
Multimedia Object Placement in Transcoding-enabled

Wide-area Storage Systems

Wenyu Qu, Kazuo Goda, and Masaru Kitsuregawa

Institute of Industrial Science

The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, Japan

With the rapid growth of audio and video

applications on the Internet and the

popularization of various mobile appliances

such as portable notebooks, personal digital

assistants, etc, which are divergent of sizes,

weight, input/output capabilities, network

connectivity, and computing power, how to

meet the diverse needs to the same object

efficiently and effectively has become an

important problem, that raise the research on

optimally distributing multiple versions of

the same multimedia object in a wide-area

storage systems.

To meet the diverse content presentation

preferences from different users, the

technology of transcoding is used for

transforming the multimedia object to proper

versions. A full object version has numerous

transcoded versions such that different

clients’ capabilities can be accommodated.

Clients’ requests for multimedia objects are

directed to a storage device in the storage

system, usually the nearest one. The requests

consist of the name of the multimedia objects

and the capability of the client device. When

a user’s request arrives at a storage device,

the storage searches itself for the

appropriate multimedia object version.

We model the network as a graph),(EVG = ,

where),,,(21 nvvvV L= is the set of nodes,

and E is the set of network links. We use

),,2,1,(MjAA j L== to denote the set of

all versions of a multimedia object and use

jAb to denote the size of jA . The original

version, which can be transcoded to a less

detailed object called the transcoded version,

is denoted as 1A , whereas the least detailed

version, which cannot be transcoded any more,

is denoted as MA . Let)(jv Af
i

 denote the

access frequency for jA through node iv per

unit time. The transmission cost for

transferring jA between nodes iv and kv is

denoted by)(, jvv Ac
ki

. If a request goes

through multiple network links, the cost is

the summation of the cost on all these links.

We use
ivB to denote the version stored or to

be stored at node iv . Obviously, we have

AB
iv ∈ .

We begin with computing the cost saving (the

cost delay saved by placing a version of a

multimedia object at a storage device) and

the cost loss (the access cost increased by

removing a version of a multimedia object at

a storage device) of placing a version of a

multimedia object at a single storage device.

We assume that each storage device has a

limited size such that one or more objects

may need to be removed from the storage when

a version of a multimedia object is stored in.

Let)(jv Am
i

 be the miss penalty for version

jA with respect to node iv , which is defined

as the additional cost of accessing jA if

ivB is removed from node iv ; thus, we have

),(),()()(
)()(, jvjAvjAvvjv ABwABwAcAm

ijijiij
−+= ++

, where)(ji Av +
 is the nearest higher level

node of iv that stores a more detailed

version than jA (including jA),

)(
)(, jAvv

Ac
jii

+ is the additional transmission

cost,),(
)(jAv

ABw
ji

+ is the additional

transcoding cost, and),(jv ABw
i

 is the

5-37

3J-7

情報処理学会第70回全国大会

original transcoding cost. Therefore, the

cost saving of storing jA at iv , denoted by

)(jv As
i

, can be defined as

∑ ∈
⋅=

)(
)()()(

jx iii ADA xvxvjv AmAfAs since

removing jA from iv will affect those

versions that can be transcoded from jA .

Next, we consider the cost loss of storing a

version of a multimedia object at a node。 .

Let)(jv Al
i

 denote the cost loss of storing

jA at iv . We apply the following greedy

heuristic to decide replacement candidates.

Note that the normalized cost loss (NCL, i.e.,

the cost loss introduced by creating one unit

of free space) of ejecting jA is
ji Ajv bAs /)(.

The objects in the storage are ordered by

their NCLs and are selected sequentially,

starting from the object with the smallest

NCL, until enough space is created. The cost

loss storing a version of a multimedia object

at a node is calculated by all the selected

candidates.

Let 1v be the final storage device satisfying

the object request, nv be the client issuing

the request, and 121 ,,, −nvvv L are the

intermediate storage devices on the path from

1v to nv . The cost saving of storing
ivB at

iv , denoted by)(
ii vv BS , is given by

()∑ ∈
⋅− −)()()()()(

ivx ixiiBDA xvxAvjv AmAfAf ,

where)(xi Av−
 is the nearest lower level node

of iv that stores a less detailed version

than xA . The cost loss of storing iB at iv ,

denoted by)(iv BL
i

$L_{v_i}(B_{i})$, is given

by ∑ ∈)(
)(

ivx iBDA xv Al . For simplicity, we use

n,,2,1 L to denote in the following analysis,

respectively. Let kvvv ,,, 21 L be a set of k

nodes such that nvvv k ≤≤≤≤≤ L211 .

),,,:(21 kvvvnF L , which is the aggregate

profit of storing multiple versions of a

multimedia object at kvvv ,,, 21 L , is defined

as ()∑ −
k

vvvv kkkk
BLBS

1
)()(. If 0=k , then

we define 0):(=φnF . So the objective is

to find
*k and *,,, 21 k

vvv L that maximizes

),,,:(21 kvvvnF L , which is referred to as

an n -optimization problem in this paper.

The following theorem shows that an optimal

solution for the whole problem must contain

optimal solutions to some subproblems.

Theorem 1 Suppose that Ivvv ,,, 21 L is an

optimal solution to the n -optimization

problem and luuu ,,, 21 L is an optimal

solution to the 1−Iv -optimization problem,

then Il vuuu ,,,, 21 L is also an optimal

solution to the n -optimization problem.

Define
*

nF to be the maximum aggregate profit

of),,,:(21 kvvvnF L obtained by solving the

n -optimization problem and nI the maximum

index in the optimal solution. If the optimal

solution is an empty set, define 1−=nI .

Obviously, we have 10 −=I and 0*
0 =F . From

Theorem 1, we know that if

0>rI ,

))()((1 rIrIrIrIrr vvvvII BLBSFF −+= − .

Therefore, we can check all possible

locations of)0(nrI r ≤≤ $I_{r} and select

the one that maximizes),,,:(21 kvvvrF L . So

we have

⎪⎩

⎪
⎨
⎧

−+=

=

−≤≤
))}()((,0{max

0
*

1

*

*
0

1 rIrIrIrIiv
i

vvvvrvr BLBSFF

F

and

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪⎩

⎪
⎨
⎧

−+=

=−
=

−=

−
))()((

01

1

**

*

0

1 rIrIrIrIiv vvvvr

r
r BLBSFFifv

Fif
I

I

\begin{eqnarray*}

The original problem can be solved using a

dynamic programming-based algorithm with the

recurrences above. Theorem \ref{theo} ensures

the correctness.

5-38

情報処理学会第70回全国大会

