
Ranking and Presenting Search Results

in an RDB-based XML Search Engine

Kenji Hatano1, Toshiyuki Shimizu2, Jun Miyazaki3, Yu Suzuki4,
Hiroko Kinutani5, and Masatoshi Yoshikawa2

1 Faculty of Culture and Information Science, Doshisha University
khatano@mail.doshisha.ac.jp

2 Graduate School of Informatics, Kyoto University
shimizu@soc.i.kyoto-u.ac.jp, yoshikawa@i.kyoto-u.ac.jp

3 Graduate School of Information Science,
Nara Institute of Science and Technology

miyazaki@is.naist.jp
4 College of Information Science and Technology, Ritsumeikan University

suzuki@ics.ritsumei.ac.jp
5 Institute of Industrial Science, The University of Tokyo

kinutani@tkl.iis.u-tokyo.ac.jp

Abstract. Conventional ranking methods for document search have
considered content of documents to rank a search result. They have at-
tained some positive results in the research area of document search; how-
ever, it has been said that content of not only documents but also queries
should be utilized if users want to get a search result accurately. This
fact applies to XML search engines. In this paper, therefore, we propose a
ranking method for XML search considering content-and-structure con-
ditions of both XML documents and queries. We also propose a method
for presenting a search result for XML search, because it is very impor-
tant for users to grasp and understand the entire search result, too. We
implemented our ranking method on top of XRel, a relational database
system for XML documents, and found that our proposal allows users
to search XML fragments more accurately than previously proposed ap-
proaches for XML search.

1 Introduction

Extensible Markup Language (XML) [1] is becoming widely used as a standard
document format in many application domains. In the near future, we believe
that a greater number of documents will be produced in XML. Therefore, in a
similar way to the development of Web search engines, XML search engines will
become very important tools for users wishing to explore XML documents.

In the meantime, a search result of current Web search engines is usually a
list of Web documents. That is, Web documents are sorted in descending order
of their scores. The scores are calculated by content of Web documents, which
are quantified based on the number of occurrences of terms extracted from Web

156



documents like the tf-idf scoring [2]. In the case of XML search engines, it is
said that XML queries combine conditions on both content and logical structure
such as Narrowed-Extended XPath I (NEXI) [3] and XQuery Full-Text queries
[4]. When such queries are issued to an XML search engine, the search result
is usually a list of XML fragments6 as opposed to that of entire documents in
current Web search engines. As a result, several approaches have been proposed
to extend the well-established content-based scoring in some retrieval with the
ability to rank XML fragments.

Conventional approaches for XML search take into consideration both con-
tent and logical structure of XML documents in order to rank XML fragments
which satisfy query conditions [5]. For example, in the context of tf-idf scoring,
element scoring precomputes tf and idf factors for each distinct tag in input XML
documents [6, 7], while path scoring precomputes them for distinct paths [8, 9].
These refined scoring approaches led to improvements in the retrieval accuracy
of search results consist of scored XML fragments. However, these approaches
tended to attach great importance to small XML fragments, so that they caused
a problem returning small XML fragments partially satisfied with users’ infor-
mation need in some cases [10–12]. On the other hand, it is also said that it
is important for XML search engines to handle overlapping parts of XML frag-
ments. It means that when a user grasps and understand the content of an
XML fragment, the user browses ancestor of the XML fragment unconsciously.
In short, users can grasp and understand the content of search results if XML
search engines can indicate a list of large size of XML fragments containing small
ones. Considering this fact, Clarke proposed to control overlapping by re-ranking
the descendant and ancestor of search results [13]. In Clarke’s approach, how-
ever, users have to browse the overlapping parts of XML fragments more than
once, so that it increases the burden on users.

In order to overcome two problems described above, we propose ranking
and presenting methods of XML fragments as search results for XML search
engines. In our ranking method, we advocate the use of two scoring algorithms
for content-only (CO) and content-and-structure (CAS) queries. The former is
based on the content condition of XML documents like conventional element or
path scoring methods, and is utilize statistics extracted from XML documents
effectively, though the latter is based on the content-and-structure conditions of
both XML documents and queries. This is because the basic idea of our ranking
method has been shown to improve retrieval accuracies of search results in the
research area of traditional document search. At the same time, we also insist
that we devise ways of effectively presenting search results to handle overlapping
parts of answer XML fragments, because XML search engines just have to decide
and present one XML fragment in one way or another if there is an ancestor-
descendant relationship among XML fragments in a search result. In order to
verify the effectiveness of our proposals, we implemented two scoring methods
on a relational database system for XML documents based on XRel [14]. Our

6 XML fragments are easily extracted from XML documents based on their markup.
That is, they are subtrees in the XML trees.

157



experiments on the INEX test collection show that using content-and-structure
conditions of both documents and queries improves the retrieval accuracies of
XML search engines.

The remainder of this paper is organized as follows. In Section 2, we describe
how to calculate the scores of XML fragments based on content-and-structure
conditions of both documents and queries and statistics of XML documents.
In Section 3, we also describe how to present XML fragments with ancestor-
descendant relationships. We report our experimental results to verify our pro-
posal in Section 4 and related work in Section 5. Finally, we conclude this paper
in the last section.

2 Our Ranking Method based on Content-and-Structure

Conditions

In Section 2.1 and 2.2, we describe our two types of scoring algorithms in detail.
One is for CO queries and takes the content-and-structure condition of XML
documents into consideration. The other is for CAS queries and considers that
of both XML documents and queries. We also explain a method for integrating
two scoring algorithms in Section 2.3.

2.1 Content-and-Structure Conditions of XML Documents

As we described in Section 1, conventional methods for calculating scores of
XML fragments have already studied in recent years. One of the most famous
methods for calculating scores of XML fragments is element-based or path-based
scoring in the vector space model [15]; however we simply explain the path-based
scoring here because it has proved to perform better than element scoring [7].

The path-based scorings like the tf-ipf scoring [9] are expanded the versatility
of the tf-idf scoring [2],which has been proposed to quantify the importance of
terms in documents. The concept of the tf-idf scoring is that a tf-idf score of
a certain term in the document becomes large if the term appears in it many
times and does not appear in others at the same time. The tf-ipf scoring be-
haves the same as the tf-idf scoring and has been used for XML search. XML
fragments extracted from an original XML document are identified their XPath
expressions [16], so that they are classified according to the abbreviated syntax
of their XPath expressions. Assuming that the XML fragments with the same
abbreviated XPath expression have the same properties, we can quantify the
importance of terms in XML fragments with same properties as tf-ipf scores.
That is to say, a tf-ipf score of a certain term in an XML fragment becomes
large if the term appears in it many times and does not appear in others with
the same abbreviated XPath expression at the same time.

In our scoring algorithm, we define a tf-ipf score calculated from content-
and-structure conditions of XML documents. The score Sd is composed of two
factors, “Term Frequency of XML fragment (tfd)” and “Inverse Path Frequency
of XML fragment (ipfd)” as same as the tf-idf scoring. These factors are inspired

158



from one of the path-based scorings proposed in [9]. In short, if T is the set of
query terms and s is an answer XML fragment in a search result, tfd(s, t) is the
number of occurrences of term t ∈ T in s and ipfd(s, t) is the natural logarithm
of quotient of the number of XML fragments which have the same structure as s
and the number of such answer XML fragments containing term t. We assume the
independence between paths in original XML documents and combine ipfd(s, t)
of individual paths. For example, given the query //article//sec[about(.,
t1 t2)], tfd(s, ti) and ipfd(s, ti)(i = 1, 2) are defined as follows:

tfd(s, ti) =
n(s, ti)

l(s)
, ipfd(s, ti) = 1 + log

M(s)

m(s, ti)
(1)

where n(s, ti) is the number of occurrences of ti in s, l(s) is the length of s (total
number of terms in s), M(s) is the number of XML fragments in the original
XML documents which satisfy s’s structure, and m(s, ti) is the number of such
fragments containing ti. Therefore, a score considering content-and-structure
condition of XML documents Sd is defined as the following equation:

Sd(s) =
∑
t∈T

tfd(s, t) · ipfd(s, t) (2)

In addition, we have already found two heuristics for calculating Sd(s) ex-
actly. The first heuristic is that small XML fragments are not suitable for search
results in XML search engines, especially keyword search. This is because the
XML fragments in a search result are supposed to be semantically consolidated
granules of original XML documents. In other words, such small XML fragments
are not semantically consolidated granules, so that they should not be included
in search results. We have already pointed this problem in [12], and proposed a
method for deleting small XML fragments from search results using quantita-
tive linguistics [11]. Applying this approach proposed in [11] to our XML search
engine easily, we defined a threshold called the ratio of period to delate such
small XML fragments from search results in [10]. The ratio of period is defined
as follows:

r(se) =
np(se)

Np(se)
(3)

where Np(se) denotes the number of XML fragments whose tag names is se
7,

and np(se) is the number of XML fragments that end with the symbols like ., ?,
or ! if the node with tag name se is a leaf node, or the number of XML fragments
that have more than one document-centric leaf node if the node with tag name
se is an internal node.

In contrast, the second heuristic is that tfd(s, ti) has a negative effect for
calculating Sd(s). That is to say, the tf and idf factors in the tf-idf scoring are
well-balanced; however, the tf and ipf factors in the tf-ipf scoring are not well-
balanced. For example, tfd(s, ti) is more influence over Sd(s) than ipfd(s, ti) in
experiments of the INEX test collections (from 2002 to 2005), so that we believe

7 se is the tag name of an XML fragment s.

159



that ipfd(s, ti) has an insignificant effect on Sd(s). Liu et al. also found the
same fact and proposed an well-balanced tf factors suitable for ipfd(s, ti) based
on statistics extracted from original XML documents, which were calculated
by using the average number of terms of the XML fragments with the same
abbreviated XPath expression lave(s) and a constant parameter c as follows:

tfd(s, t) =
o tf(s, t)

n tf(s)
(4)

o tf(s, t) = 1 + log (1 + log (n(s, t))) (5)

n tf(s) =

(
1 − lave(s) − l(s)

lave(s)
· c

)
· (1 + log(lave(s))) (6)

In this paper, we adapted their methods to original tf-ipf scoring and calculated
tfd(s, t) defined in equation (4). We call this scoring method “ntf-ipf scoring”,
which is extended by using statistics of original XML documents. The constant
parameter c in equation (6) was usually set to 0.2. Owing to limited space, we
do not describe the details of their method (see [17]).

2.2 Content-and-Structure Conditions of Queries

Using the path-based scorings, we can calculate scores of XML fragments related
to queries before users issues them to XML search engines. Such precomputing
scores solely rely on original XML documents and do not consider query con-
ditions on both content and structure. As a result, only using the path-based
scorings is unable to function to calculate scores of answer XML fragments ex-
actly.

More concretely, let us consider the XML document given in Fig. 1. This ex-
ample is extracted from the INEX 2007 document collection. If a NEXI query like
//article//p[about(.,"Gates")] is issued to this example, XML fragment
s1: /article[1]/body[1]/p[1], s2: /article[1]/body[1]/section[1]/p[1],
and s3: /article[1]/body[1]/section[1]/p[2] would return as a search re-
sult. In existing approaches, the scores of XML fragments s1 and s2,3 are different
each other because their abbreviated XPath expressions are different from the
standpoint of both content and logical structure of original XML documents.
From the standpoint of query condition, however, they should be identified be-
cause these XML fragments are satisfied with both content and logical structure
of the query. In short, we would like to give the same scores to the XML fragments
satisfied with all condition of the query. Therefore, we can account for this by
considering condition on content and structure in the input queries and defining
scores as a function of those conditions as well as precomputed document-based
scores described in Section 2.1. This idea is basically the same in traditional doc-
ument search [2], and we believe that it helps to improve the retrieval accuracies
of search results.

Now we define a query-based score Sq. Similarly to the document-based score
Sd(s), Sq is composed of two factors, “Term Frequency of Query (tfq)” and “In-
verse Answer Document Frequency of Query (iafq)”, so that we call this scoring

160



¶ ³
<?xml version="1.0" encoding="UTF-8"?>

<article>

<name id="3747">Bill Gates</name>

<body>

<p>

<emph3>William Henry Gates III</emph3> (born October 28, 1955),

commonly known as <emph3>Bill Gates</emph3>, is the co-founder,

chairman and chief software architect of Microsoft Corporation,

the largest software company in the world. According to ...

</p>

...

<section>

<title>Early life</title>

<p>

Gates was born in Seattle, Washington, to William H. Gates,

Sr., a prominent lawyer, and Mary Maxwell Gates. Gates was born

with a million dollar trust fund set up by his grandfather, ...

</p>

<p>

Gates, with an estimated I.Q. of 160, excelled in elementary

school, particulary in mathematics and the sciences ...

</p>

...

</section>

...

</body>

</article>

µ ´
Fig. 1. A Sample XML Document in the INEX 2007 Document Collection

the tf-iaf scoring. iafq is important for calculating the query-based score Sq and
has only been explored once in isolation [7]. However, the cost of calculating iafq

can be quite expensive. Therefore, we only focus on the effectiveness of XML
search engines in this paper. In the same manner as a document-based score
Sd(s), given the query //article
//sec[about(., t1 t2)], tfq(ti) and iafq(ti) are defined as follows:

tfq(ti) = w(ti), iafq(ti) = 1 + log
V (p)

v(p, ti)
(7)

where w(ti) is the number of occurrences of ti in the query, V (p) is the number of
XML fragments satisfying the query path p (in this case, //article//sec), and
v(p, ti) is the number of XML fragments satisfying the query path p containing
term ti. In order to calculate iafq(ti), we also assume independence between
paths in the query and combine iafq(ti) of individual paths. Therefore, a query-

161



based score Sq is defined as the following equation:

Sq =
∑
t∈T

tfq(t) · iafq(t) (8)

2.3 Our Ranking Method

We finally define the combination of a document-based score Sd(s) and a query-
based score Sq. This idea is inspired from the SMART retrieval system8, which
has been considered the term weights of both documents and queries. In order
to combine them, the SMART retrieval system calculates their product in the
same spirit as document scores described in [2].

In our method, we apply the same idea to our XML search engine. Scores of
an XML fragment s related to a query is thus defined as follows:

S(s) =
∑
t∈T

Sd(s) · Sq =
∑
t∈T

tfd(s, t) · ipfd(s, t) · tfq(t) · iafq(t) (9)

3 Search Result Presentation

As we described in Section 1, it is also important for improving the retrieval
accuracy of XML search engines to propose a method for presenting search
results. This is because XML search should consider the overlapping parts of
answer XML fragments unlike document search. Considering this fact, Clarke
has proposed to control overlapping by re-ranking the descendant and ancestor
of search results [13]. Compared with his approach, we propose a concept of
search result presentation which is a unit of answer XML fragments and use it
in our XML search engine. We believe that our search result presentation helps
for users to grasp and understand the entire search results effectively compared
with conventional approaches.

3.1 Search Result Presentation for XML Search

XML search engines extract XML fragments satisfied with a query from original
XML documents. In other words, it remains possible that a large number of
answer XML fragments are returned from XML search engines. Such answer
XML fragments may be extracted from one XML fragment. For example, XML
documents in the 2005 INEX document collection are scholarly articles, so that
sections, subsections, paragraphs and so on are retrieved by XML search engines.
Such retrieved XML fragments may overlap due to nesting structure of XML
documents. This fact causes the problem to be difficult to grasp and understand
the entire search results effectively.

Because of the above situation, the INEX project has demanded some kinds of
search result presentations such as not Thorough strategy but Focused, Relevant-
In-Context and Best-In-Context ones. While the XML search engines with the
8 ftp://ftp.cs.cornell.edu/pub/smart/.

162



Thorough strategy can retrieve overlapping XML fragments, ones with other
strategies can retrieve non-overlapping document parts containing answer XML
fragments or a single document part per an XML document. That is, they firstly
extract XML fragments related with queries, and then decide answer parts from
extracted ones. We think that, however, these strategies also contain the prob-
lem because the XML search engines with these strategies find non-overlapping
document parts using scored XML fragments in an XML document regardless of
their scores. The best way to attain the most effective XML search is to extract
some XML fragments related with the queries from one XML document, to gen-
erate document parts based on a unit appropriate for users, and to rank them for
presenting search results. Considering these demands, we believe that an XML
search engine would be more useful if it has a user interface which can handle a
basic unit for XML search and can provide answers constructed from the unit.
This is because it is natural for users to show answers mapped on original XML
documents, and the users avoid the need to see the document parts not related
with queries. In short, our XML search engine provides thumbnail of original
XML documents and indicates the answer parts of XML documents directly in
its user interface; in consequence, users can intuitively grasp and understand the
search results9.

In order to implement such user interface of our XML search engine, we
propose a new concept called “Aggregation Granularity (AG)”, which is a unit
of search results determined from original XML documents. In next section, we
describe our new concept in detail.

3.2 Aggregation Granularity

In conventional XML search engines, answer XML fragments are showed in their
user interfaces individually on the Thorough strategy, so that users tend to get
messed up the relationship among the answer XML fragments. In the case of our
XML search engine realizing the new concept, answer XML fragments are allo-
cated on original XML documents in its user interface. Therefore, the problem
described in previous section is not caused in our XML search engine.

In some case, however, we would be better off aggregating several answer
XML fragments with large scores into one document part to show the search
results to users, because it is easy for users to understand the content of a search
result from the viewpoint for grasping the outline of original XML document
even if the score of the document part, which is also XML fragment containing
the answer XML fragments, is not large. For example, a query is issued by a
user, conventional XML search engines return answer XML fragments whose
root nodes are gray-color elements in Fig. 2. As a result, a large number of
answer XML fragments are returned, so that users cannot grasp and understand
the search result. In our XML search engine, however, answer XML fragments
with a certain degree of scores whose root nodes are gray-color elements in

9 The difference between the Focused strategy and our proposal is to be able to high-
light answer XML fragments with large scores.

163



1
2 9 15

4 5 7 8 12 13 17 18 19 22 23 24
3 6 10 14 201611 21

Fig. 2. Answer XML Fragments in Ex-
isting XML-IR System

1
2 9 15

4 5 7 8 12 13 17 18 19 22 23 24
3 6 10 14 201611 21

Fig. 3. Answer XML Fragments in Our
XML-IR System

Fig. 3 are extracted from the search result, and then, some document parts
enclosed by trajectory in Fig. 3 are constructed from them as basic units for
XML search, AGs. As a result, users can grasp and understand the entire search
results effectively compared with conventional XML search engines.

In this approach, the following two things become big problems. One is how
to decide AGs, and the other is how to calculate the score of the document
parts based on AG. To cope with the first problem, the AG can be defined if a
certain standard like the threshold size, the location in original XML documents
of answer XML fragments, and so on. In [18], for example, XML documents can
be divided into multiple parts like physical pages, so that the AG is defined as
individual pages of XML documents. Generally, XML fragments suitable for an
AG tend to be located at the higher level of original XML documents, and their
sizes tend to be relatively large. In short, it seems more likely that element 2, 9,
and 15 in Fig. 3 would be first candidate of AG, and element 3, 6, 11, 16, and 21
would be second candidate. Alternatively, calculating scores of aggregated XML
fragments varies in methodology. The easiest way to calculate their scores is
the sum of the scores of answer XML fragments which constitute the document
parts defined from AG. However, two problems above have a lot of things to be
considered, so that now we are formulating the definition and score-calculation
of AG. We would like to try every way possible to formulate and implement
them in our XML search engine in the near future.

4 Experimental Evaluations

In this section, we conduct some experiments for the sake of the effectiveness
of our proposals in our XML search engine. At the present time, an evaluation
tool is not available, so that we show the experimental results using the 2005
INEX test collection10. This collection is composed of a document set marked up
in XML, its relevance assessment, and evaluation measures. The document set
contains 16,819 articles of the IEEE Computer Society’s magazines and trans-
actions published from 1995 to 2004. The size of the document set is 735MB,
10 We could not take part in INEX 2006.

164



an article contains 1,532 XML nodes on average, and the average depth of a
node is 6.9. The relevance assessment has two graded dimensions to express rel-
evance of XML fragments to XML queries, “exhaustivity” and “specificity”. The
concept of specificity is peculiar to XML search, because it provides a measure
of the size of an XML fragment as it measures the ratio of relevant to non-
relevant content within the XML fragment. In order to identify relevant XML
fragments to XML queries, INEX project provides two evaluation measures,
recall-precision and eXtended Cumulated Gain (XCG) [19]. The recall-precision
is used for evaluating the effectiveness of conventional information retrieval sys-
tems. The recall-precision in the INEX project maps the values of exhaustivity
and specificity to a single scale using quantization functions [20]. On the other
hand, the XCG was additionally proposed for evaluating effectiveness of XML
search engines [21] because the recall-precision evaluation measure could not
consider overlapping XML fragments. This problem is amply explained in [22]
and can be summarized as the issue of avoiding to return both elements and
their sub-elements as query results and recalculating scores on the fly when that
happens. In that sense, the XCG measure accounts for both retrieval accuracy
and users experience.

4.1 Evaluation of Scoring based on Document Conditions

In this evaluation, we used the recall-precision and the XCG measures to evaluate
our scoring algorithm for CO queries.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tf-ipfntf-ipf

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tf-ipfntf-ipf

Fig. 4. Retrieval Accuracies based on Recall-Precision/nXCG

Fig. 4 shows the retrieval accuracies based on the recall-precision and the
nXCG in the INEX evaluation measures. “tf-ipf” in Fig. 4 is the original tf-ipf
scoring, “ntf-ipf” is the scoring method defined in equation (2) where tfd(s, t) is

165



redefined in equation (4)11. Fig. 4 speaks that the ntf-ipf scoring could retrieve
more relevant XML fragments than the tf-ipf one in the Thorough strategy. In
short, we can verify the effectiveness of the ntf-ipf scoring for the CO queries.
We also noticed that we have to formulate not only the ipf factor but also the
tf factor for effective XML search, because the original tf-ipf scoring has never
configured the tf factor in the tf-idf scoring for document search. As a result, it
is important for effective XML search to use the statistics extracted from original
XML documents and to formulate the scoring algorithm.

4.2 Evaluation of Scoring based on Query Conditions

In this evaluation, we also used two evaluation measures to evaluate our scoring
algorithm for CAS queries.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ntf-ipfntf-ipf+tf-iaf

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ntf-ipfntf-ipf+tf-iaf

Fig. 5. Retrieval Accuracies based on Recall-Precision/nXCG

Fig. 5 shows the retrieval accuracies based on the recall-precision and the
nXCG in the INEX evaluation measures. We found that our scoring algorithm
(hereinafter called “tf-ipf+tf-iaf”) could retrieve more relevant XML fragments
than one where only document-base score is considered (hereinafter called “tf-
ipf”) in the Thorough strategy. In fact, we noticed that the relevant XML frag-
ments tended to be higher on the list of each search result using tf-ipf+tf-iaf.
This is because the XML fragments whose exhaustivity is large may be ranked
lower than ones whose exhaustivity is small using only tf-ipf scoring. Using both
tf-ipf and tf-iaf scorings, on the other hand, XML fragments whose exhaustiv-
ity and specificity are large make a point of being ranked higher in the search
results. In short, introducing tf-iaf scoring reflects exhaustivity in the scores of

11 Finally, Sd(s) is weighted by the length of s. In short, the smaller the length of s is,
the smaller Sd(s) is.

166



answer XML fragments, and helps to improve the retrieval accuracies of XML
search engines.

In summary, we have verified the effectiveness of the tf-iaf scoring for CAS
queries, because it can retrieve more relevant XML fragments compared with
the tf-ipf scoring.

5 Related Work

The application of information retrieval techniques in searching XML documents
has become an area of research in recent years. Especially, the participants in
the INEX project have proposed a lot of scoring proposals for XML search
[5]. Over the years, it has become clear that refining the level of granularity at
which document structure is taken into account in pre-computing individual term
weights either in the vector space model or the probabilistic model, has increased
retrieval accuracy. However, document statistics query conditions have not been
explored to the extent at which we are proposing in this paper.

Fuhr et al. proposed a method for propagating scores of XML fragments
leaf-to-root along the XML document tree [23]. However, although XIRQL, their
proposed language, enables queries with a mix of conditions on both structure
and keywords, only keywords are scored using conditions on document structure.
Other scoring methods also use conditions on document structure to apply length
normalization between query paths and data paths [8], to compute term weights
based on element tags or paths [6, 9], or to account for overlapping elements [13].
It was reported that these methods were useful for searching XML fragments [19];
however, such methods did not use statistics of original XML documents and
structural conditions of queries.

We believe that we have to utilize everything extracted from XML documents
and queries for searching XML fragments accurately. In this paper, therefore, we
showed that accounting for document statistics and query structure in addition
to the existing methods, and combining them to improve retrieval accuracies
of XML search engines. We can verify the effectiveness of our above proposals
through the experimental evaluation in Section 4.

6 Conclusion

XML is emerging as the standard format for presenting data and documents on
the Internet, and XML search engines are becoming necessary. Existing XML
search engines can consider the content and the structure of XML documents
to rank answer XML fragments to the XML queries. However, XML queries
combine conditions on content and structure of both document and queries. That
is, depending on the types of XML queries, we have to use the tf-ipf and the tf-
iaf scorings. Based on this consideration, we proposed a method of content- and
structure-based scorings in the vector space model considering both document
and query conditions. Our method integrates document- and structure-based
term-weighting strategies for XML search. Using our method, we found that we

167



could retrieve more relevant XML fragments with higher retrieval accuracy than
using conventional scoring methods. We also proposed the displaying method to
improve the retrieval accuracies of XML search engines. Unfortunately, we could
not verify the effectiveness of this approach in this paper; however, we think that
displaying search results is closely related to improving retrieval accuracies of
XML search engines from the standpoint of users. This fact has already noticed
in human interface research area, so that we have to implement our approach to
our XML search engine as early as possible.

Acknowledgments

This work was partly supported by Grant-in-Aid for Scientific Research on Prior-
ity Areas #19024058 of the Ministry of Education, Culture, Sports, Science and
Technology (MEXT), and Core Research for Evolutional Science and Technology
(CREST) program “New High-performance Information Processing Technology
Supporting Information-oriented Society” of the Japan Science under and Tech-
nology Agency (JST).

References

1. Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Fourth Edition). http://www.w3.org/TR/xml (Sep.
2006) W3C Recommendation 16 August 2006, edited in place 29 September 2006.

2. Salton, G., Buckley, C.: Term-Weighting Approaches in Automatic Text Retrieval.
Information Processing and Management 24(5) (1988) 513–523

3. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Ad-
vances in XML Information Retrieval. Volume 3493 of Lecture Notes in Computer
Science., Springer-Verlag (May 2005) 16–40

4. Amer-Yahia, S., Botev, C., Dorre, J., Shanmugasundaram, J.: XQuery Full-Text
extensions explained. IBM Systems Journal 45(2) (Dec. 2006) 335–352

5. Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and Scoring. SIG-
MOD Record 35(4) (Dec. 2006) 16–23

6. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: Proceedings of 29th International Conference on Very Large Data
Bases. (Sep. 2003) 45–56

7. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. In: Proceedings of the 31st International Conference on
Very Large Data Bases. (Aug./Sep. 2005) 361–372

8. Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML
Documents via XML Fragments. In: Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
(Jul./Aug. 2003) 151–158

9. Grabs, T., Schek, H.J.: PowerDB-XML: A Platform for Data-Centric and
Document-Centric XML Processing. In: Proceedings of the First International
XML Database Symposium. Volume 2824 of Lecture Notes on Computer Science.,
Springer (Sep. 2003) 100–117

168



10. Fujimoto, K., Shimizu, T., Terada, N., Hatano, K., Suzuki, Y., Amagasa, T., Kin-
utani, H., Yoshikawa, M.: An Implementation of High-Speed and High-Precision
XML Information Retrieval System on Relational Databases. In: Advances in XML
Information Retrieval and Evaluation. Volume 3977 of Lecture Notes in Computer
Science., Springer (June 2006) 254–267

11. Hatano, K., Kinutani, H., Amagasa, T., Mori, Y., Yoshikawa, M., Uemura, S.: An-
alyzing the Properties of XML Fragments Decomposed from the INEX Document
Collection. In: Advances in XML Information Retrieval. Volume 3493 of Lecture
Notes in Computer Science., Springer (May 2005) 168–182

12. Hatano, K., Kinutani, H., Watanabe, M., Mori, Y., Yoshikawa, M., Uemura,
S.: Keyword-based XML Fragment Retrieval: Experimental Evaluation based on
INEX 2003 Relevance Assessments. In: Proceedings of the 2nd Workshop of the
Initiative for the Evaluation of XML Retrieval. (March 2004) 81–88

13. Clarke, C.L.A.: Controlling Overlap in Content-Oriented XML Retrieval. In:
Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. (Aug. 2005) 314–321

14. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: A Path-based Ap-
proach to Storage and Retrieval of XML Documents using Relational Databases.
ACM Transactions on Internet Technology 1(1) (Aug. 2001) 110–141

15. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communication of the ACM 18(11) (Nov. 1975) 613–620

16. Clark, J., DeRose, S.: XML PAth Language (XPath) Version 1.0. http://www.

w3.org/TR/xpath (Nov. 1999) W3C Recommendation 16 November 1999.
17. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective Keyword Search in Re-

lational Databases. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ACM (June 2006) 563–574

18. Shimizu, T., Yoshikawa, M.: XML Information Retrieval Considering Physical Page
Layout of Logical Elements. In: Proceedings of the 10th International Workshop
on Web and Databases. (June 2007) 48–49

19. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Metrics. In: Advances in XML
Information Retrieval and Evaluation. Volume 3977 of Lecture Notes on Computer
Science., Springer-Verlag (Jun. 2006) 16–29

20. Kekäläinen, J., Järvelin, K.: Using Graded Relevance Assessments in IR Evalu-
ation. Journal of the American Society for Information Science and Technology
53(13) (Nov. 2002) 1120–1129

21. Kazai, G., Lalmas, M.: eXtended Cumulated Gain Measures for the Evaluation
of Content-Oriented XML Retrieval. ACM Transactions on Information Systems
24(4) (Oct. 2006) 503–542

22. Kazai, G., Lalmas, M., de Vries, A.P.: The Overlap Problem in Content-Oriented
XML Retrieval Evaluation. In: Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. (Jul.
2004) 72–79

23. Fuhr, N., Großjohann, K.: XIRQL: An XML Query Language based on Information
Retrieval Concepts. ACM Transactions on Information Systems 22(2) (Apr. 2004)
313–356

169




