
Efficient Processing of Wireless Read-only Transactions in Data Broadcast

SangKeun Lee
Next Generation Handsets Lab.

LG Electronics Inc.
yalphy@lge.com

Masaru Kitsuregawa
Institute of Industrial Science

The University of Tokyo
kitsure@tkl.iis.u-tokyo.ac.jp

Chong-Sun Hwang
Dept. of Computer Science and Engineering

Korea University
hwang@disys.korea.ac.kr

Abstract

In this paper, we address the issue of ensuring consis-
tency of multiple data items requested in a certain order by
read-only transactions in wireless data broadcast. To han-
dle the inherent property in a data broadcast environment
that data can only be accessed strictly sequential by users,
we explore a predeclaration-based query optimization and
devise two practical transaction processing methods in the
context of local caching. We also evaluate the performance
of the proposed methods by an analytical study. Evaluation
results show that the predeclaration technique we introduce
reduces response time significantly and adapts to dynamic
changes in workload.

1. Introduction

In a wireless broadcast environment, mechanisms to ef-
ficiently transmit information to mobile clients are of sig-
nificant interest. For instance, such mechanisms could be
used by a satellite or a base station to communicate infor-
mation of common interest to mobile clients. Broadcast-
based delivery is important for a wide range of applications
that involve dissemination of information to a large number
of clients. Dissemination-based applications include infor-
mation feeds such as stock trading and sport tickets, elec-
tronic newsletters, mailing lists, banking and traffic man-
agement systems. In such applications, if there is a client
waiting for a data item, the client will get the data item from
the air while it is being broadcast by the server. Thus, the
cost for data dissemination is independent of client number
since a data broadcast can satisfy multiple clients waiting
for the same data item, resulting in a much more efficient
way of using the bandwidth. It is therefore quite suitable

for disseminating substantial amount of information to a
large number of clients where bandwidth efficiency is a ma-
jor concern.

Providing consistent data values to transactions is one
of main issues in designing mechanisms for wireless data
broadcast [3, 7, 11]. In wireless data broadcast, transac-
tions do not need to inform the server or set any locks at
the server before they access data items. They can get data
items from the air while the data items are being broad-
cast. If updates at the server are done concurrently, how-
ever, transactions may observe inconsistent data values. In
the previous work, some weak consistency criterion has of-
ten been adopted (e.g.update consistencyin [10]) to prop-
erly handle consistency problem caused by updates at the
server. This kind of approaches is based on the belief that
serializability would be ”expensive” to achieve for asym-
metric communication environments. This paper, however,
has still stuck to serializability for the following reasons:

• We observed that serializability isnot expensive to
achieve in the proposed concurrency control tech-
niques. This is in contrast to the argument that any
potential protocol for ensuring serializability would be
very expensive in broadcast environments, thus lead-
ing to poor performance [10]. Performance evaluation
presented in Section 5 supports our argument.

• It is natural to consider serializability ”expensive”, if
the client consistency requirement is not so strictand
weak consistency requirement is proven to be much
more efficient to achieve than serializability. How-
ever, it is not easy to meet the latter condition with-
out sacrificing currency requirement. This is impor-
tant since we believe most advanced applications in a
dissemination-based environment do need to read cur-
rent data items as possible as they can.

• While the protocols based on the relaxed consistency
requirements are useful in some applications, serial-
izability may still be necessary to guarantee the cor-
rectness of some other applications such as mobile
stock trading where a buy/sell trade will be triggered
to exploit the temporary pricing relationships among
stocks. From the trader’s perspective, the inability of
maintaining serializability may lead to important fi-
nancial consequences. For instance, if the users who
submitted multiple read-only transactions to commu-
nicate and compare their query results, they may be
confused [6].

The major challenge in this paper is how to provide con-
sistent data items to wireless transactions while speeding up
their processing. For this end, a predeclaration-based query
optimization is explored in conjunction with local caching
technique. In a traditional pull-based (i.e. client-initiated)
data delivery, predeclaration technique has often been used
to avoid deadlocks in locking protocols [5]. In the push-
based data delivery, however, predeclaration in transaction
processing has a novel property that each read-only trans-
action can be processed successfully with aboundedworst-
case response time.

The unique contributions of our work are two-fold. First,
to the best of our knowledge, our work is the first ap-
proach to query optimization for reducing transaction re-
sponse time significantly in wireless data broadcast. This is
based on the philosophy that a client should take a more
active role in maintaining its transactions consistency in
an asymmetric communication environment. Second, our
work is able to balance between average response time (i.e.
overall system performance) and worst-case response time
(i.e. individual performance), which is one important chal-
lenge in wireless transaction management [11]. In the gen-
eral case, the performance gap between average and worst-
case response time in our approach is only half of a broad-
cast cycle.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the basic design principles to process wire-
less read-only transactions in data broadcast. Section 3
describes two predeclaration-based transaction processing
methods to maintain consistency of transactions. Section 4
and 5 contain an analysis and its results respectively. Our
conclusion is finally presented in Section 6.

2. Basic Design Principles

With the system model similar to [8], let us consider
the two different broadcast organizations illustrated in Fig-
ure 1, where the server broadcasts a set of data items
{d1, d2, d3, d4, d5, d6, d7} in one broadcast according to a
broadcast program (d1 is the relatively most frequently ac-
cessed item,d2 andd3 are less frequently accessed ones,

d1 d2 d7d6d5d4d3

(a) Uniform Broadcast Program

d1 d2 d1d5d3d1d4 d7d3d1d6d2

(b) Nonuniform Broadcast Program

Figure 1. Broadcast Organization

andd4, d5, d6 andd7 are least frequently accessed ones).
While program (a) is the uniform broadcast program, (b) is
the nonuniform broadcast program (refer to [1] for detail).

Suppose that, in each broadcast organization, a client
transaction program starts its execution at the middle of the
broadcast cycle:

IF (d3 ≤ 3) THEN read(d1) ELSE read(d2)

Now, we can pose the following two questions, including

• What is the response time (in terms of number of data
items) taken to execute the transaction?

• What happens to transactional consistency if data
items are being updated at the server?

In the following sections, we answer the questions raised
above and their rationale.

2.1. Predeclaration and its Usefulness

To first show that the order in which a transaction reads
data affects the response time of the transaction, consider
the client transaction program at the uniform broadcast in
Figure 1. Since bothd1 andd2 preceded3 in the broad-
cast content with respect to the client and access to data is
strictly sequential, the transaction has to readd3 first and
wait to read the value ofd1 or d2. Thus, the response time
of the transaction is 11.5 (in cased3 andd1 are accessed)
or 12.5 (in cased3 andd2 are accessed). If, however, all
data items that will be accessedpotentiallyby the transac-
tion, i.e.,{d1, d2, d3}, are predeclared in advance, a client
can hold all necessary data items with a reduced response
time of 6.5. This is also true to the case of the nonuni-
form broadcast content in Figure 1. The response time of
the transaction is 7 (in cased3 andd1 are accessed) or 8 (in
cased3 andd2 are accessed), while the response time is 5
if predeclaration is used. Thus the use of predeclaration al-
lows the necessary items to be retrieved in the order they are
broadcast, rather than in the order the requests are issued.

2.2. Transactional Consistency in presence of Up
dates

One way to ensure the consistency of read-only transac-
tions is to abort transactions that read data values that cor-
respond to different database states [9, 8]. However, this
kind of abort-based methods leads to intolerable transaction
abort rate in case of intensive updates at the server. An-
other way is to control read-only transactions such that they
read consistent data items only. To achieve this, the server
can broadcast multiple versions of data items so that clients
could read appropriate versions [8]. However, this kind of
multiversion schemes increases a broadcast cycle length,
thereby resulting in the increased transaction response time.

A better way, which is adopted in this paper, is to make
sure that each broadcast cycle represents a consistent snap-
shot of the database (this requirement was also assumed in
the work [9, 8]). Thus, a read-only transaction that reads all
its items within a single broadcast cycle can be successfully
executed without any concurrency control overhead at all.
In reality, however, most transactions will be started at some
point within a broadcast cycle, thus may have to read data
items from different broadcast contents. In such a situation,
there is no guarantee that the values they read are consis-
tent. This is also true to the case of the predeclaration-based
data access scheme. To cope with this, we require that data
acquisition process be separated from actual data reads by
transactions, so only a subset of consistent snapshot of the
database can be acquired from a single broadcast content
(in a synchronous manner) or two broadcast contents (in an
asynchronous manner).

3. Proposed Methods

Now, two predeclaration-based transaction processing
methods are devised in the context of local caching tech-
nique:PA (Predeclaration with Autoprefetching) andPA2

(PA/Asynchronous). The central idea is to employ predecla-
ration of readset in order to minimize the number of differ-
ent broadcast cycles from which transactions read data. The
information about the readset of a transaction is assumed to
be available at the beginning of transaction processing by
using preprocessor on a client to analyze its transaction be-
fore being submitted to the client system (this will consume
certain processing power on the client side).

3.1. Caching and Invalidation Bit Pattern

Clients can cache data items of interest locally to reduce
access latency. Caching reduces the latency of transactions
since transactions find data of interest in their local cache
and thus need to access the broadcast channel for a smaller
number of times. In this paper, clients use their available

hard disks as local caches and caching technique is em-
ployed in the context of transaction processing. We there-
fore need to guarantee that transaction semantics should not
be violated as a result of the creation and destruction of
cached data based on the runtime demands of clients.

In the presence of updates on the server, items in cache
may become stale. In wireless data broadcast, clients access
data from their local caches, while updates to data values
are collected at a server site. In order to keep the clients’
caches consistent with the updated data values, the client-
cached copies of modified items must be invalidated or up-
dated. Among various approaches to communicating up-
dates to the clients, it has been shown in the work [2, 4] that
the client cache coherency can be effectively maintained ex-
ploiting a periodicinvalidation reportwhich is a list of the
items that have been updated recently. Broadcasting iden-
tifiers of updated items, however, may consume much por-
tion of broadcast channel, which is a scarce resource, es-
pecially if a large portion of items in the database is up-
dated. Furthermore, in the context of serializability consis-
tency model, consistency must be preserved across reads of
multiple data items.

For practical transaction processing methods in conjunc-
tion with local caching, in our work, the server is required
to broadcast aninvalidation bit patternwhich is followed
by a broadcast content. In an invalidation bit pattern, each
bit corresponds to a single data item in the database (we
assume that the location of each data item in the broadcast
channel remains fixed). A bit is set to 1 if its corresponding
data item has been updated during the previous broadcast
cycle but not installed into the previous broadcast content.
The remaining bits are set to 0s. This way, compared to
invalidation reports, the size of invalidation information
broadcast by the server can be significantly reduced,
especially if a large portion of items in the database is
updated. Moreover, transactional cache consistency can be
easily maintained if a serializable broadcast content is on
the air in each broadcast cycle. Thus, we presume that the
following always hold:

Server Requirement: In each broadcast cycle, the
server broadcasts an invalidation bit pattern which is
followed by serializable data values written by committed
transactions.

At the beginning of each broadcast cycle, a client
tunes in and reads the invalidation bit pattern broadcast
by the server. For any data itemdi in its local cache,
if a bit corresponding todi is 1 in the invalidation bit
pattern, the client marksdi as ”invalid” and getsdi again
from the current broadcast content and puts it into local
cache. Cache management in our scheme is therefore an
invalidation combined with a form of autoprefetching [2].

Invalidated data items remain in cache to be autoprefetched
later. In particular, at the next appearance of the invalidated
data item in the broadcast content, the client fetches its new
value and replaces the old one.

3.2. MethodsPA and PA2

We define the predeclared readset of a transactionT , de-
noted byPre RS(T), to be a set of data items thatT reads
potentially. For all methods, each client processesT in
three phases: (1)Preparation phase:it gets Pre RS(T),
(2)Acquisition phase:it acquires all data items belonging
to Pre RS(T) from the broadcast content(s) or its local
cache. During this phase, a client additionally maintains a
setAcquire(T) of all data items that it has acquired so far,
and (3)Delivery phase:it delivers data items to its transac-
tion according to the order in which the transaction requires
data.

With the server requirement shown in Section 3.1, the ex-
ecution of each read-only transaction is clearly serializable
if a client can fetch all data items within a single broadcast
cycle. Since, however, a transaction is expected to start at
some point within a broadcast cycle, its acquisition phase
may therefore be across more than one broadcast cycle. To
remedy this problem, in methodPA, a client starts the ac-
quisition phase synchronously, i.e. at the beginning of the
next broadcast cycle. Since all data items for its transaction
are already notified, the client will complete the acquisition
phase within a single broadcast cycle. More specifically, a
client processes its transactionTi as follows:

1. On receiving Begin(Ti) {
get Pre RS(Ti) by using preprocessor;
Acquire(Ti) = ∅;
wait for the next broadcast cycle to begin;

}
2. Tune in and listen to an invalidation bit pattern;

For every item di in local cache {
if (a corresponding invalidation bit is set to 1)
{ mark di as ”invalid”; }

}
For every ”valid” item di in local cache {

if (di ∈ Pre RS(Ti)) { Acquire(Ti) ⇐ di; }
}
While (Pre RS(Ti) 6= Acquire(Ti)) {

for any (”invalid” item dk in local cache)
or any (dj ∈ Pre RS(Ti)−Acquire(Ti)) {

tune in and read dk or dj when available from
the broadcast content;
if (dk was fetched)
{ overwrite the value in local cache; }
if (dj was fetched)
{ put dj into local cache; Acquire(Ti) ⇐ dj ; }

}

}
3. Deliver data items to Ti according to the order

in which Ti requires, and then commit Ti.

Theorem 1. PA generates serializable execution of read-
only transactions if, in each broadcast cycle, the server
broadcasts an invalidation bit pattern which is fol-
lowed by serializable data values.
Proof. It is straightforward from the fact that the data
set read by each transaction is a subset of a single
broadcast.

The main advantage ofPA is that it achieves a consid-
erable reduction of transaction response time in an update-
intensive environment without sacrificing serializability. In
particular, each transaction can be successfully commit-
ted within two broadcast cycles even in an extreme case
where all data items in a database are updated during a
broadcast cycle. The disadvantage ofPA, however, is that
its synchronous approach may incur unnecessary response
time latency to short transactions in a sporadically updated
database. For example, if most of data items reside in local
cache and all missed items can be retrieved from the current
broadcast content, then a transaction would be completed
within a single broadcast cycle in which it is initiated.

To get over the disadvantage of methodPA, a client can
take an asynchronous way, i.e. it fetches data items immedi-
ately without waiting for the next broadcast cycle to begin.
Notice that, unlike a synchronous approach, the acquisition
phase may be across two different broadcast contents in this
case. This method is referred to asPA2. It goes as follows:

1. On receiving Begin(Ti) {
get Pre RS(Ti) by using preprocessor;
Acquire(Ti) = ∅;

}
2. For every ”valid” item di in local cache {

if (di ∈ Pre RS(Ti)) { Acquire(Ti) ⇐ di; }
}
While (Pre RS(Ti) 6= Acquire(Ti)) {

for any (”invalid” item dk in local cache)
or any (dj ∈ Pre RS(Ti)−Acquire(Ti)) {

tune in and read dk or dj when available from
the broadcast content;
if (dk was fetched)
{ overwrite the value in local cache; }
if (dj was fetched)
{ put dj into local cache; Acquire(Ti) ⇐ dj ; }

}
if (it is time to receive an invalidation bit pattern) {

tune in and listen to an invalidation bit pattern;
for every item di in local cache {

if (a corresponding invalidation bit is set to 1)

{ mark di as ”invalid”;
Acquire(Ti) = Acquire(Ti)− {di};

}
}

}
}

3. Deliver data items to Ti according to the order
in which Ti requires, and then commit Ti.

Theorem 2. PA2 generates serializable execution of read-
only transactions if, in each broadcast cycle, the server
broadcasts an invalidation bit pattern which is fol-
lowed by serializable data values.
Proof. Let bcyclei be the broadcast cycle in which
some transactionT1 completes its acquisition phase
andDSi be the serializable database state that corre-
sponds to the broadcast cyclebcyclei. We show that
the values read byT1 correspond to the database state
DSi by using a contradiction. Let us assume that the
value of data itemd1 read byT1 differs from the value
of d1 at DSi. Then, an invalidation bit pattern should
have been broadcast at the beginning ofbcyclei and
thusd1 should have been invalidated.

Note that bothPA andPA2 impose minimal overhead
on the server. The only overhead on the server side is to
broadcast both serializable data values and an invalidation
bit pattern at each broadcast cycle.

4. Analysis

In this section, we develop analytical models to compare
predeclaration-based transaction processing methods with
other two methods which are slightly modified versions
from ones proposed by [8]. We below describe the proce-
dure sketch of the two.

Invalidation with Autoprefetching (IA) : This method
invalidates (i.e. aborts) any transaction that reads data
values that correspond to different database states in order
to ensure the serializability of transactions. To achieve this,
the server broadcasts an invalidation bit pattern, which has
been described in Section 3.1. Each client caches items of
interest locally with each item as a unit of caching. The
invalidation with a form of autoprefetching is employed
as cache management policy. In addition, each client
maintains a setRS(T) for each active transactionT , which
includes all data itemsT has read so far. The client tunes in
at the beginning of each broadcast to read the invalidation
bit pattern. A transactionT is aborted and restarted if any
itemdi ∈ RS(T) is invalidated, i.e. ifdi is updated.

Multiversion with Autoprefetching (MA) : In method
MA, the server maintains and broadcasts multiple versions
for each item, instead of broadcasting the last committed
value only. Versions correspond to different values at the
beginning of each broadcast cycle and version numbers to
the corresponding broadcast cycle. On each client side,T
reads the most current version for its first read operation,
that is the version with the largest version numberv0. For
subsequent reads,T reads versions with the largest version
numbers smaller than or equal tov0. If such a version ex-
ists,T proceeds, elseT is aborted. In addition, each client
maintains local cache and adopts the invalidation with a
form of autoprefetching for handling cache coherence. To
support multiversioning, items in cache also have version
numbers. For reading items from the cache, the same tests
regarding their version numbers are performed as when
reading items from the broadcast. To ensure that items in
cache are current, the server broadcast an invalidation bit
pattern described in Section 3.1.

From now, we will derive the basic equation that de-
scribes the expected average response time which is
measured in the number of data items broadcast by the
server. We begin by stating some assumptions of our
model:

• There areD equal size date items in the database.

• Each broadcast cycle represents the state of the
database at the beginning of the cycle.

• Each broadcast is preceded by an invalidation bit pat-
tern.

• Updates occur following an exponential distribution, at
an update rate ofµ per item.

• Each mobile client will repeatedly query a subset of
D with a high degree of locality. This subset is thus a
”hot spot” for the client. Each item in the hot spot will
be queried at the client at the rater.

In the following analysis, we preclude the possibility of
client’s disconnections for the sake of simplicity. We also
ignore the size of invalidation bit patterns in computing the
expected average response time of all methods. This is be-
cause, one bit is assigned to each data item in an invalidation
bit pattern, thus an invalidation bit pattern is comprised of
only D bits whose size corresponds to only a few number
of data items.

Note also that, in wireless data broadcast, the perfor-
mance of a single client read-only transaction for a given
broadcast program is independent of the presence of other
clients transactions. As a result, we will analyze the en-
vironment by considering only a single client. In particu-
lar, we mainly focus on the nonuniform broadcast, since the

queryquery

no updates

no queries (i-1 bcycles)

Figure 2. Scenario for Cache Hit Ratio

analysis for the uniform broadcast can be naturally derived
from the methodology described here.

4.1. Size of Broadcast and Average Hit Ratio

4.1.1 Size of Broadcast

In the nonuniform broadcast, theD data items are split into
n partitions, where each partition comprises data items with
similar access frequencies. Partitions with larger access fre-
quencies will be broadcast more often than those with lower
access frequencies. Let partitioni be broadcastλi times
(1 ≤ i ≤ n). Moreover letλi > λj for 0 < i < j and
λn = 1. Let λ be LCM (least common multiple) ofλi

for all i. In [1], the ith partition,Pi (1 ≤ i ≤ n), is fur-
ther split intoci chunks (ci = λ/λi). The data broadcast
is then organized by a broadcast program that interleaves
the chunks of the various partitions. The broadcast program
can also be viewed as a sequence of equal sized segments
such thatP1 appears in all segments. SinceP1 is broadcast
λ1 times, there areλ1 segments and each segment contains
∑n

i=1 λi|Pi|/λ1 items, where|Pi| denotes the number of
data items in partitioni. Let |NU | be the number of items
in a single broadcast cycle for the nonuniform broadcast.
Thus, the number of data items in a broadcast cycle is,

|NU | =
n

∑

i=1

λi|Pi| (1)

4.1.2 Average Hit Ratio

In order to compute the cache hit ratio, we assume that a
query has occurred at a particular instant of time and com-
pute the conditional probability of the value in the cache
being valid. Note that the probabilityq0 that no queries in
a broadcast cycle ise−r|NU |, and the probabilityu0 that no
updates in a broadcast cycle ise−µ|NU |. Let the two queries
occur ati broadcast cycles of each other. Figure 2 shows
the scenario that last query happenedi broadcast cycles be-
fore the current one. Since the scheme of invalidation with
autoprefetching is employed for cache management, all we
need for the second query to be a hit is no updates during
the one broadcast cycle immediately preceding the current
one. Thus, the equation for the hit ratio forP -series andIA

no updates

i aborts

endissue

successful execution
(E units)

Figure 3. Scenario for Method IA

becomes,

h = (1− q0)
∞
∑

i=1

qi−1
0 u0 = uo (2)

Notice that the cache hit ratio forMA, which will be
shown in Section 4.2.2, is different from the above since
the size of broadcast is increased by accommodating old
versions.

4.2. Expected Average Response Time

Let as andat be the average response time for accessing
a single data item and for accessing multiple data items, re-
spectively, in a given transaction for the nonuniform broad-
cast. For the nonuniform broadcast,as is ”optimal” when
the inter-arrival time between two consecutive occurrences
of a data item is always the same, i.e. there is no variance
in the inter-arrival time for each data item [12]. When the
inter-arrival rate of a data item is fixed, the expected delay
for a request arriving at a random time is one half of the gap
between successive broadcasts of the data item. For each
data itemdi ∈ D, thus, the expected delay ofdi is,

ω(di) =
|NU |
2fi

(3)

, wherefi is the frequency ofdi. The expectedas for any
data request is calculated by multiplying the probability of
access (denoted byp(di)) with the expected delay of each
data item and summing the results,

as =
∑

di∈D

p(di)ω(di) (4)

4.2.1 MethodIA

With the use ofIA, a client retrieves data items in a one-
at-a-time fashion, i.e. only after retrieving one item from
a broadcast another request is issued. Let us first con-
sider the case where there is no updates at the server so
the execution of transaction is always committed success-
fully. The average response time for a transaction access-
ing m data items without local cache can be computed as

m
∑

di∈D p(di)ω(di). Then, the average response time of
IA can be calculated by,

E = m(1− h)
∑

di∈D

p(di)ω(di) (5)

If data items are updated at the server, however, a trans-
action may be aborted and restarted several times before
it commits successfully. Figure 3 shows the scenario that
its abort occursi times before the successful execution.
The probabilityc that one execution of transaction withIA
leads to a successful commitment is smaller than or equal

to e−µ|NU |mb E
|NU| c. This is because, in order for a client

to commit its transaction successfully,m data items should
not be updated during at least|NU |b E

|NU |c units (note that

it receives at leastb E
|NU |c invalidation bit patterns). Thus,

the equation for response time (i.e. the difference between
end andissue) is,

at(IA) =
∞
∑

i=0

E(1− c)i =
E
c

(6)

4.2.2 MethodMA

In [8], three approaches have been proposed to maintain old
versions of data items in the nonuniform broadcast: cluster-
ing, overflow bucket pool and new disks. With any approach
to broadcast organization, keeping multiple versions in the
nonuniform broadcast leads to the overall increased length
of broadcast cycle, which is proportional to the number of
accommodated old versions per data item, thereby resulting
in the increased average response time.

Although the inter-arrival time between two consecutive
occurrences of a data item may be different on a selected
broadcast organization carrying old versions of data items,
we assume that there is some optimal broadcast organiza-
tion in which the inter-arrival time of a data item is same.
If the average number of data items that have updated dur-
ing |NU | is Nc = D(1 − e−µ|NU |) and the server main-
tains largek old versions per data item enough to process
all read-only transactions successfully, the increase for ac-
commodating old versions on the broadcast is at leastkNc.
For each data itemdi ∈ D, hence, the expected delay ofdi

is,

ωc(di) =
|NU |+ kNc

2fi
(7)

, wherefi is the frequency ofdi on the broadcast accommo-
dating old versions of data items together with up-to-date
data items.

The expected average response time for any data request
is calculated as

∑

di∈D p(di)ωc(di). Therefore, the average
response time for a transaction accessingm data items with-
out local cache can be computed asm

∑

di∈D p(di)ωc(di).

Thus, the average response time ofMA can be calculated
by (we assume that each transaction is successfully com-
mitted),

at(MA) = m(1− hv)
∑

di∈D

p(di)ωc(di) (8)

, wherehv = e−µ(|NU |+kNc) as the size of a broadcast is
increased bykNc (see the scenario for cache hit ratio in
Figure 2).

4.2.3 MethodsPA and PA2

In our methods, a transaction processing is divided into 3
phases: preparation, acquisition and delivery phase. If the
time required by a client for each phase is expressed asPT ,
AT andDT respectively, the response time can be formu-
lated by,

at(PA, PA2) = PT + AT + DT (9)

In a synchronous methodPA, PT will be, on average, half
of one broadcast cycle andDT is trivial, thus Expression
(9) can be reduced to,

at(PA) ≈ 1
2
|NU |+ AT (10)

ForPA, the retrieval time for the first item from the broad-
cast isas itself. The retrieval time for the second item
from the broadcast isas

|NU | (= δ) of the remaining broad-
cast size, and the retrieval time for the next item from the
broadcast is in turnδ of the remaining broadcast size, and
so on. Thus, the expectedAT for a transaction withmp

predeclared items is,

AT (PA) =
mp(1−h)

∑

i=1

δ(1− δ)i−1|NU | (11)

The expected average response time ofPA is therefore
computed as,

at(PA) ≈ 1
2
|NU |+

mp(1−h)
∑

i=1

δ(1− δ)i−1|NU | (12)

In an asynchronous methodPA2, bothPT andDT are triv-
ial, thus Expression (9) can be reduced to,

at(PA2) ≈ AT (13)

For PA2, AT involves retrieving some items in the broad-
cast cycle at which a transaction is issued and then down-
loading the remaining items (and possibly those items pre-
viously retrieved again) in the next broadcast cycle. We
can compute the expected average response time ofPA2

Parameter Value(s)

D Varying (1000)
µ Varying (5× 10−4 per unit)
n 3

λ1,λ2, λ3 4, 2, 1
|P1|, |P2|, |P3| Varying (50, 150, 800)
k (MA only) 2

m Varying (10)
mp

3
2m

fP1 , fP2 , fP3 Varying (0.7, 0.2, 0.1)
Cache Invalidation Invalidation with Autoprefetching

Table 1. Parameter Settings

by using the expression forPA if the situation is divided
into two: one is that those items achieved from the broad-
cast in the broadcast cycle at which a transaction is issued
are not invalidated during acquisition phase, and the other
is that some of those items are invalidated during acquisi-
tion phase. In the first case, since a client will, on average,
retrieve |NU |

2as
items at the broadcast cycle at which a trans-

action is issued and the probability that the items are not

invalidated isu0
|NU|
2as , the expectedAT of PA2 is equal to

the multiplication of Expression (11) andu0
|NU|
2as . In the

second case, the expectedAT is equal to the multiplication

of Expression (12) and(1 − u0
|NU|
2as). Thus, the expected

average response time ofPA2 is the sum of the two multi-
plications,

at(PA2) ≈ 1
2
|NU |(1−u0

|NU|
2as)+

mp(1−h)
∑

i=1

δ(1−δ)i−1|NU |

(14)
Note that, for both methods, the upper-bound of average
response time is32 |NU |. Further, the worst-case response
time is bounded by2|NU | irrespective of the number of
data items or cache hit ratio.

For the uniform broadcast, the expected average re-
sponse time for all methods can be naturally derived from
the methodology described in this section. All we need to
compute the average response time is therefore to substitute
the size of broadcast withD, andas with 1

2D in all equa-
tion.

5. Analytical Results

We show some analytical results in this section. In the re-
sults, one time unit corresponds to the physical time taken to
broadcast a single item on the server side. Table 1 summa-
rizes the parameter settings for the server (the top half) and
a client (the bottom half), where values in parenthesis are
default ones. With respect to client’s access frequency, the

frequency of access of data items within a single partition is
assumed to be uniformly distributed.

5.1. Effect of Transaction Size

In this analytical result, we show the effect of transaction
size on various methods whenµ is set to5× 10−4 per unit
1. Figure 4 shows the performance behavior as the num-
ber of data items accessed by a transaction is increased in
the uniform and the nonuniform broadcast content respec-
tively. We see that for large data items (greater than 5 in
our analysis), the response time ofIA is increased rapidly.
This is because a large valuem decreases the probability
of a transaction’s commitment. As a result, a transaction
suffers from many restarts until it commits.MA avoids
this problem by making a client access old versions on each
broadcast content, thereby increasing the chance of a trans-
action’s commitment. We can observe that the performance
of MA is less sensitive to the number of items thanIA.
However, the increased size of broadcast content affects the
response time negatively in both broadcast contents. This
explains whyMA is inferior to IA for small data items.
With our methods, as a transaction can access data items
in the order they are broadcast, the average response time
is almost independent of transaction size. As a result, our
methods outperformMA, which in turn outperformsIA,
when the number of items is large. For example, whenm is
10, PA2 yields the response time reduced by a factor of 3
on MA in both broadcast contents. Among ours,PA2 ex-
hibits only a marginal performance improvement overPA.
This is because a high update rate makes the deployment of
asynchronous approach useless.

Another interesting examination is on which broadcast
organization provides better response time to each method.
Over a single broadcast channel, we intuitively expected
that the nonuniform broadcast would be better than the uni-
form one in bothIA and MA methods even when data
items are updated at high rate, because more resources are
allocated to the data items that are accessed more often.
However, we have got a rather unexpected result:MA
shows similar response time behavior in both broadcasts
for all range of transaction size (we have observed this by
changing the access pattern and/or data partition parame-
ters in various ways). With our default parameter settings,
MA even favors the uniform broadcast over the nonuniform
one. For instance, the response time in the uniform broad-
cast is reduced by about 15% from that in the nonuniform
one, whenm is 10.

Although this counter-intuitive result may be limited due
to the constraint of our analysis (e.g. the sub-optimal broad-

1This value indicates, whenD is set to 1000, that about 40% and 50%
of database items are updated in the uniform and nonuniform broadcast
content during a broadcast cycle.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 5 10 20 30 40

Number of data items accessed by a transaction

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IA

MA

PA

PA^2

0

1000

2000

3000

4000

5000

6000

7000

8000

2 5 10 20 30 40

Number of data items accessed by a transaction

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IA

MA

PA

PA^2

(a) Uniform Bcast (b) Nonuniform Bcast

Figure 4. Effect of Transaction Size

cast frequencies of items in each partition or the sub-optimal
number of items in each partition), we believe this trend will
be applied to most cases for the following reasons: First, the
uniform broadcast provides a higher cache hit ratio than the
nonuniform broadcast. Second, the efficiency of data access
under the nonuniform broadcast, which is based on access
frequency on items, is mitigated by the inclusion of old ver-
sions of items (recall that each old version of an updated
item is broadcast once in each broadcast cycle irrespective
of its frequency). ForIA, however, the second factor is not
true although the first factor is still true. Since access op-
timization for a single item still dominates, the nonuniform
broadcast givesIA better response time than the uniform
one. Interestingly, our methods work better in the uniform
broadcast than in the nonuniform broadcast with the excep-
tion of small data items. The reason is that the dominating
factor to response time of predeclaration-based methods is
the length of a single broadcast cycle when the update rate
is high or large data items are retrieved.

5.2. Effect of Update Rate

Figure 5 shows the effect of update rate on the perfor-
mance of various methods whenm is set to 10. A higher
update rate means a lower cache hit ratio, and also a higher
probability of cache invalidation. This explains why the re-
sponse time ofIA deteriorates so rapidly. In particular, if
µ > 2 × 10−4 per unit2, IA results in unacceptable per-
formance. MA also degenerates as update rate increases.
This is because a higher update rate leads to more num-
ber of updated items in the database, resulting in a longer

2This value indicates, whenD is set to 1000, that more than 20% and
23% of database items are updated in the uniform and nonuniform broad-
cast content during a broadcast cycle.

broadcast content size. UnlikeIA, however, withMA, a
transaction can proceed and commit by reading appropriate
old versions of items which are on the air. This difference of
commitment probability is the main reason whyMA beats
IA for high update rate (in our analysis, whenµ > 2×10−4

per unit). For low update rate, there is a high probability
that a transaction commit successfully even withIA. Thus,
IA shows better response time thanMA since the former
retrieves each item more quickly than the latter.

With our methods, the response time is not affected by
update rate significantly. As expected, Figure 5 shows that
ours are superior toMA andIA when update rate is high.
Only when a small portion of items in the database is up-
dated during a broadcast cycle, the response time of ours
is worse than that ofMA andIA. Consistent with our ex-
pectation, however,PA2 exhibits the average response time
comparable to other methods in a rarely changing database
where a transaction can be processed within a single broad-
cast cycle with the use of other methods. From the figure,
we observe that the uniform broadcast is preferable for a
high update rate, while the nonuniform broadcast works bet-
ter for a low update rate.

5.3. Effect of Access Pattern

This analytical result shows the sensitivity to the dis-
agreement between client access pattern and the server’s
broadcast program. In the nonuniform data broadcast, the
server’s broadcast may be ”sub-optimal” for a particular
client due to inaccurate access frequency of a client, dy-
namically changing access frequency of a client, and the
server’s averaged broadcast over the needs of a large client
population [1].

To model such a mismatch between the needs of a client
and the server’s broadcast program, we have used three ac-

0

1000

2000

3000

4000

5000

6000

7000

8000

0.5 1 2 5 7 10

Update rate (*0.0001)

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IA

MA

PA

PA^2

0

1000

2000

3000

4000

5000

6000

7000

8000

0.5 1 2 5 7 10

Update rate (*0.0001)

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e

(
i
n

n
u
m
b
e
r

o
f

d
a
t
a

i
t
e
m
s
)

IA

MA

PA

PA^2

(a) Uniform Bcast (b) Nonuniform Bcast

Figure 5. Effect of Update Rate

cess patterns under default data partitions: AP1 = (0.1, 0.2,
0.7), AP2 = (0.5, 0.3, 0.2) and AP3 = (0.7, 0.2, 0.1). There,
AP1 is relatively the least matched access pattern, AP2 is
less matched one, and AP3 is the relatively most matched
one. We then observed the performance behavior ofMA
and our methods in the nonuniform broadcast content when
a client follows different access patterns under the default
update rate (from this section, we dropIA from perfor-
mance presentation because of its poor performance and
show the performance ofPA andPA2 in terms of upper-
bound of expected average response time because of the
similarity to the average response time). We could observe
that the response time ofMA gets worse by 20% as the mis-
match becomes increasingly large from AP3 to AP1. This
susceptibility to a broadcast mismatch is to be expected, as
the client can not gain the benefit of the nonuniform broad-
cast content approach. In the case of our methods, however,
the upper-bound response time is totally immune to the dis-
agreement.

5.4. Effect of Data Partition

This result shows the sensitivity to the variance of data
partition controlled by the server’s broadcast program. Note
that, in the nonuniform broadcast, different data partitions
give rise to different broadcast cycle lengths. We can expect
that as the broadcast cycle length is increased, the response
time of our methods becomes increasingly worse.

To show this we have used three data partitions under
default client access pattern: DP1 = (50, 150, 800), DP2
= (200, 300, 500) and DP3 = (500, 300, 200). We then
observed the performance behavior ofMA and ours in
the nonuniform broadcast when different data partitions are
employed at the server. We could observe that while, in
methodMA, the response time under DP3 gets worse by

about 150% compared to DP1, the upper-bound response
time of ours under DP3 gets worse by about 115% com-
pared to DP1. In case of our methods, since a client has
to spend much more time to retrieve the less commonly re-
quested data in the nonuniform broadcast with much longer
broadcast cycle, the difference of performance degradation
is reasonable. In general, however, the nonuniform broad-
cast is constructed such that the fastest partition level has
relatively smaller items, while subsequent levels are pro-
gressively larger [1], thus the high sensitivity of ours due to
different data partitions will not be common.

5.5. Effect of Database Size

In this section, we show the case where the number of
distinct data items are increased from 1000 to 4000 (the rel-
ative size at each partition is maintained exactly same as
the default case), as opposed to the database size with 1000
items considered before. It can be expected that increasing
the database size degrades the performance of bothMA and
our methods. This is because a larger database size results
in (1) a longer broadcast cycle length and (2) a lower cache
hit ratio.

We summarize the response time behavior under default
client access pattern in Table 2. It can be observed that the
performance of all the methods degrades when the database
size is increased. As the improvement factor shows, how-
ever, ours are much more scalable to the increased database
size thanMA (especially in the the uniform broadcast con-
tent). This can be explained as follows. The response time
of ours is negatively impacted only by a longer broadcast
cycle length, while the response time ofMA is negatively
impacted by both a longer broadcast cycle length and a
lower cache hit ratio. It is shown that ours beatMA in
all cases and, in general, the performance gap gets bigger

Uniform Nonuniform
Database Size MA PA, PA2 Factor MA PA, PA2 Factor

1000 5279 1500 2.5 6040 1950 2.1
2000 20290 3000 5.8 13938 3900 2.6
3000 30138 4500 5.7 20887 5850 2.6
4000 54355 6000 8.1 27091 7800 2.5

Table 2. Effect of Database Size

with the increased database size. For instance, the improve-
ment factor overMA changes from 2.5 to 8.1 in the uniform
broadcast content.

6. Conclusion

In this paper, we have proposed simple, but yet robust
predeclaration-based methods to speed up processing of
wireless read-only transactions while keeping the serializ-
ability for transactions in wireless data broadcast. As it
turned out, although there are certain processing and stor-
age overhead for predeclaration-based transaction process-
ing compared with traditional ones, the benefit our approach
brings in terms of greatly reduced response time outweighs
the overhead.

7. Acknowledgement

This work was partly supported by the JSPS (Japan So-
ciety for the Promotion of Science) postdoctoral fellowship
for foreign researchers in Japan.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast disks: Data management for asymmetric
communication environments. InProceedings of the
ACM SIGMOD Conference on Management of Data,
pages 199–210, 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik. Dissemi-
nating updates on broadcast disks. InProceedings of
the 22nd International Conference on Very Large Data
Bases, pages 354–365, 1996.

[3] D. Barbara. Mobile computing and databases: A sur-
vey. IEEE Transactions on Knowledge and Data En-
gineering, 11(1):108–117, 1999.

[4] D. Barbara and T. Imielinski. Sleepers and worka-
holics: Caching in mobile environments. InProceed-
ings of the ACM SIGMOD Conference on Manage-
ment of Data, pages 1–12, 1994.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Con-
currency Control and Recovery in Database Systems.
Addison Wesley, Massachusetts, 1987.

[6] H. Garcia-Molina and G. Wiederhold. Read-only
transactions in a distributed database.ACM Transac-
tions on Database Systems, 7(2):209–234, 1982.

[7] T. Imielinski and R. Badrinath. Wireless mobile com-
puting: Challenges in data management.Communica-
tions of the ACM, 37(10):18–28, 1994.

[8] E. Pitoura and P. Chrysanthis. Exploiting versions for
handling updates in broadcast disks. InProceedings of
the 25th International Conference on Very Large Data
Bases, pages 114–125, 1999.

[9] E. Pitoura and P. Chrysanthis. Scalable processing
of read-only transactions in broadcast push. InPro-
ceedings of the 19th International Conference on Dis-
tributed Computing Systems, pages 432–439, 1999.

[10] J. Shanmugasundaram, A. Nithrakashyap,
R. Sivasankaran, and K. Ramamritham. Effi-
cient concurrency control for broadcast environments.
In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 85–96, 1999.

[11] K.-L. Tan and B. C. Ooi. Data Dissemination in
Wireless Computing Environments. Kluwer Academic
Publishers, 2000.

[12] N. H. Vaidya and S. Hameed. Scheduling data broad-
cast in asymmetric communication environments.
Wireless Networks, 5(3):171–182, 1999.

