DEWS2003 3-B-03

Shared Nothing Parallel Execution of FP-growth

Pramudiono IKOT and Masaru KITSUREGAWAT

1 Institute of Industrial Science, The University of Tokyo
Komaba 4 6 1, Meguro-ku, Tokyo, 153 8505 Japan

Abstract FP-growth has become a popular algorithm to mine frequent patterns. Its metadata FP-tree has al-

lowed significant performance improvement over previously reported algorithms. However the parallelization of such

special data structure is difficult, in particular for shared nothing parallel machines such as PC cluster. Here we

report how we utilize a characteristic called ” path depth” to balance the workload among processing nodes to obtain

sufficient parallel speedup ratio.

Key words

1. Introduction

Frequent pattern mining has become one popular data
mining technique. It also becomes the fundamental tech-
nique for other important data mining tasks such as associ-
ation rule, correlation and sequential pattern.

FP-growth has set new standard for frequent pattern min-
ing[4]. The compression of transaction database into on-
memory data structure called FP-tree benefits FP-growth
with performance better than previously reported algorithms
such as Apriori [2]. Further performance improvement can be
expected from parallel execution. Parallel engine is essential
for large scale data warehouse. Particularly, development
of parallel algorithms on large scale shared nothing environ-
ment such as PC cluster has attracted a lot of attention since
it is a promising platform for high performance data mining.
Here we examine the bottlenecks of the parallelization and
also method to balance the execution efficiently on shared-
nothing environment.

There is also a potential problem when FP-tree can not
fit into the memory. As far as we know, there is no re-
port about the scalability of FP-growth when handling very
large transaction data. We will examine how to save memory
consumption of FP-tree during execution with many nodes
based on our elaboration of the characteristics of FP-growth.
Our method reveals the potential of parallel execution of FP-
growth not only to leverage the performance but also the
scalability.

Section 2 lists related works on frequent pattern mining
and its parallel executions. Section 3 briefly describes the
underlying sequential FP-growth algorithm. In section 4 we
explain our approaches for parallel execution of FP-growth

on shared-nothing environment and we give the evaluation

frequent pattern mining, parallel processing, PC cluster

in section 5. Section 6 concludes the paper.
2. Related Works

Apriori is the first algorithm that addresses mining fre-
quent pattern in 1995, particularly to generate association
rules [2]. Many variants of Apriori based algorithms are de-
veloped since then.

Pioneering works on parallel algorithm for frequent pat-
tern mining were done in [3] [7]. A better memory utilization
schema called Hash Partitioned Apriori (HPA) was proposed
in[8]. It is also extended to handle generalized association
rule mining [9].

Some alternatives to Apriori-like ”generate-and-test”
paradigm were proposed such as TreeProjection [1]. How-
ever it was FP-growth that brought the momentum for the
new generation of frequent pattern mining algorithms [4].

H-mine has been proposed to address certain type of trans-
action database called sparse data where the performance of
FP-growth deteriorates since FP-tree becomes too bushy [6].
H-mine can be switched with FP-growth during the execu-
tion.

Recently some algorithms that improve FP-growth by
eliminating the generation of conditional pattern bases are

proposed such as OpportuneProject and PP-mine [5] [10].
3. FP-growth

The FP-growth algorithm can be divided into two phases
: the construction of FP-tree and mining frequent patterns
from FP-tree [4].

3.1 Construction of FP-tree

The construction of FP-tree requires two scans on trans-
action database. The first scan accumulates the support of
each item and then selects items that satisfy minimum sup-
Those items are sorted in

port, i.e. frequent l-itemsets.

frequency descending order to form F-list. The second scan
constructs FP-tree.

First, the transactions are reordered according to F-list,
while non-frequent items are stripped off. Then reordered
transactions are inserted into FP-tree. The order of items is
important; since in FP-tree, itemset with same prefix shares
the same nodes. If the node corresponding to the items in
transaction exists the count of the node is increased, other-
wise a new node is generated and the count is set to 1.

FP-tree also has a frequent-item header table that holds
head of node-links, which connect nodes of same item in FP-
tree. The node-links facilitate item traversal during mining
of frequent pattern.

3.2 FP-growth

Input of FP-growth algorithm is FP-tree and the minimum
support. To find all frequent patterns whose support are
higher than minimum support, FP-growth traverses nodes
in the FP-tree starting from the least frequent item in F-list.
The node-link originating from each item in the frequent-
item header table connects the same item in FP-tree.

While visiting each node, FP-growth also collects the
prefix-path of the node, that is the set of items on the path
from the node to the root of the tree. FP-growth also stores
the count on the node as the count of the prefix path. The
prefix paths form the so-called conditional pattern base of
that item.

The conditional pattern base is a small database of pat-
terns that co-occur with the item. Then FP-growth create
small FP-tree from the conditional pattern base called con-
ditional FP-tree. The process is recursively iterated until no
conditional pattern base can be generated and all frequent
patterns that consist the item are discovered.

The same iterative process is repeated for other frequent

items in the F-list.
4. Parallel execution of FP-growth

Since the processing of a conditional pattern base is inde-
pendent of the processing of other conditional pattern base
as shown in Lemma 1, it is natural to consider it as the
execution unit for the parallel processing.

[Lemma 1] The processing of a conditional pattern base is in-
dependent from other conditional pattern base.

Proof From the definition of the conditional pattern base,
item a’s conditional pattern base generation is only deter-
mined by 0 of the item a in the database. The conditional
pattern base is generated by traversing the node-links. The
resulting conditional pattern base is unaffected by node-links
of other items since node-link connects nodes of same item
only and there is no node deletion during the processing of
the FP-tree.

Here we describe a simple parallel version of FP-growth.
We assume that the transaction database is distributed
evenly among nodes.

4.1 Trivial parallelization

The basic idea is each node accumulates a complete condi-
tional pattern base and processes it independently until the
completion before receiving other conditional pattern base.

Pseudo code for this algorithm is depicted in Fig. 1 and

the illustration is given in Fig. 2.
input : database D, items I,
minimum support min_supp;

SEND process :

{

1:local_support = get_support(D,I);
2:global_support = exchange_support(local_support) ;
3:FList = create_flist(global_support, min_supp);
4:FPtree = construct_fptree(D, FList);

;exchange conditional pattern base

5:forall item in FList do begin

6: cond_pbase = build_cond_pbase(FPTree, item);
7: dest_node = item mod num_nodes;

8: send_cond_pbase (dest_node, cond_pbase);
9:end
}

RECV process :

{

1:cond_pbase = collect_cond_pbase();

2:cond_FPtree = construct_fptree(cond_pbase, FList);

3:FP-growth(cond_FPtree, NULL);
}

Figure 1 Pseudo code of trivial parallel execution

SEND pro-

cess and RECV process. After the first scan of transaction

Basically, we need two kind of processes :

database, SEND process exchanges the support count of all
items to determine globally frequent items. Then each node
builds F-list since it also has global support count. Notice
that each node will have the identical F-list. At the second
database scan, SEND process builds local FP-tree from local
transaction database with respect to the global F-list.
From the local FP-tree, local conditional pattern bases are
generated. Instead of processing conditional pattern base lo-
cally, SEND process use hash function to determine which
node should process it. The RECV process at the destina-
tion node will collect the conditional pattern bases from all
SEND processes and then executes the FP-growth. We can
do this because of the following lemma :
[Lemma 2] Accumulation of local conditional pattern base re-
sults in the global conditional FP-tree.

Proof When a prefix-path in the global conditional FP-tree
already exists, the counts of prefix-paths in the other condi-
tional pattern bases are simply added to the path in the tree.
Thus the final global conditional FP-tree is not affected by
how the prefix-paths are contained in the conditional pattern
bases.

The lemma also automatically leads to the following

lemma.
[Lemma 3] The way to split the branches of FP-tree does not
affect the resulting conditional pattern bases.

The lemma will be useful when we are discussing how to
handle the memory constraint. Although generally the size
of conditional pattern bases decreases rapidly, we have to
make sure that the processing of conditional pattern base

will not overflow the memory of the node.

TID (ordeved] freq items Hoade
100 [f ¢ o m pl Take |
200 {f c.a B} m-cond. base : o 3"
303{}5[9} frarl, feah:] — g . 3

f3-—

m p-cond. base :
feam: 1

Global F-list

TiD {ordered] freg. iiems

L0, p
p-cond. base == ¢ 3--

feam:1, cb:l

e —

Figure 2 Illustration of trivial parallel execution

4.2 Path depth

It is obvious to achieve good parallelization, we have to
consider the granularity of the execution unit or parallel task.
Granularity is the amount of computation done in parallel
relative to the size of the whole program.

In particular, although the trivial approach uses random
distribution of conditional pattern bases, the time to process
each conditional pattern base could vary.

When the execution unit is the processing of a conditional
pattern base, the granularity is determined by number of it-
erations to generate subsequent conditional pattern bases.
The number of iteration is exponentially proportional with
the depth of the longest frequent path in the conditional pat-
tern base. Thus, here we define path depth as the measure of
the granularity.

[Definition 1] Path depth is the longest path in the condi-
tional pattern base whose count satisfies minimum support
count.
FEzxample In Fig. 2 the longest pattern that satisfies the mini-
mum support count when processing m’s conditional pattern
base is <acf> then the path depth of m’s conditional pattern
base is three.
[Lemma 4] Path depth can be calculated when creating FP-

tree.

/ {path depth 3)
\ =]

(path depih 1)

Proof FP-tree contains all the frequent patterns, thus the
depth, the distance of a node from the root, of an item is
also preserved in the tree structure. Thus, it can be col-
lected during or after the generation of FP-tree.

Notice that path depth is similar with the term “longest

pass” in Apriori based algorithms.

100%
90%
80%
10%
60%
50%
40%
30%
20%

10%
0%

10 20 30 40 50 €0 70 80 60 100
conditional pattern base (10-sagmented)

Figure 3 Typical distribution of path depth (T25.120.D100K
0.1%)

Typical path depth distribution of conditional pattern base
is given in Fig. 3. When the items following F-list order are
divided into ten equal segments, the vertical axis represents
the distribution of path depth for each segment. For example
if F-list contains 100 items from 1 to 100, the third segment
contains items range from 71 to 80. Most of conditional pat-
tern base have small path depth, but some have very large
path depth. The ratio of small path depth also decreases
along the items in F-list.

Since the granularity differs greatly, many nodes with
smaller granularity will have to wait busy nodes with large
granularity. This wastes CPU time and reduces scalability.
It is confirmed by Fig. 5 (left) that shows the execution of
the trivial parallel scheme given in the previous subsection.
The line represents the CPU utilization ratio in percentage.
Here other nodes have to wait node 1 (pc031) completes its
task.

To achieve better parallel performance, we have to split
parallel tasks with large granularity. Since the path depth
can be calculated when creating FP-tree, we can predict in
advance how to split the parallel tasks.

Here we use the iterative property of FP-growth that a con-
ditional pattern base can create conditional FP-tree, which
in turn can generate smaller conditional pattern bases. Note
that at each iteration, the path depths of subsequent condi-
tional pattern bases are decremented by one.

Therefore, we can control the granularity by specifying a

minimum path depth. Any conditional pattern base whose
path depth is smaller than the threshold will be immediately
executed until completion; otherwise, it is executed only un-
til the generation of subsequent conditional patterns bases.
Then the generated conditional pattern bases are stored,
some of them might be executed at the same node or sent
to other idle nodes. Since node with heavy processing load
can split the load and disperses it to other nodes, path depth
approach can also absorb the processing skew among nodes
to some extent. Complete pseudo code of this mechanism is
depicted in Fig. 4

%END process :

1:cond_pbase = get_stored_cond_pbase();
2:if (cond_pbase is mot NULL) then

3: send_cond_pbase(cond_pbase);

4:end if

}

RECV process :

:cond_pbase = get_stored_cond_pbase();

:if (cond_pbase is NULL) then

cond_pbase = receive_cond_pbase();

rend if

:cond_FPtree = construct_fptree(cond_pbase, FList);
:FP-growth(cond_FPtree, cond_pbase.itemset);

YOO WN A

procedure FP-growth(FPtree, X);
input : FP-tree Tree, itemset X;
{
1:for each item y in the header of Tree do {
2: generate pattern Y = y U X with
support = y.support;

3: cond_pbase = construct_cond_pbase(Tree, y);

4: if (cond_pbase.path_depth < min_path_depth) then
5: Y-Tree = construct_fptree(cond_pbase,Y-FList);
6: if (Y-Tree is mnot NULL) then

7: FP-growth(Y-Tree, Y);

8: end if

9: else

10: store_cond_pbase(cond_pbase, Y);

11: end if

12:end for

}

Figure 4 Pseudo code to balance granularity with path depth

After employing the path depth adjustment we get a more
balanced execution as shown in Fig. 5 (right).

4.3 Memory constraint

As the data is getting bigger, one of the first resources to
get exhausted is local memory. Distributed memory helps
alleviate. However, the distribution of FP-tree over nodes
is also accompanied by space overhead since some identical
prefix-paths are redundantly created at different nodes.

We can eliminate the space redundancy if the branches of
FP-tree are remerged, i.e. each branch of FP-tree is allo-
cated exactly to only one node. Lemma 3 guarantees that
we can safely modify the way to split FP-tree.

After having the global F-list, distributing reordered trans-
actions to the nodes according to their header item results
no duplication of prefix path. However, some branches, par-

ticularly whose root items have large count, tend to be very

- nedaview.new: Plotter A= 2] nedoview.new: Plotter A=
close) stop) I€ dose} step) J= T o 2se
0158 2.0s8¢ 0.1s5ec 2.0sec
pe031 pco3t
—] L — 1 T
] T AT
= —u
I 1l
T o
pc032 pco32
=l | L = T]
| B | T Ty
H— ! s
T
I
Thon
|7l]
= I -
T
pc033 pco33
1 T i | T
=] 11| I
= -
1T
pco34 pco3q
] P T T il T
| —i I (N
| 1 T—1
1 =}
= |
1
1
1

Figure 5 Trivial execution (left) with path depth (right)
(T25.110.D100K 0.11%)

large and may not fit to memory of any single node. Other
consideration is the overhead of communication to exchange
the transactions. So one has to select branches for remerg-
ing to get the optimal trade off between space saving and the
execution time.

Here is our approach to make better memory utilization
when creating local FP-trees.

As depicted in Fig. 6, when we detect that the available
memory drops below mem_lim threshold, we pick next larger
branch in FP-tree for migration. Here the notion branch
means all prefix paths with the same root item. The vari-
able mig_item_lim now holds the last migrated item. The
destination node is decided with hash function. Then we
migrate the whole branch to the destination node. The des-
tination node receives all prefix paths with the same root
item from all nodes. In other word, the branches of the item
are remerged from all local FP-trees.

Then while reading the transaction database, if the head of
the ordered transaction o_trans is one of the migrated items,
the ordered transaction is sent to appropriate node, other-
wise it is inserted to the local FP-tree.

At the end, we have to examine whether the size of local
FP-trees is fairly balanced among the nodes. If there is sig-
nificant skew of FP-tree size distribution, a migration plan
of FP-tree branches is derived to balance the skew. Based
on the plan, some branches of local FP-tree are relocated to
other nodes.

4.4 Optimization of conditional base exchange

phase

Our observation shows that the bottleneck of parallel FP-
growth execution is the phase of conditional base exchanging.
When the number of nodes is small, the CPU utilization ra-

tio is limited by the network bandwidth. However, if many

construct_fptree(database D, flist FList)
input : database D, F-list FList;
output : FP-tree FPtree;

:while not eof(D) do

line = read_trans(D);

: o_trans = get_ordered_trans(line);

if available_memory() $<$ mem_lim then
mig_item_lim = next_branch_migration(FPtree);
dest_node = hash(mig_item_lim);
migrate_tree_branch(dest_node, FPtree);

end if

if head_of(o_trans) > mig item_lim then

10: dest_node = hash(head_of (o_trans));

11: migrate_trans(dest_node, o_trans);

12: else

13: insert_fptree (FPtree, o_trans);

14: end if

15: receive_trans(o_trans);

16: if (o_trans is mnot NULL)

17: insert_fptree (FPtree, o_trans);

18:end while

19:mig_plan = balancing_tree_size(FPtree);

20:reallocate_branch(FPtree, mig_plan);

O ONOOU D WN A

Figure 6 Pseudo code to reduce memory consumption of local

FP-trees

nodes are employed, much CPU time is wasted because of
the blocking.

Original FP-growth algorithm states that the conditional
pattern bases of FP-tree are processed following the item
ordering in F-list. The round robin fashion of conditional
pattern base exchanging has potential for blocking since all
nodes follow the same order to decide the destination node
for sending the conditional pattern base. When a receiving
node is busy, nodes that are sending to the node are pre-
vented from doing any other work before the sending process
completes.

‘We can make several optimizations since Lemma 1 assures
that the processing order has no effect on the result. Our
observation on path depth distribution as shown in Fig. 3
also indicates that conditional pattern bases with small path
depth are more likely found with the least frequent item in
the F-list. Therefore, if following conventional processing or-
der, many nodes stay idle after quickly finishing conditional
pattern bases with small path depth.

e ordering of conditional base processing

Based on our observation, we employ the reversed order to
process the conditional pattern base. Thus, we process the
most frequent item in the F-list first.

e destination node on each round

When processing the conditional pattern bases we make
sure that every nodes will not receive other conditional pat-
tern base before all other nodes receive their own. We call
the cycle as a round. Instead of using round robin scheme
to decide the destination node of a conditional pattern base
for each round, we employ a random selection to reduce the

possibility of blocking.

e buffer
Needless to say, bigger receive buffer will reduce the pos-
sibility of blocking. However, if the size of the buffer is too
large, little space left for further processing of FP-tree. Op-
timal buffer size is determined by some heuristics based on
available memory.
e background process
Since the network bandwidth can limit the entire process-
ing; we make a separate background process to handle con-

ditional pattern bases during exchange phase.

5. Implementation and Performance Eval-
uation

5.1 Implementation

As the shared nothing environment for this experiment we
use PC cluster of 32 nodes that interconnected by 100Base-
TX Ethernet Switch. Each PC node runs the Solaris 8 oper-
ating system on Pentium IIT 800Mhz with 128 MB of main
memory.

Three processes are running on each node :

(1) SEND process

create FP-tree, send conditional pattern base

(2) RECV process

receive conditional pattern base, process conditional pat-
tern base after exchanging finish

(3) EXEC process

process conditional pattern base in background when ex-
changing

There are also small COORD processes that receive re-
quests for conditional pattern base from idle nodes and co-
ordinate how to distribute them.

5.2 Performance Evaluation

For the performance evaluation, we use synthetically gen-
erated dataset as described in Apriori paper[2]. In this
dataset, the average transaction size and average maximal
potentially frequent itemset size are set to 25 and 20 respec-
tively. The number of transactions in the dataset is set to
100K with 10K items.

5.2.1 Execution time

We have varied the minimum path depth to see how it af-
fects performance. The experiments are conducted on 1, 2,
4, 8, 16 and 32 nodes. The execution time for minimum sup-
port of 0.1% is shown in Fig. 7 The best time of 40 seconds
is achieved when minimum path depth is set to 12 using 32
nodes. On single node, all experiments require 904 seconds
in average.

5.2.2 Speedup ratio

Fig. 8 shows that path depth greatly affects the speedup
achieved by the parallel execution. The trivial paralleliza-

tion, denoted by “Simple”, performs worst since almost no

1000

900
% 800 XX
o 700 \ —-—100
£ 600 N 5
£ 500 - - 10
B 400 . 20
3 RS
3 300 e 12
o 200 ~g

100 E:Z%—M_q

0 1 1 L L
1 2 4 8 16 32
#nodes

Figure 7 Execution time (T25.120.D100K 0.1%)

speedup achieved after four nodes. This is obvious since the
execution time is bounded by the busiest node, that is node
that has to process conditional pattern base with highest
path depth.

When the minimum path depth is too low such as “pdepth
min = 5”7, the speedup ratio is not improved because there
are too many small conditional pattern bases that have to
be stored thus the overhead is too large. On the other hand,
when the minimum path depth is too high, as represented
by “pdepth min = 20”, the granularity is too large so that
the load is not balanced sufficiently.

When the minimum path depth is optimum, sufficiently
good speedup ratio can be achieved. For “pdepth min =
12”7, parallel execution on eight nodes can gain speedup ra-
tio of 7.3. Even on 16 nodes and 32 nodes, we still can get
13.4 and 22.6 times faster performance respectively.

However finding the optimal value of minimum path depth

is not a trivial task yet, and it is becoming one of our future

works.
35
30 v
25 / —Simple
- / - -=-pdepth min 5

B -+ pdepth min 10
15 —— pdepth min 20
——pdepth min 12
——Ideal

0 10 20 30 40
#nodes

Figure 8 Speedup ratio (T25.120.D100K 0.1%)

5.2.3 Execution trace
We have developed a tool to monitor the parallel execu-

tion on the PC cluster. The execution trace of parallel FP-

growth is shown in Fig. 9. The figure shows CPU resource
usage, path-depth, interconnection network (send/receive)
and the number of conditional pattern bases. Horizontal axis
is elapsed time. The vertical axis for the top graph denotes
CPU utilization ratio for overall process and EXEC process.
The second graph denotes the path depth of the conditional
pattern base and currently processing pattern length. The
third graph denotes data transfer throughput in MB/s for in-
terconnection network. The network throughput is divided
into two parts, send throughput and receive throughput. The
fourth graph shows the number of conditional pattern bases.
There are three kind of such information : those currently
stored in the node, total sent to other nodes, total received
from other nodes.

One can observe that the biggest lost of CPU utilization ra-
tio when the conditional pattern bases are exchanged among
nodes in the beginning. Thus, the optimization of this phase
is important to improve the speedup ratio. The effect of the
optimizations, which are discussed in subsection 4.4., can be

confirmed in Fig. 10

T — .] |)
[¥ CFyU Usage [%]
“l [T BAEC process |

)
&
g 2 |
jj PathDepth
% W\ \N\ M ‘}V 3
- al e AT
: fﬁ)ﬂf\m / "
:]
] - CurrentDepth
F- |
2 Send Send/Recy MEYs]
5
LEL 18 |
©
: 4 T Recv
T
£ oosip (L |
§ CurrentlySitored TotalSent - On-gPB ~

1025 o E |

TotaiReceived
o / I by e . . e

20 40 80 80 100 120 140

=3

Figure 9 Execution trace (T25.120.D100K 0.1% 16nodes)

5.3 Remerging FP-tree

Here we show that remerging FP-tree such as depicted in
subsection 4.3 can help relaxing the memory constraint of
parallel FP-tree. It is important since if on memory FP-tree
consumes too much memory space, further processing will
be inflicted by memory thrashing. Fig. 11 shows the total
number of nodes in the all FP-trees relative to those in sin-
gle node. The horizontal axis represents the number of pro-
cessing nodes while the vertical axis represents the memory
redundancy. For this experiment, we remerge all branches
of FP-tree except the largest one whose root is the most
frequent item.

One can infer that without remerging FP-tree, 30% more

2170

10..

o

2000

Send Send/Recy [MBYs]

1E8/0

Clurvently Stored TotalSent \ i #CandPBasEs
B4 I | /f"\/f) \1(‘(‘“ _-_-;o-;f;:f;?gcezved : i
N i ~a_
I

o Fa— v . e b e
o 20 40 B 80 100 120 140
Time [s]

#ChunksMNetThrput [MB/sY4Cond/CPU usage [%]

Figure 10 Optimized conditional pattern base exchanging

(T25.120.D100K 0.1% 16nodes)

memory is needed by all nodes for parallel execution with 16
nodes. When we employ the remerging FP-tree only 5% of
memory is wasted globally. One can also observe that the
space saving is becoming more significant when the number
of processing nodes is increasing. Thus, the remerging FP-
tree potentially can leverage the execution of very large scale

data on massive array of processing nodes.

135
§130
> 125
(5]
5120 P
5115 -+ Tree Remerging
E 110 // —— Normal
PR A —
s / et
E 100 4+
E 05

90 1 1

0 2 4 6 8 10 12 14 16
#nodes

Figure 11 Global memory consumption of FPtree after remerging

6. Conclusion

‘We have reported the development of parallel algorithm of
FP-growth that designed to run on shared-nothing environ-
ment. The algorithm has been implemented on top of PC
cluster system with 32 nodes. We have also introduced a
novel notion of path depth to break down the granularity of
parallel processing of conditional pattern bases.

Although the data structure of FP-tree is complex and

naturally not suitable for parallel processing on shared-

nothing environment, the experiments show our algorithm
can achieve reasonably good speedup ratio.

We also showed that the way to partition the FP-tree
among nodes does not affect the final result of FP-growth.
Based on the observation we proposed a method to remerge
FP-tree among nodes to save global memory consumption.
In particular, parallel execution with many processing nodes
will be benefited from remerging FP-tree.

Our parallel framework has the potential to enhance the
performance of other pattern-growth paradigm based mod-
ern algorithm. We are planning to implement algorithms
such as H-mine and OppotuneProject on our framework.

Another issue is the load balancing when the extreme skew
exists in the data. We would like to examine how good path
depth approach absorbs such skew. Skew handling is also
important on heterogenous environment where the configu-
ration of each node is different.

References

[1] R. Agarwal, C. Aggarwal and V.V.V. Prasad “A Tree Pro-
jection Algorithm for Generation of Frequent Itemsets”. In
J. Parallel and Distributed Computing, 2000

[2] R. Agrawal and R. Srikant. ”Fast Algorithms for Mining
Association Rules”. In Proceedings of the 20th Int. Conf.
on VLDB, pp. 487-499, September 1994.

[3] R. Agrawal and J. C. Shafer. “Parallel Mining of Associa-
ton Rules”. In IEEE Transaction on Knowledge and Data
Engineering, Vol. 8, No. 6, pp. 962-969, December, 1996.

[4] J. Han, J. Pei and Y. Yin ”Mining Frequent Pattern with-
out Candidate Generation” In Proc. of the ACM SIGMOD
Conf. on Management of Data, 2000

[6] J. Liu, Y. Pan, K. Wang, J. Han “Mining Frequent Item
Sets by Opportunistic Projection“ In Proc. of the ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, 2002

[6] J. Pei, J. Han, H. Lu S. Nishio, S. Tang and D. Yang ”H-
Mine : Hyper-Structure Mining of Frequent Patterns in
Large Databases” In Proc. of Int. Conf. on Data Mining,
2001

[7] J.S.Park, M.-S.Chen, P.S.Yu ”Efficient Parallel Algorithms
for Mining Association Rules” In Proc. of 4th Int. Conf.
on Information and Knowledge Management (CIKM’95),
pp. 31-36, November, 1995

[8] T. Shintani and M. Kitsuregawa “Hash Based Parallel Al-
gorithms for Mining Association Rules”. In IEEE Fourth
Int. Conf. on Parallel and Distributed Information Sys-
tems, pp. 19-30, December 1996.

[9] T. Shintani, M. Kitsuregawa “Parallel Mining Algorithms
for Generalized Association Rules with Classification Hier-
archy.” In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pp. 25—36, 1998.

[10] Y.Xu, J.X. Yu, G. Liu, H. Lu ”From Path Tree To Frequent
Patterns: A Framework for Mining Frequent Patterns” In
Proc. of Int. Conf. on Data Mining, 2002.

