
Concise Papers __________________________________________________________________________________________

Using Predeclaration for Efficient Read-Only
Transaction Processing in Wireless

Data Broadcast

SangKeun Lee, Chong-Sun Hwang, and
Masaru Kitsuregawa, Member, IEEE

Abstract—Wireless data broadcast allows a large number of users to retrieve

data simultaneously in mobile databases, resulting in an efficient way of using the

scarce wireless bandwidth. However, the efficiency of data access methods is

limited by an inherent property that data can only be accessed strictly sequentially

by users. To properly cope with the inherent property, this paper presents three

predeclaration-based transaction processing methods that yield a significant

performance improvement in wireless data broadcast.

Index Terms—Wireless data broadcast, mobile data access, transaction

processing, predeclaration, mutual consistency of data.

æ

1 INTRODUCTION

IN a wireless data broadcast environment, the server periodically
broadcasts data items over one or more channels to a large client
population, where data items correspond to database records
(tuples). Data items are identified by their primary key and the
total number of data items is relatively small (on the order of
hundreds, sometimes thousands, of objects). The smallest logical
unit of the broadcast, often called a bucket, is assumed to correspond
to a single data item only for convenience. Each period of broadcast
is called a broadcast cycle or bcycle, while the content of the
broadcast is called a bcast. While data items are being broadcasted,
update transactions are executed at the server that modify the values
of data items broadcasted. Without any appropriate concurrency
control, it is possible that wireless transactions generated by mobile
clients may observe inconsistent data values.

The main challenge of this paper is to design a mechanism to

provide consistent data items requested in a certain order by

wireless read-only transactions. Clients will only receive the

broadcast data and fetch individual items (identified by a key)

from the broadcast channel. To properly cope with the inherent

property of data broadcast that data can only be accessed strictly

sequential, we explore a predeclaration-based query optimization

and devise three predeclaration-based transaction processing

methods. The proposed methods, presented in the context of

broadcast disks [1] and a multiple channel environment [10], are

particularly intended for applications like the online auction

application, where the size of the database is relatively small, but

the number of clients is very large. We also evaluate the

performance of the proposed methods by an analytical study.

The analytical results show that predeclaration-based query

optimization can yield a significant performance improvement in

wireless data broadcast.

1.1 Motivating Example

The three different broadcast organizations are illustrated in Fig. 1,

where the server broadcasts a set of data items

fd1; d2; d3; d4; d5; d6; d7g

in one or two broadcast channel(s) according to broadcast

schedules (d1 is the relatively most frequently accessed item, d2

and d3 are lesser ones, and d4; d5; d6, and d7 are least ones).
To show that the order in which a transaction reads data affects

the response time of the transaction, suppose that a client starts its

transaction at the exactly middle of each bcycle in Fig. 1:

IF ðd3 < 0Þ THEN readðd1Þ ELSE readðd2Þ

That is, if the value of d3 is negative, the transaction needs the

value of d1. Otherwise, it needs the value of d2. For the uniform

bcast, where the transaction starts at a half point within d4, since

both d1 and d2 precede d3 in the bcast with respect to the client and

access to data is strictly sequential, the transaction has to read d3

first and wait to read the value of d1 or d2. Thus, the response time

of the transaction is 11.5, i.e.,

d4 ! d5 ! d6 ! d7 ! d1 ! d2 ! d3

z}|{
!

d4 ! d5 ! d6 ! d7 ! d1

z}|{
;

or 12.5, i.e.,

d4 ! d5 ! d6 ! d7 ! d1 ! d2 ! d3

z}|{
!

d4 ! d5 ! d6 ! d7 ! d1 ! d2

z}|{
:

If, however, all data items that will be accessed potentially by the

transaction, i.e., fd1; d2; d3g, are predeclared in advance, a client can

hold all necessary data items with a reduced response time of 6.5

(i.e., d4 ! d5 ! d6 ! d7 ! d1

z}|{
! d2

z}|{
! d3

z}|{
).

This is also true of the nonuniform bcast where the response

time of the transaction can be reduced from 7 or 8 to 5. For the

multiple channel bcast, albeit the reduction of response time is not

observed from this specific example, we believe there is a

performance benefit in most cases (and verify the argument in

Section 3). Thus, the use of predeclaration allows the necessary

items to be retrieved in the order in which they are broadcasted as

opposed to the order specified in the transaction.

2 PROPOSED METHODS

Three predeclaration-based transaction processing methods are

devised here: P (Predeclaration), PA (Predeclaration with Autop-

refetching), and PA2 (PA/Asynchronous). The central idea is to

employ predeclaration of readset in order to minimize the number

of different bcycles from which transactions pick up data. The

assumptions made in our proposed methods are listed below:

. The client population and their access patterns do not

change, so the location of each data item in the broadcast

channel(s) remains fixed. Clients also know a priori the

contents of the channel(s). Clients simply tune into the

broadcast channel and filter all the data until the required

items are downloaded. In practice, however, some index

information must be made available to clients for selective

tuning. We make this simplifying assumption because the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003 1579

. S. Lee and C.-S. Hwang are with the Department of Computer Science and
Engineering, Korea University, Seoul, Korea.
Email: yalphy@korea.ac.kr and hwang@disys.korea.ac.kr.

. M. Kitsuregawa is with the Institute of Industrial Science, The University
of Tokyo, Tokyo, Japan. E-mail: kitsure@tkl.iis.u-tokyo.ac.jp.

Manuscript received 13 Feb. 2001; revised 16 Aug. 2002; accepted 16 Jan.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 113617.

1041-4347/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society



indexing problem is orthogonal to transaction processing

methods.1

. All buckets have an offset, as well as data items, to the
beginning of the next bcast. This is to guide the clients that
have to tune in the next bcast.

. The information about the readset of a transaction is
available at the beginning of transaction processing by
using a preprocessor on a client, e.g., to identify all the
items appearing on a transaction program before being
submitted to the client system.

. Serializability is adopted as our correctness criterion. We
will show that serializability is not expensive to achieve in
the proposed methods, although it has widely been
considered to be expensive to achieve for asymmetric
communication environments [8].

We define the predeclared readset of a transaction T , denoted
by Pre RSðT Þ, to be a set of data items that T reads potentially. For
all methods, each client processes T in three phases: preparation,
acquisition, and delivery.

2.1 Method P

For method P , we assume that the following always hold [6], [8]:
Server Requirement for P . The server broadcasts data values

produced by only serializable, committed update transactions in
each bcycle.

One obvious way to satisfy this requirement is to make each
bcycle represent the (serializable) state of the database at the
beginning of the cycle. Here, the size of database being transmitted
cannot be too large as poor currency may be experienced at clients.
For many applications, like online auctions and traffic control,
however, the number of data items being transmitted is not too
large.

With the above server requirement, the execution of each read-
only transaction is clearly serializable if a client can fetch all data
items within a single bcycle. Since, however, a transaction is

expected to start at some point within a bcycle, its acquisition
phase may therefore be across more than one bcycle. To remedy
this problem, in P , a client starts the acquisition phase synchro-
nously, i.e., at the beginning of the next bcycle. Since all data items
for its transaction are already identified, the client will complete
the acquisition phase within a single bcycle. More specifically, a
client processes its transaction Ti as follows:

1. On receiving BeginðTiÞ {

get Pre RSðTiÞ by using preprocessor;

AcquireðTiÞ ¼ ;;
tune in at the beginning of the next bcast;

}

2. While (Pre RSðTiÞ 6¼ AcquireðTiÞ) {

for dj in Pre RSðTiÞ {

download dj;

put dj into local storage;

AcquireðTiÞ ( dj;

}

3. Deliver data items to Ti according to the order in which Ti

requires, and then commit Ti.

Theorem 1. P generates serializable execution of read-only transactions.

2.2 Methods PA and PA2

A client tends to repeatedly query a subset of database items with a
high degree of locality. This subset is thus a “hot spot” for the
client. A client can cache data items in the hot spot locally to reduce
access latency. Caching reduces the latency of transactions since
transactions find data of interest in their local cache and, thus, need
to access the broadcast channel for a smaller number of times. In
our work, clients use their available hard disks as local caches and
caching technique is employed in the context of transaction
processing.

In order to keep the clients’ caches consistent with the updated
data values, the client-cached copies of modified items must be
invalidated or updated. Among various approaches to commu-
nicating updates to the clients, it has been shown in the work [2],
[3] that the client cache coherency can be effectively maintained by
exploiting a periodic invalidation report, which is a list of the items
that have been updated recently. Broadcasting identifiers of
updated items, however, may consume a large portion of the
broadcast channel, which is a scarce resource, especially when a
large portion of items in the database are updated. Furthermore, in
the context of the serializability consistency model, consistency
must be preserved across reads of multiple data items.

In our work, the server is required to broadcast an invalidation

bit pattern which is followed by a bcast. In an invalidation bit
pattern, each bit corresponds to a single data item in the database.
A bit is set to 1 if its corresponding data item has been updated
during the previous bcycle, but not installed into the previous
bcast. The remaining bits are set to 0s. This way, compared to
invalidation reports, the size of invalidation information broad-
casted by the server can be significantly reduced, especially when a
large portion of items in the database are updated.

Server Requirement for PA and PA2. In each bcycle, the server
broadcasts an invalidation bit pattern which is followed by data
values produced by only serializable, committed update transac-
tions.

At the beginning of each bcycle, a client tunes in and reads the
invalidation bit pattern broadcasted by the server. For any data
item di in its local cache, if a bit corresponding to di is 1 in the
invalidation bit pattern, the client marks di as “invalid” and gets di
again from the current bcast and puts it into local cache. Cache
management in our scheme is therefore an invalidation combined
with a form of autoprefetching [2]. Invalidated data items remain

1580 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 1. Broadcast organizations. (a) Uniforma bcast, (b) nonuniform bcast, and

(c) multiple channel bcast.

1. Our work, however, is also applicable to the case where some form of
directory information is broadcasted along with data items without loss of
generality. Some techniques for broadcasting index information are given in
[4], [7], [9] for each broadcast organization.



in cache to be autoprefetched later. In particular, at the next
appearance of the invalidated data item in the bcast, the client
fetches its new value and replaces the old one.

There are two choices on when to start the acquisition phase:
One is a synchronous approach where, as is the case with P , a
client fetches data items from the beginning of the next bcycle. We
call this method PA. More specifically, PA works as follows:

1. On receiving BeginðTiÞ {

get Pre RSðTiÞ by using preprocessor;

AcquireðTiÞ ¼ ;;
tune in at the beginning of the next bcast;

}

2. Fetch an invalidation bit pattern;

For every item di in local cache {

if (a corresponding invalidation bit is set to 1)

{ mark di as “invalid”;}

}

For every “valid” item di in local cache {

if (di 2 Pre RSðTiÞ) { AcquireðTiÞ ( di; }

}

While (Pre RSðTiÞ 6¼ AcquireðTiÞ) {

for dj in Pre RSðTiÞ ÿAcquireðTiÞ {

download dj;

put dj into local cache;

AcquireðTiÞ ( dj;

}

}

3. Deliver data items to Ti according to the order in which Ti

requires, and then commit Ti.

Theorem 2. PA generates serializable execution of read-only
transactions.

The synchronous approach of method PA may incur unneces-
sary response time latency to short transactions in a rarely updated
database. For example, if most of the data items reside in local cache
and all missed items can be retrieved from the current bcast, then a
transaction would be completed within a single bcycle in which it is
initiated.

To get over the disadvantage of method PA, a client can take an
asynchronous way, i.e., it fetches data items immediately without
waiting for the next bcycle. Unlike synchronous approaches, the
acquisition phase may span across two different bcasts in this case.
This method is referred to as PA2. It goes as follows:

1. On receiving BeginðTiÞ {

get Pre RSðTiÞ by using preprocessor;

AcquireðTiÞ ¼ ;;
}

2. For every “valid” item di in local cache {

if (di 2 Pre RSðTiÞ) { AcquireðTiÞ ( di; }

}

While (Pre RSðTiÞ 6¼ AcquireðTiÞ) {

for dj in Pre RSðTiÞ ÿAcquireðTiÞ {

download dj;

put dj into local cache;

AcquireðTiÞ ( dj;

if (it is time to receive an invalidation bit pattern) {

tune in and fetch an invalidation bit pattern;

for every item di in local cache {

if (a corresponding invalidation bit is set to 1) {

mark di as “invalid”;

AcquireðTiÞ ¼ AcquireðTiÞ ÿ fdig;
}

}

}

}

}

3. Deliver data items to Ti according to the order which Ti

requires, and then commit Ti.

Theorem 3. PA2 generates serializable execution of read-only

transactions.

3 PERFORMANCE EVALUATION

We have developed analytical models [5] to compare pre-
declaration-based transaction processing methods with other

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003 1581

TABLE 1
Parameter Settings



two methods, Invalidation with Autoprefetching (IA) and

Multiversion with Autoprefetching (MA), which are slightly

modified versions from ones proposed by [6]. We report two

analytical results in this section. In the results, one time unit

corresponds to the physical time taken to broadcast a single

item on the server side. Table 1 summarizes the parameter

settings for the server (the top half) and a client (the bottom

half), where values in parentheses are default ones. Throughout

the performance evaluation, in particular, the additional reads

overhead in determining a predeclared readset is set to 50

percent in terms of the number of data items.

3.1 Effect of Transaction Size

Fig. 2 shows the performance behavior as the number of data items

accessed by a transaction is increased in each bcast when update

rate per item is set to 5� 10ÿ4 per unit.2 We see that, for long

transactions (the number of accessed items are greater than 5 in our

analysis), the response time of IA is increased rapidly. This is

because a large value m decreases the probability of a transaction’s

commitment. As a result, a transaction suffers from many restarts

1582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003

Fig. 2. Effect of transaction size. (a) Uniform bcast, (b) nonuniform bcast, and (c) multiple channel bcast.

Fig. 3. Effect of update rate. (a) Uniform bcast, (b) nonuniform bcast, and (c) multiple channel bcast.

2. This value indicates, when D is set to 1,000, that about 40 , 50, and
22 percent of database items are updated in the uniform, nonuniform, and
multiple channel bcasts during a bcycle.



until it commits. MA avoids this problem by making a client access

old versions on each bcast, thereby increasing the chance of a

transaction’s commitment. We can observe that the performance of

MA is less sensitive to the number of items than IA. However, the

increased size of bcast affects the response time negatively in each

bcast. This explains why MA is inferior to IA for small data items.

With our P , PA, and PA2 methods, as a transaction can access data

items in the order they are broadcasted, the average response time

is almost independent of transaction size. As a result, our methods

outperform MA, which in turn outperforms IA, when the number

of items is large.

3.2 Effect of Update Rate

Fig. 3 shows the effect of update rate on the performance of various
methods when m is set to 10. A higher update rate means a lower
cache hit ratio and also a higher probability of cache invalidation.
This explains why the response time of IA deteriorates so rapidly.
In particular, if � > 2� 10ÿ4 per unit,3 IA results in unacceptable
performance (in case of the multiple channel bcast, when � >
5� 10ÿ4 per unit). MA also degenerates as the update rate
increases. This is because a higher update rate leads to a larger
number of updated items in the database, resulting in a larger
bcast size. Unlike IA, however, with MA, a transaction can
proceed and commit by reading appropriate versions of items
which are on the air. This difference of commitment probability is
the main reason why MA beats IA for high update rate (in our
analysis, when � > 2� 10ÿ4 per unit). With P , PA, and PA2, the
response time is not significantly affected by the update rate . As
expected, it is observed that ours are superior to MA and IA when
the update rate is high. Only when a small portion of items in the
database is updated during a bcycle, is the response time of ours
worse than that of MA and IA.

4 CONCLUDING REMARKS

In this paper, we have proposed three simple yet robust
predeclaration-based methods to speed up processing of wireless
read-only transactions without sacrificing serializability. To the
best of our knowledge, this work is the first approach to query
optimization on the client side for reducing transaction response
time in wireless data broadcast. Our scheme allows transactions to
retrieve data items in the order they are broadcasted as opposed to
the order specified in the transaction.

REFERENCES

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast Disks: Data
Management for Asymmetric Communication Environments,” Proc. ACM
SIGMOD Conf. Management of Data, pp. 199-210, 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Disseminating Updates on
Broadcast Disks,” Proc. 22nd Int’l Conf. Very Large Data Bases, pp. 354-365,
1996.

[3] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching in
Mobile Environments,” Proc. ACM SIGMOD Conf. Management of Data,
pp. 1-12, 1994.

[4] T. Imielinski, S. Viswanathan, and B. Badrinath, “Data on Air: Organization
and Access,” IEEE Trans. Knowledge and Data Eng., vol. 9, no. 3, pp. 353-372,
1997.

[5] S. Lee, M. Kitsuregawa, and C.-S. Hwang, “Efficient Processing of Wireless
Read-Only Transactions in Data Broadcast,” Proc. 12th Int’l Workshop
Research Issues on Data Eng.: Eng. E-Commerce/E-Business Systems, pp. 101-
111, 2002.

[6] E. Pitoura and P. Chrysanthis, “ Exploiting Versions for Handling Updates
in Broadcast Disks,” Proc. 25th Int’l Conf. Very Large Data Bases, pp. 114-125,
1999.

[7] K. Prabhakara, K. Hua, and J. Oh, “Multi-Level Multi-Channel Air Cache
Designs for Broadcasting in a Mobile Environment,” Proc. 16th IEEE Int’l
Conf. Data Eng., pp. 167-176, 2000.

[8] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K.
Ramamritham, “Efficient Concurrency Control for Broadcast Environ-
ments,” Proc. ACM SIGMOD Conf. Management of Data, pp. 85-96, 1999.

[9] K.-L. Tan and J.X. Yu, “Energy Efficient Filtering of Nonuniform Broad-
cast,” Proc. 16th Int’l Conf. Distributed Computing Systems, pp. 520-527, 1996.

[10] N.H. Vaidya and S. Hameed, “Scheduling Data Broadcast in Asymmetric
Communication Environments,” Wireless Networks, vol. 5, no. 3, pp. 171-
182, 1999.

. For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2003 1583

3. This value indicates, when D is set to 1,000, that more than 20 and
23 percent of database items are updated in the uniform and nonuniform
bcasts during a bcycle.


