatedly during the exe-
cution of application, the probability of access conflict on
the shared disk increases. In such a case, it is preferable
to decluster data from one disk to others during/after first
access to the data. That is to say, each node copies portion
of the data that will be accessed again afterward, from one
shared disk to another which can be used exclusively. The
copied portion of the data, instead of the original one, is
accessed after the declustering is completed. We call this
method runtime data declustering in the rest of this paper.
In some applications, it is difficult to decluster the data be-
fore execution of program. Using this method, it is possible
to decide dynamically which node needs which portion of
the data.

Because SAN traffic does not interfere with each
other when target disks are different, application perfor-
mance should not degrade due to I/O-bottleneck after the
data is declustered to several disks. Even in this method,



Figure 6. Execution time of HPA program (Runtime
declustering from 1 to 8 disks)

first accesses to the shared disk may still conflict. In addi-
tion, copy operation to another disk is required. However,
this seems to degrade performance little, because the data is
already read to each node during the first access, and write
operation does not conflict on SAN.

5.2 An evaluation of runtime data decluster-
ing on SAN cluster

According to Figure 2 − 4, we have found pass 2 of HPA
program using one shared disk is a CPU-bound condition,
but the CPU load is not high in other passes. In those
passes, accesses to shared disks become bottleneck.

Runtime data declustering method proposed in previ-
ous subsection can be applied in this situation. Because
each node can access all shared disks in the storage pool, it
is possible to copy its own portion of the transaction data
to another disk, which is used exclusively. In this method,
portion of the data is copied to their own disks (eight disks
in total) when the data is read in pass 1, then the copied
data, instead of the original one, is accessed afterward.

In Figure 6, the execution time of the proposed run-
time data declustering method are shown. The proposed
method is compared with the original one in which data is
read only from the same shared disk repeatedly.

As shown in the figure, the execution times in pass 1
and pass 2 are almost equal in both methods. In pass 1,
this is because data must be read from a shared disk in both
methods. After pass 1, the data is declustered to other disks
which is accessed exclusively. However, because pass 2
is not a I/O-bound condition, the execution times are al-
most the same in both methods. In pass 3 − 6, on the
other hand, the execution time of runtime data decluster-
ing method becomes extremely shorter than that of original
method. This is because I/O-bottleneck is resolved by run-
time data declustering.

0

20

40

60

80

100

0 50 100 150 200 250 300 350

C
P

U
 U

sa
ge

 [%
]

Time [s]

I/O Wait

Sys

Usr

Usr + Sys + Wt
Usr + Sys

Usr

Figure 7. CPU usage (Runtime declustering from 1 to 8
disks)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350

N
et

w
or

k 
T

hr
ou

gh
pu

t [
M

bp
s]

Time [s]

Send
Recv

Figure 8. LAN Throughput (Runtime declustering from 1
to 8 disks)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350

I/O
 T

hr
ou

gh
pu

t [
K

B
yt

es
/s

ec
]

Time [s]

Read (Source Disk)
Write (Source Disk)

Read (Destination Disk)
Write (Destination Disk)

Figure 9. I/O Throughput (Runtime declustering from 1 to
8 disks)



The detailed behavior of the system is also investi-
gated. CPU usage, LAN throughput, and I/O throughput of
one node of the cluster are shown in Figure 7 − 9. These
three figures are results measured on the same node.

As shown in Figure 9, the portion of transaction data
is declustered from source disk to destination disk in pass 1.
The data is declustered only through Fibre Channel, there-
fore almost no LAN traffic is observed in pass 1 as shown
in Figure 8. According to Figure 7, CPU is mostly in the
state of I/O wait in this pass.

In pass 2, the profiles of the figures are almost the
same with those of Figure 2 − 4. This means data declus-
tering does not affect the system performance because pass
2 is bounded by CPU instead of I/O.

However, runtime data declustering resolves I/O-
bottleneck in pass 3 − 6. CPU has almost no I/O wait time
in these passes as shown in Figure 7. As a result, execution
time of HPA program becomes extremely shorter in these
passes.

5.3 Execution and evaluation of runtime
data declustering using 16 nodes

Next, HPA program is executed using 16 nodes to compare
with the cases using 8 nodes. In this experiment, the num-
ber of transaction data is 20,000,000. Other parameters are
the same with those used in the previous experiments, i.e.,
the number of different items is 5,000, and the minimum
support is 0.7%, and so on.

The transaction data is stored in one FC disk, which
is shared by 16 nodes of the SAN-connected PC cluster. In
the first experiment, the data is accessed by 16 nodes con-
currently and repeatedly in all passes during the execution
of HPA program. In the second experiment, runtime data
declustering method is applied. That is to say, shared FC
disk is accessed by all 16 nodes in pass 1, then the data
is declustered to 16 FC disks in this pass, and the copied
portion of data is accessed afterward. The two methods are
compared in Figure 10.

In this case also, the execution times in pass 1 and
pass 2 are almost equal in two methods. The reason should
be the same; the shared disk must be accessed in pass 1
anyway, and pass 2 is not I/O-bound but CPU-bound. And
in pass 3 − pass 6, the execution time of runtime data
declustering method becomes shorter than that of original
method, because I/O-bottleneck is resolved.

Total performance improvement by the proposed
method is larger than that of the 8 nodes case shown in
Figure 6. In 16 nodes experiment, the ratio of execution
time in pass 2 against the total execution time is rather
small compared with the 8 nodes case. As the number
of application execution nodes increases, execution time in
pass 2 becomes shorter because this pass is bounded by
CPU, but performance does not improve in other passes
because they are I/O-bound. According to this result, the
proposed method becomes more important when the num-

Figure 10. Execution time of HPA program (Runtime
declustering from 1 to 16 disks)

ber of nodes increases in SAN cluster.

6 Conclusion

In this paper, a PC cluster connected with Storage Area
Network is built and evaluated. SAN-connected PC clus-
ters are suitable for a large scale server site because data
transfer between disks does not depend on a LAN, thus
bandwidth of a network as well as CPU load can be saved.
This feature is shown in this paper by a simple data transfer
experiment.

We have implemented and evaluated a data mining
application on our SAN-connected PC cluster pilot system.
In this application, transaction data is scanned repeatedly
in iterative passes. Therefore, a runtime data declustering
method, in which data is declustered from a shared disk to
other disks during the execution, is considered to be effec-
tive. As a result of the experiment evaluated on the SAN
cluster, the execution time of each pass becomes shorter,
after the declustering is completed in the first pass. The
proposed runtime data declustering method achieves bet-
ter performance especially when the number of nodes used
in the cluster is large, because this method is effective for
I/O-bottleneck problem.

While shared disks of a SAN cluster are quite use-
ful for the parallel/distributed computing, disks might be
scanned repeatedly in some data-intensive applications,
which degrades execution performance severely. The run-
time data declustering method achieves better performance
in such cases.

Acknowledgment

This project is partly supported by the Japan Society for the
Promotion of Science (JSPS) RFTF Program and New En-
ergy and Industrial Technology Development Organization



(NEDO). We would like to thank Tokyo Electron Ltd. for
technical help with Fibre Channel-related issues. Hitachi,
Ltd. gave us extensive technical help with Gigabit switch.

References

[1] T. Tamura, M. Oguchi, and M. Kitsuregawa: “Par-
allel Database Processing on a 100 Node PC Clus-
ter: Cases for Decision Support Query Processing and
Data Mining”, Proceedings of SC97: High Perfor-
mance Networking and Computing (SuperComputing
’97), November 1997.

[2] M. Oguchi, T. Shintani, T. Tamura, and M. Kit-
suregawa: “Optimizing Protocol Parameters to Large
Scale PC Cluster and Evaluation of its Effectiveness
with Parallel Data Mining”, Proceedings of the Sev-
enth IEEE International Symposium on High Perfor-
mance Distributed Computing, pp.34-41, July 1998.

[3] B. Phillips: “Have Storage Area Networks Come of
Age?”, IEEE Computer, Vol.31, No.7, pp.10-12, July
1998.

[4] U. M. Fayyad, G. P. Shapiro, P. Smyth, and R. Uthu-
rusamy: “Advances in Knowledge Discovery and
Data Mining”, The MIT Press, 1996.

[5] V. Ganti, J. Gehrke, and R. Ramakrishnan: “Min-
ing Very Large Databases”, IEEE Computer, Vol.32,
No.8, pp.38-45, August 1999.

[6] M. J. Zaki: “Parallel and Distributed Association
Mining: A Survey”, IEEE Concurrency, Vol.7, No.4,
pp.14-25, 1999.

[7] R. Agrawal and R. Srikant: “Fast Algorithms for Min-
ing Association Rules”, Proceedings of the Twentieth
International Conference on Very Large Data Bases,
pp.487-499, September 1994.

[8] T. Shintani and M. Kitsuregawa: “Hash Based Paral-
lel Algorithms for Mining Association Rules”, Pro-
ceedings of the Fourth IEEE International Confer-
ence on Parallel and Distributed Information Sys-
tems, pp.19-30, December 1996.

[9] R. S. Nikhil, G. M. Papadopoulos, and Arvind: “*T:
A Multithreaded Massively Parallel Architecture”,
Nineteenth International Symposium on Computer
Architecture, pp.156-167, May 1992.

[10] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten,
and J. Sandberg: “Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer”, Proceed-
ings of the Twenty-First International Symposium on
Computer Architecture, pp.142-153, April 1994.

[11] C. Huang and P. K. McKinley: “Communication Is-
sues in Parallel Computing Across ATM Networks”,

IEEE Parallel and Distributed Technology, Vol.2,
No.4, pp.73-86, Winter 1994.

[12] D. E. Culler, A. A. Dusseau, R. A. Dusseau, B. Chun,
S. Lumetta, A. Mainwaring, R. Martin, C. Yoshikawa,
and F. Wong: “Parallel Computing on the Berkeley
NOW”, Proceedings of the 1997 Joint Symposium
on Parallel Processing(JSPP ’97), pp.237-247, May
1997.

[13] T. Sterling, D. Saverese, D. J. Becker, B. Fryxell, and
K. Olson: “Communication Overhead for Space Sci-
ence Applications on the Beowulf Parallel Worksta-
tion”, Proceedings of the Fourth IEEE International
Symposium on High Performance Distributed Com-
puting, pp.23-30, August 1995.

[14] R. Carter and J. Laroco: “Commodity Clusters: Per-
formance Comparison Between PC’s and Worksta-
tions”, Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Com-
puting, pp.292-304, August 1996.

[15] A. Barak and O. La’adan: “Performance of the
MOSIX Parallel System for a Cluster of PC’s”, Pro-
ceedings of the HPCN Europe 1997, pp.624-635,
April 1997.

[16] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato: “PM:
An Operating System Coordinated High Performance
Communication Library”, Proceedings of the HPCN
Europe 1997, pp.708-717, April 1997.

[17] M. Oguchi, T. Shintani, T. Tamura, and Masaru Kit-
suregawa: “Characteristics of a Parallel Data Min-
ing Application Implemented on an ATM Connected
PC Cluster”, Proceedings of the HPCN Europe 1997,
pp.303-317, April 1997.

[18] Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, T.
Takahashi, F. O’Carroll, and H. Harada: “RWC PC
Cluster II and SCore Cluster System Software − High
Performance Linux Cluster”, Proceedings of the Fifth
Annual Linux Expo, pp.55-62, 1999.

[19] M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda,
and B. Abali: “Efficient Virtual Interface Architec-
ture (VIA) Support for the IBM SP Switch-Connected
NT Clusters”, Proceedings of the International Paral-
lel and Distributed Processing Symposium, pp.33-42,
May 2000.

[20] M. Oguchi and M. Kitsuregawa: “Dynamic Re-
mote Memory Acquisition for Parallel Data Mining
on ATM-Connected PC Cluster”, Proceedings of the
Thirteenth ACM International Conference on Super-
computing, pp.246-252, June 1999.


