
Storage Fusion

Masaru Kitsuregawa
Institute of Industrial Science

The University of Tokyo
kitsure@tkl.iis.u-

tokyo.ac.jp

Kazuo Goda
Institute of Industrial Science

The University of Tokyo
kgoda@tkl.iis.u-

tokyo.ac.jp

Takashi Hoshino
Graduate School of

Information Science and
Technology

The University of Tokyo
hoshino@tkl.iis.u-

tokyo.ac.jp

ABSTRACT
So far, the core component of the IT system was absolutely
a server, and the storage was recognized as its peripheral.
The recent evolution of device and network technologies has
enabled storage consolidation, by which all the data and its
related simple software codes can be placed in one place.
Storage centric designs are being deployed into many enter-
prise systems. The role of the storage should be reconsid-
ered. This paper presents activities of the Storage Fusion
Project, a five-year research and development project. Stor-
age Fusion is an idea of elegant deep collaboration between
storage and database servers. Two substantial works are
presented in this paper. First, the exploitation of query
execution plans enables dynamically informed prefetching,
accordingly boosting ad-hoc queries significantly. Second,
the idea of putting autonomic database reorganization into
the storage has the potential benefit of relieving the man-
agement burdens of database structural deterioration.

1. INTRODUCTION
Although the magnetic disk drive has increased its areal

density by eight orders of magnitude [13] during the fifty-
year history [33], its basic operations have not almost changed.
The disk drive, or a storage system which comprises multiple
disk drives, is still a passive peripheral device which mainly
stores data based on block read/write commands issued by
the server. However, technological innovations that have
happened in storage technologies for the past decade are
giving us opportunities to reconsider the role of the storage.

First, the evolution of device technologies has enabled the
vendors to accommodate plenty of computational resources
into their storage products. A recent high-end disk stor-
age [11, 35], which connects hundreds of disk drives to a
hundred processors and tens of GB memory, is often de-
ployed into enterprise systems. The computational capa-
bility of the system is significantly larger than that of disk
drives and might be comparable with that of the server. But,
all of such system resources are not necessarily fully busy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Utilizing idle portion of them for more sophisticated oper-
ations other than simple block reads/writes is a reasonable
approach.

Second, Fibre Channel [12] released in the late 1990s dras-
tically changed the physical connection between the storage
system and the server. So far, a storage device was subsidiar-
ily connected to a server. Its storage space was absolutely
managed by the server and the stored data was also man-
aged by each application separately. In contrast, storage
networks have provided the storage device with the capabil-
ity of connecting with other storage devices and/or servers.
In the networked storage environment, consolidating the re-
lated data in one place looks straightforward. Encapsulating
storage device management into the storage system could re-
lieve the administration burden of each server.

Third, storage virtualization [6], which creates virtual stor-
age space from physical storage devices, is a key software
function. The consolidated storage space is shared by many
servers. Managing its resources at separate server level is
not practical. Moving resource management from the server
to virtualization facilities implemented in the storage system
could help easy optimization of the resource management.

The system design is shifting from a server-centric manner
into a storage-centric manner; a gigantic high-end storage is
connected via high-speed storage area networks and its stor-
age space is exported by virtualization facilities. Yet, the
storage system is still working passively for the server sys-
tem; the system is just reacting block read/write commands.
Recent storage systems have sufficient resources for execut-
ing sophisticated software codes. Colocating the data and
its related software codes in a consolidated storage system
may be a natural idea [2, 7, 10].

The Storage Fusion Project is a five-year research and
development project we started in 2003. Storage Fusion
is an approach of deep collaboration between storage and
database servers. If we elegantly cut some portion of the
software functions from the server and put it to the storage
system, the storage system could work much more closely
with the server. Of course, new interfaces might become
necessary, but they could be justified by the benefits. The
main objective of the project is to explore such elegant fusion
and to clarify the potential benefits.

This paper concisely presents two substantial works of the
projects. First, we discuss the exploitation of query execu-
tion plans for boosting disk storage. Second, we present the
approach of putting database reorganization into a storage
system. Brief experimental evaluations follow each study in
the paper.



The remainder of the paper is organized as follows. Sec-
tion 2 discusses query execution plan assisted advanced prefetch-
ing and Section 3 presents self-reorganizing storage system.
Section 4 summarizes related works and Section 5 concludes
the paper.

2. DATABASE SERVER ASSISTED STOR-
AGE BOOSTING

2.1 Exploitation of Query Execution Plans
Researchers at University of California, Berkeley reported,

in 2000, that the amount of digital data newly generated by
human beings had been doubled every year [37]. Last year,
IDC’s analysts forecasted that 161EB of data has been cre-
ated in 2006 and 988EB would be so in 2009 [17]. U.C.
Berkeley’s estimate looks almost supported by this new re-
port. Such explosive information expanding is often seen
in many places. For example, sensor network technology
has enabled precise monitoring of real world events. Signif-
icantly large amount of monitored data is continuously be-
ing stored into storage systems. Deep investigation of such
massive data may open a gate for real world analysis. Some
applications are already deployed. Retail business compa-
nies such as Wal-Mart started putting IC tags on their sales
items [3,39]. Efficient distribution of sales goods is a key to
their business success. Analyzing all the business processes
such as manufacturing, logistics and sales should be helpful,
or might be even essential, to business administration.

Performance of data intensive applications such as deep
analysis on data warehouses is strictly limited by the aggre-
gate capability of storage systems in which the target data
is stored. Unfortunately, disk drives have gained 7% per-
formance improvement for random accesses every year [13].
The digital data is exponentially expanding, but its process-
ing throughput is only slightly increasing. Bridging the gap
is a big research issue.

In the Storage Fusion Project, we explored the exploita-
tion of high-level behavioral information of software pro-
grams which are running on the server. When a database
server receives a query, it generates a query execution plan
and then processes the query on the basis of the generated
plan. If the storage system is informed of the plan infor-
mation, it can much more precisely predict the data which
will be accessed by the server in near future. Query execu-
tion plan assisted advanced prefetching is an idea of issuing
prefetching commands based on such informed knowledge.

2.2 Query Execution Plan Assisted Advanced
Prefetching

Figure 1 illustrates an overview of query execution plan
assisted advanced prefetching. When a user program is-
sues a query, a database server generates a query execution
plan. The generated plan is immediately sent to an advanced
prefetching facility, which is implemented in a storage sub-
system. Then, the database server begins to process the
query based on the plan. While the query is being processed,
the advanced prefetching facility is informed of address in-
formation of each read request issued by the server. By ana-
lyzing the plan and the address information, the prefetching
facility can predict the data which is to be accessed by the
server. Prefetching such data would significantly improve
the query processing performance.

Figure 1: An Overview of Query Execution Plan
Assisted Advanced Prefetching.

Figure 2: First-level Prefetching and Second-level
Prefetching.

Prediction and prefetching is done in the two steps, which
are also illustrated in Figure 2.
First-level Prefetching. Based on the informed address,
the advanced prefetching facility identifies index records (In-
dex B1) which will be accessed, and then tries to read the
index records in a prefetching manner. When the index
records are read to the cache, the facility analyzes the records
to identify table records (Table B) to which the index records
are associated. Finally, the facility issues prefetching com-
mands to the table records again.
Second-level Prefetching. The advanced prefetching fa-
cility analyzes the table records prefetched by first-level prefetch-
ing for enabling further prefetching. That is, the facility
tries to identify index/table records (Index C2 and Table B)
which will be joined with the already prefetched table, and
then issues prefetching commands to the new index/table
records. Multiple processes of second-level prefetching can
be executed; another prefetching can be triggered based on
the data prefetched by previous prefetching.

2.3 Coordinating Multiple Queries
The proposed prefetching is an approach to control IO re-

quests at storage level using informed knowledge. If only
a single query is processed in the system, this would work
well. However, usually a IO command conveyed on a Fi-
bre Channel network is not aware of its semantics. That is,
the IO command includes only a low-level initiator identifier
such as Fibre Channel name instead of higher-level identi-
fiers. When the storage subsystem receives a IO request, it
cannot identify an application, a query, a transaction, a pro-
cess or a thread which has issued the IO request. If multiple
queries were being processed in the system, the advanced
prefetching facility could not identify its source query. Our



Figure 3: A Query Execution Plan of Query 8.

solution is to put a query identifier on each read command.
By analyzing the identifier, the advanced prefetching facil-
ity can identify a query for each IO request, so that it can
trigger prefetching appropriately for a separate query.

2.4 Experimental Evaluations
We implemented prefetchning function using Hitachi’s stor-

age subsystem and developed query execution plan assisted
advanced prefetching for a commercial database system, HiRDB
[14].

For evaluations, we prepared TPC-H dataset (SF=3.0)
and measured execution time of query 8 on different config-
urations. The generated query execution plan is depicted in
Figure 3.

Figure 4(a) presents the result, which compares three cases:
conventional query processing, query processing with only
first-level prefetching enabled, and query processing with
first- and second-level prefetching enabled. We could gain
six times faster query processing totally by the advanced
prefetching. The performance improvement was investigated
further. Figure 4(b) presents microscopic IO behaviors that
were traced during the first one-second execution in each. A
red point and a blue point denote respectively a prefetching
read command and a normal read command in the graphs.
IO requests were sparsely issued in the conventional query
processing, but the proposed prefetching technique could
concentrate the IOs. We measured cache hit ratios of the
storage subsystem. Only 20% of reads could hit in the con-
ventional query processing, but the hit ratio could improve
to 90% by the advanced prefetching.

We also evaluated the advanced prefetching for a multiple
query processing environment. Figure 5 presents the result.
Without the query identification tag, the performance im-
provement degraded for two or more concurrent queries. In
contrast, with the query identification tag, such deteriora-
tion was not not observed.

2.5 Summary
The idea of exploiting query execution plans enables dy-

namically informed prefetching. We developed the advanced
prefetching mechanism in the commercial storage subsystem
and conducted validation experiments. Six-fold performance

(a) Execution Time

(b) IO Behavior

Figure 4: Results of Experiments. (Single Query)

Figure 5: A Result of Experiments. (Multiple
Queries)

improvement was confirmed in a ad-hoc query processing.

3. SELF-REORGANIZING STORAGE SYS-
TEM

3.1 Database Reorganization
The data structure may gradually deteriorate as a num-

ber of records are inserted, deleted and/or updated. This
phenomenon is called structural deterioration, which will de-
grade data access performance. Assume a B+-tree structure,
where leaf pages are expected to be physically placed in key
order. Given that many records are inserted into a partic-
ular page, the page splits and some records of the page are
moved to another physically distant page. As such a page
split occurs many times, correlation between record key and
physical position gradually degrades, and thus finally a leaf
page scan involves many disk seeks [38]. Such issues are se-
rious in large-scale database. Database reorganization [21],
which moves recodes in the storage space to remove struc-
tural deterioration, is a unique solution. Reorganization is



recognized as an essential function for database systems. In
fact, all of the major database systems have reorganization
tools in their software suites [5, 15,25,27,32].

Database administrators are responsible of managing per-
formance of the database by executing database reorganiza-
tion only when structural deterioration degrades the database
performance [20, 23, 30, 40]. However, such careful man-
agement of structural deterioration does not look feasible
in practice. Rather, database reorganization is a typical
headache department for database administrators. The diffi-
culties of structural deterioration management can be grouped
into two issues.
Data Intensiveness. So far the administrator used to be
allowed to execute database reorganization in a offline way,
so that database reorganization could not interfere with the
online workloads. But, service availability is a prime concern
today. Most of database servers need to be servicing for 24
hours. The database must be reorganized in a online fashion.
However, database reorganization is very time consuming,
issuing a massive number of disk accesses. In addition, we
should consider recent IT systems, in which rich bandwidth
is prepared for internal communication within each subsys-
tem but inter-subsystem bandwidth is rather limited. If we
run database reorganization online on the database server,
the storage network connection between the storage and the
server would be congested. The user would see much lower
transaction processing performance.
Deterioration Measurement. Database administrators
are responsible of carefully scheduling database reorganiza-
tion in order to manage the system performance; specifi-
cally, the administrator should determine the portion of the
database to be reorganized and the time point to trigger
reorganization. However, database systems and recent stor-
age virtualization facilities abstract data storage structures.
This looks beneficial to users; they do not have to con-
sider physical data storage and they can manage data by
the use of higher-level description such as SQLs. However,
the database is also a black box to the administrator at the
same time. Structural deterioration is not clearly visible in
many cases although the information of structural deteriora-
tion is crucial to optimize database reorganization. To date,
many database administrators do not care about structural
deterioration and then experience unexpected performance
degradation that are really caused by structural deteriora-
tion. Even educated administrators of high-end systems may
opt to make reorganization plans based on rules of thumb
and rough performance statistics. Such naive solutions lead
to inefficient and expensive database administration.

In this paper, we discuss an idea of executing online database
reorganization in the storage system. Assuming that database
reorganization could be implemented in the storage system,
the database server would no longer have to consider reor-
ganization. This must be good news for the administrator.
In addition, database reorganization moves huge amount of
data. Server-side implementation would suffer from non-
negligible overheads due to multiple virtualization facilities.
Storage-level implementation is a promising approach.

The paper presents the design overview and the prototype
implementation of a self-reorganizing storage system (SRS),
a highly functional disk storage which has the capability of
autonomic database reorganization. To clarify the potential
benefit of our approach, the experimental results are also
briefly presented.

DATA
(LU1)

LOG

Data
IO

Log
IO

Storage

DATA
(LU1)

LOG

DATA
(LU1)

LOG

DATA
(LU1)

LOG

DATA
(LU2)

DATA
(LU2)

DATA
(LU2)

LOG

DATA
(LU2)

DBMS

Normal operation. Step A. Step B&C. Step D. Step E&F.

Mirror

Reorg. Apply

Tr.

Tr.

Tr.

Figure 6: Storage-level Split Database Reorganiza-
tion.

3.2 Storage-level Split Database Reorganiza-
tion

The self-reorganizing storage system has the capability of
reorganizing database which is stored in the system itself.
The reorganization is performed in the the following proce-
dure as illustrated in Figure 6. (A.) First, the storage system
dynamically allocates a new tablespace, which mirrors an
original tablespace1. (B.) Next, the database server quiesces
the tablespace temporarily, and the storage system splits the
mirrored tablespaces. Then, the database server mounts the
original tablespace and starts transaction processing again.
(C.) The storage system reorganizes the copied tablespace,
and subsequently (D.) applies the database log to the reor-
ganized tablespace so that the reorganized tablespace can
logically catch up with the original tablespace. (E.) The
database server quiesces the tablespace temporarily again,
mounts the reorganized tablespace, and then restarts trans-
action processing. (F.) Finally, the storage system discards
and releases the original tablespace.

In the above steps, (C.) reorganization and (D.) log catch-
up, which are new functions for storage systems, are very
data intensive. Focusing on accelerating these steps, we
have introduced two techniques: physical address level data
movement and eager log compaction.

Storage space of disk drives is exported to server applica-
tions through multiple virtualization layers such as LVMs,
virtualization switches and disk array controllers, each of
which does logical-physical address translation. The data
path from the server application to the disk drive is very
long, and when the application tries to move large data, ac-
cumulated overheads of these virtualization facilities are not
negligible. We try to improve the processing efficiency by
introducing physical-address-level data movement; the reor-
ganizer can process database pages at physical address level.
In addition, the virtualization facility is usually implemented
with finite-length queues, in which IO commands and trans-
ferred data are managed. Each virtualization layer manages
such finite resources within itself, not considering other lay-
ers. Thus, behavior of the whole system is far from global
optimization. In many cases, impedance mismatch occurs in
such multiple-level queuing systems. The reorganization fa-
cility can directly schedule IOs at physical address level. For
example, fine-gained request elevation and consecutive block
access coalescence greatly help throughput improvement.

Eager log compaction is a key technology of performance
improvement of the log applier. Each entry of database
log has a unique LSN (log sequence number) and normal

1To simplify the description, we assume that an LU (logical
unit) is directly used for a tablespace.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  100  200  300

N
or

m
. e

xe
c.

 ti
m

e

Number of refreshes

Reorganization issued.

Reorganization trigger.

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6
Query 7
Query 8
Query 9

Query 10
Scan(orders)

Scan(lineitem)

Figure 7: A Case Study of Database Reorganization.

redo operations apply the log entries in LSN order. In our
method, the log applier compacts the log sequence in a log
window buffer, and then applies the compacted sequence to
the tablespace. The compaction process comprises log fold-
ing and log sorting. Log folding is a technique to reduce the
number of log entries to be applied. The log entries which
manipulate the identical data are coalesced in the log win-
dow. On the other hand, log sorting reorders log entries in
the log window to improve disk access sequentiality. In many
cases, an entry of database log has a physical reference to
the target record. Such physical address information could
be helpful for scheduling [22,36]. Both the methods together
can reduce the log catch-up cost, boosting log catch-up.

3.3 Prototype Implementation and Evaluations
We implemented a prototype of the self-reorganizing stor-

age system. The prototype was developed using two differ-
ent database systems: HiRDB [15], a commercial product,
and MySQL (with InnoDB storage engine) [26], an open-
source product. The reorganization software is composed
of multiple threads. In order to reduce processing over-
heads and improve disk access parallelism, our implemen-
tation deploys parallel pipelined data processing. For exam-
ple, unloading, external sorting2 and loading are processed
for database reorganization in a pipelined manner as much
as possible.

Here we present a brief case study of database reorgani-
zation. Using TPC-H on HiRDB, we investigated the effect
of structural deterioration on query performance and the
performance restoration by database reorganization. Figure
7 shows gradual performance degradation of typical ad-hoc
queries. This degradation was due to uncollected garbage
space which was produced by the refresh functions. The
graph shows that reorganization was initiated based on the
specified threshold and then the performance could improve
to the original level.

We also evaluated the database reorganization time for
different datasets, TPC-H and TPC-C, and different database
systems, HiRDB and MySQL. For comparison, we mea-
sured three cases3: SRV, STR-L and STR-P. SRV de-
notes conventional reorganization tools. We used pdrorg

2Sort run length depends on available memory size.
3Note that we prepared the same IO bandwidth for each
configurations for fairness, although the external bandwidth
of real storage systems is usually much lower than the inter-
nal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

TPC-H (SF:16)
HiRDB

TPC-C (W:160)
HiRDB

TPC-H (SF:16)
MySQL

TPC-C (W:160)
MySQL

N
or

m
. r

eo
rg

. t
im

e

SRV
STR-L
STR-P

Figure 8: Comparison of Reorganization Time.

for HiRDB and mysqldump / mysqlimport for MySQL. In
contrast, STR-L and STR-P denote the self-reorganizing
storage system. STR-P enabled physical address awareness
whereas STR-L did not so.

Figure 8 summarizes the results, which show that the
storage-level database reorganizer significantly overperformed.
First, we analyzed SRV and STR-L. Compared with the
conventional server-side reorganizers, the storage-level reor-
ganizer could improve the performance by 80% for HiRDB
and 74% for MySQL. One possible reason is that little ef-
fort has been exerted for performance improvement of con-
ventional reorganization software, because the external IO
bandwidth may be congested by such server-side solutions.
In our storage-level split strategy, large data transfer is per-
formed within the storage system, and intensive data move-
ment is enabled to leverage the internal bandwidth. We be-
lieve that the proposed parallel data processing technology
contributed to this advantage. Next, we compared STR-
L and STR-P to investigate the effect of physical address
awareness. Compared with the reorganization which does
not consider physical address, the physical address level data
movement could improve the performance by 55% for HiRDB
and 76% for MySQL. Interestingly, although noticeable per-
formance improvement was gained even in STR-L case, fur-
ther improvement was achieved by physical address aware-
ness in STR-P case. In total, by delegating database reor-
ganization into the storage system and introducing parallel
data processing and physical address awareness, we achieved
significant performance improvement, 91% for HiRDB and
94% for MySQL.

3.4 Online Monitoring of Database Structural
Deterioration

In the case study described in the previous section, we
triggered database reorganization based on the threshold
of execution time. This strategy looks applicable to many
cases, but more direct monitoring of database structural de-
terioration would be helpful and might be necessary for sev-
eral cases. Here we present an online monitoring facility we
explored for enabling such monitoring [16].

The monitor is composed of a sniffer and an estimator.
The sniffer, implemented in low-level storage engine of database
systems, captures specific events such as page split and sends
the event to the estimator. Upon the received information,
the estimator calculates the degree of the structural deteri-



Figure 9: Online Monitor of Database Structural
Deterioration.

oration for a considered access on the basis of a given struc-
ture model. Here the degree of structural deterioration is
defined as a deterioration ratio of predicted disk access time.
Let us suppose a range scan of a relational table. If the scan
takes 300 seconds in the well-organized database and 450
seconds in the deteriorated database, then the deterioration
degree becomes 1.5.

The monitoring facility has three technical advantages.
First, the event can be captured for each concerned page.
If only a limited section of the database is deteriorated, the
deteriorated section can be identified almost at page level.
Second, physical performance characteristics such as seek
profiles of disk drives are considered in calculating the de-
terioration degree. Thus, highly accurate estimation of the
structural deterioration is expected. Finally, the sniffer only
needs to capture a small number of events and the estima-
tor can update the measured structural deterioration in an
incremental fashion, instead of performing full table scan.
Monitoring overheads can be minimized.

We developed a monitoring software suite for MySQL on
Linux operating system. The suite includes a graphical tool
which has the capability of visualizing structural deteriora-
tion based on the monitored information. Figure 9 shows
an example of structural deterioration which was observed
in TPC-H benchmark.

3.5 Summary
We show a design and a prototype implementation of a

self-reorganizing storage system. Physical address aware-

ness and eager log compaction are key technology to fully
utilize the rich IO processing power of recent high-end disk
storage. The presented case study and the performance ex-
periments validate the potential benefits. In addition, we
present a online monitoring facility of database structural
deterioration.

4. RELATED WORKS
The idea of placing high-level software codes onto storage

processors can be traced back to the database machines of
the 1970s and 1980s [9, 28, 31, 34]. Because expensive ded-
icated hardware could not be justified by its performance
gains, the vendors finally withdrew from database machine
development. In the late 1990s, Active Disks and Intelligent
Disk were proposed [1, 19, 29]. Those ideas, which per se
were similar to the database machines, were supported by
the technology background of increasing performance and
decreasing cost of processors and memory. Those researches
tried to run ad-hoc queries, data mining, etc. on storage
processors. Delegating such core database codes into the
storage is one approach, but it is still not realistic at present.

The idea of the Storage Fusion Project differs from these
past works. We still opt to execute queries and transac-
tions on server processors. Rather, our objective is to derive
elegant deep collaboration between storage and database
servers. Query execution plan assisted advanced prefetching
should be seen as an attempt to move only IO optimization
from the server to the storage. The storage resources are
virtualized and shared by many servers. Optimizing IOs at
separate server looks far from global optimization. Arrang-
ing IOs at storage level using more rich information would
be much more efficient. Self-reorganizing storage is an ap-
proach of moving database reorganization into the storage
system. Compared with query or transaction processing,
such reorganization codes can be more easily cut off database
systems and not be too complicated to be executed on the
storage processors. In addition, database reorganization is
much data intensive. Executing the software code closely to
disk drives are advantageous than server-level implementa-
tion. A new type of reasonable function partitioning can be
confirmed.

New interfaces look necessary in order to deploy our solu-
tion into commercial products. We should consider this issue
more carefully. Vendors and researchers have been studied
new high-level protocols such as SMI-S [8] and OSD [24],
which should support our approach. In fact, simple func-
tions are being implemented into commercial storage prod-
ucts and such solutions are widely accepted [2, 7, 10, 18]. In
addition, we are now considering the possibility of using re-
cent virtual machine technology, where the software execu-
tion environment can be isolated and can flexibly migrate
between various machines. If we deploy such operating sys-
tem capabilities such as LPAR [4] in the processors of disk
storage systems, our approach may become straightforward.

5. CONCLUSION
This paper presents research activities of the Storage Fu-

sion Project, in which we have studied elegant deep collabo-
ration between storage and database servers. Two substan-
tial works are presented in this paper. Query plan assisted
advanced prefetching can significantly improve the perfor-
mance of ad-hoc queries. We confirmed six-fold speedup



in the experiment. The approach of self-reorganizing stor-
age can encapsulate database reorganization into storage
systems and can boost database reorganization by approxi-
mately ten times.

6. ACKNOWLEDGMENTS
This work has been supported in part by the leading

project e-Society under the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of Japan. The
Storage Fusion Project (formally Advanced Storage), a sub-
project of e-Society, is a joint research between The Univer-
sity of Tokyo and Hitachi Ltd. The project has been con-
tributed by Mamoru Sugie, Toshihiko Odaka, Soichi Oyama,
Hiroyoshi Tsuchiya, Nobuo Kawamura, Kazuhiko Mogi, Shinji
Fujiwara, Yoshio Suzuki, Satoru Watanabe, Kazuhiko Mizuno,
Yuichi Yagawa, Norifumi Nishikawa, Hideomi Idei, Naokazu
Nemoto, Kota Yamaguchi, Takao Satoh, Jun Abe and Takashi
Oeda. Takashi Hoshino is partially supported by Research
Fellowships of the Japan Society for the Promotion of Sci-
ence (JSPS) for Young Scientists.

7. REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks:

Programming Model, Algorithm and Evaluation. In
Proc. Int’l. Conf. on Arch. Suport for Prog. Lang. and
Operating Syst., pages 81–91, 1998.

[2] A. Azagury, M. E. Factor, J. Satran, and W. Micka.
Point-in-Time Copy: Yesterday, Today and Tomorrow.
In Proc. NASA/IEEE Conf. on Mass Storage Syst.
Tech., pages 259–270, 2002.

[3] C. Babcock. Data, Data, Everywhere.
InfomationWeek, 2006.

[4] D. Barrick et al. Logical partitions on the IBM
PowerPC, A Guide to Working with LPAR on Power5
i5 Severs. IBM Redbooks, 2005.

[5] BMC Software, Inc. Easing the Pain of an IMS
Reorganization. White Paper, 2002.

[6] F. Bunn and R. Peglar. Storage Virtualization I.
What, Why, Where and How? SNIA Education, 2004.

[7] J. Carleton. Electronic Data Archiving and Retrieval
in the Public Sector. Analyst Report, Frost &
Sullivan, 2004.

[8] M. A. Carlson and J. Crandall. Storage Management
from SMI-S to Management Frameworks. SNIA
Education, 2007.

[9] D. J. DeWitt and P. B. Hawthorn. A Performance
Evaluation of Database Machine Architectures. In
Proc. Int’l. Conf. on Very Large Data Base, pages
199–214, 1981.

[10] EMC Corp. EMC Mainframe Solutions Guide.
Engineering White Paper, 2002.

[11] EMC Corp. EMC Symmetrix DMX Series. White
Paper, 2004.

[12] Fibre Channel Industry Association. FCIA Roadmap.
http://www.fibrechannel.org/.

[13] Hitachi Global Storage Technologies, San Jose
Research Center. HDD Technology Overview Charts,
2003.

[14] Hitachi Ltd. Hitachi HiRDB Version 7. http:
//www.hitachi.co.jp/Prod/comp/soft1/hirdb/.

[15] Hitachi Ltd. Hitachi Relational Database Management
System Solutions for Disaster Recovery to Support
Business Continuity. Review Special Issue, Hitachi
Technology, 2004.

[16] T. Hoshino, K. Goda, and M. Kitsuregawa. Online
Monitoring of Database Structural Deterioration. In
Proc. Int’l Conf. on Autonomic Comput., pages 22–23,
2007.

[17] IDC. The Expanding Digital Universe: A Forecast of
Worldwide Information Growth Through 2010. An
IDC White Paper sponsored by EMC, 2007.

[18] M. Ji, A. Veitch, and J. Wikes. Seneca: remote
mirroring done write. In Proc. USENIX Conf. on File
and Storage Tech., pages 253–268, 2003.

[19] K. Keeton, D. A. Patteson, and J. M. Hellerstein. A
case for intelligent disks (IDISKs). SIGMOD Record,
27(3):42–52, 1998.

[20] G. M. Lohman and J. A. Muckstadt. Optimal Policy
for Batch Operations: Backup, Checkpointing,
Reorganization, and Updating. ACM Trans. Database
Syst., 2(3):209–222, 1977.

[21] D. Lomet, editor. IEEE Data Eng. Bull.: Special Issue
on Online Reorganization., volume 19. IEEE
Computer Society, 1996.

[22] C. R. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle,
and E. Riedel. Towards higher disk head utilization:
extracting free bandwidth from busy drives. In Proc.
USENIX Symp. on Operating Syst. Design and Imple.,
pages 87–102, 2000.

[23] K. Maruyama and S. E. Smith. Optimal
Reorganization of Distributed Space Disk Files.
Comm. ACM, 19(11):634–642, 1976.

[24] M. Mesnier, G. R. Ganger, and E. Riedel.
Object-based Storage. IEEE Comm., 41(8):84–90,
2003.

[25] A. Mohamed, G. Candia, and D. Sherwin. Comparing
Architectures of Online Reorganization. White Paper,
Quest Software, 2002.

[26] MySQL AB. MySQL: The World’s Most Popular
Open Source Database. http://www.mysql.com/.

[27] Oracle Corp. Oracle Database 10g Online Data
Reorganization & Redefinition. White Paper, 2004.

[28] E. A. Ozkarahan, S. A. Schuster, and K. C. Smith.
RAP - Associative Processor for Database
Management. In Proc. AFIPS Conf., pages 379–387,
1975.

[29] E. Riedel, G. A. Gibson, and C. Faloutsos. Active
Storage For Large-Scale Data Mining and Multimedia.
In Proc. Int’l. Conf. on Very Large Data Base, pages
62–73, 1998.

[30] B. Shneiderman. Optimum Data Base Reorganization
Points. Comm. ACM, 16(6):362–365, 1973.

[31] D. L. Slotnick. Logic per Track Devices. Advances in
Computers, 10:291–296, 1970.

[32] G. H. Sockut, T. A. Beavin, and C.-C. Chang. A
Method for On-Line Reorganization of a Database.
IBM Syst. J., 36(3):411–436, 1997.

[33] L. D. Stevens. The Evolution of Magnetic Storage.
IBM Res. Develop., 25(5):663–676, 1981.

[34] S. Y. W. Su and G. J. Lipovski. CASSM: a cellular
system for very large database. In Proc. Int’l. Conf.



on Very Large Data Base, pages 456–472, 1975.

[35] N. Takahashi and H. Yoshida. Hitachi TagmaStore
Universal Storage Platform: Virtualization without
Limits. White Paper, Hitachi Ltd., 2004.

[36] E. Thereska, J. Schindler, J. S. Bucky, B. Salmon,
C. R. Lumb, and G. R. Ganger. A framework for
building unobtrusive disk maintenance applications. In
Proc. USENIX Conf. on File and Storage Tech., pages
213–226, 2004.

[37] University of California. How Much Information?,
2000.

[38] S. Watanabe and T. Miura. Reordering B-tree Files.
In Proc. ACM Symp. on Applied Comput., pages
681–686, 2002.

[39] R. Whiting. Data Avalance. InfomationWeek, 2004.

[40] S. B. Yao, K. S. Das, and T. J. Teorey. A Dynamic
Database Reorganization Algorithm. ACM Trans.
Database Syst., 1(2):159–174, 1976.


