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ABSTRACT
To utilize the similarity information hidden in the Web graph,
we investigate the problem of adaptively retrieving related
Web pages with user assistance. Given a definition of sim-
ilarities between pages, it is intuitive to estimate that any
similarity will propagate from page to page, inducing an
implicit topical relatedness between pages. In this paper,
we extract connected subgraphs from the whole graph that
consists of all pairs of pages whose similarity scores are
above a given threshold, and then sort the candidates of
related pages by a novel rank measure which is based on
the combination distances of a flexible hierarchical cluster-
ing. Moreover, due to the subjectivity of similarity values,
we dynamically supply the ordering list of related pages ac-
cording to a parameter adjusted by users. We show our
approach effectively handles a set of pages originating from
three related categories of Web hierarchies, such as Google
Directory. The experiments with three similarity measures
demonstrate that using in-link information is favorable while
using a combination measure of in-links and out-links lowers
the precision of identifying similar pages.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—clustering, search process; G.2.2
[Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms
Algorithm, Experiments, Performance

Keywords
graph partitioning, similarity search, clustering

1. INTRODUCTION
Modern search engines store the link structure of a large

part of the Web to serve users in two main ways, namely
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through “keyword” and “related pages” searches [1]. Both
broad-topic and short queries will retrieve thousands of“hits”
which may prove difficult for users to locate pages from.
Therefore, query expansion and query recommendation tech-
niques have been studied to help users formulate better
queries [3, 9]. On the other hand, it often happens that
a user is already familiar with some Web pages and needs to
find more related ones. Thus, the task of identifying similar
pages on the Web has also become an important issue.

Recently the link-based similarity search has gained much
attention. Co-citation[26] and bibliographic coupling [19]
are two of the more fundamental measures used to evaluate
the similarities between two scientific papers. When applied
in the Web, these bibliometrics measures can be thought of
as local in nature because they typically consider only the
local link properties between two pages which exist inside a
narrow area of the Web graph. Kumar et al. [21] used bi-
partite subgraphs to recognize the cores of the communities
and empirically concluded that a large fraction is in fact top-
ically coherent. These approaches are not good at finding
large related subsets of the Web graph due to their localized
structures. PageRank [4], HITS [20], SimRank [18], Random
Walk with Restart [27] are more global since they work by it-
eratively transmitting weights through the Web graph. The
weights reflect the similarity approximation between pages
and, therefore, can search large collections of related and
valuable Web pages. However, if the Web page collection
comes within several topics, they may only cover the most
prevalent topics and leave out the less prevalent ones. In a
solution for HITS, one has to compute multiple eigenvectors
in order to extract the smaller community that one is inter-
ested in. Calado et al. [5] compared the bibliometrics and
HITS-based similarity measures, from which the co-citation
measure presented the best performance in determining if
two pages are related.

Alternatively, similarity metrics such as co-citation and
bibliographic coupling can be used along with clustering
techniques, thus identifying related pages in a cluster that
is a collection of pages which are similar between them and
are dissimilar to the pages belonging to other clusters. The
fundamental problem in attempting to separate the Web
into clusters based upon its link structure and any kind of
normative definition of a cluster is that the size of the Web
means that any standard approach based upon the whole
Web graph would be computationally infeasible. Flake et
al. [12] figured out this problem in another way by develop-
ing a heuristic-based algorithm that iteratively extends any
seed set of pages into a larger interconnected one.



However, the Web graph is dynamic and massive in na-
ture, which brings about three limitations during computing
similarities: 1) links of pages have not yet been crawled; 2)
loading the whole Web graph to memory is unavailable for
the present; 3) some pages have good content but have not
been linked by many authors, which has already been ad-
dressed by Dean et al. [10]. They also pointed that their al-
gorithm does not claim to find all relevant pages. Due to the
limited information is available, we consider how to estimate
relatedness between pages Our idea is that the propagation
of localized bibliometrics similarity on a globalized neigh-
borhood graph of similarity that is explained in Section 5.1
will alleviate the problem. For example, using co-citation
as a similarity measure, if a page A is with the score of 0.5,
and similar to a page B that is similar to a page C with the
score of 0.4, it is intuitive for us to infer that A is also similar
to C with some probability (e.g., 0.5∗0.4=0.2), though the
co-citation between A and C is 0. The score of 0 does NOT
mean the two pages are definitely dissimilar. They may only
be not popular enough to be linked by many other pages, or
their link information may still be un-crawled or unloaded.
We think that the similarity scores will propagate from page
to page to compensate for these limitations of missing infor-
mation. One more observation is that if there is a page D
similar to C with the score of 0.01, our inference is that A
is more similar to C than D. However, because the link in-
formation in the Web is noisy, the score between C and D
(i.e., 0.01) is too small to be credible.

In addition, we should not overlook the subjectivity of
similarity. SimRank [18] and Random Walk with Restart [27],
as link-based methods, computed the static similarity scores
which are sensitive to specific choices made by the authors
of Web pages. Different users, however, have different stan-
dards to measure relatedness. For example, given a page
about knowledge discovery, some people point to database
technologies for useful information, while others prefer the
topic of Artificial Intelligence. Sometimes they cannot pre-
cisely judge whether a page is related or not by themselves.
Therefore, page-to-page similarity is not a fixed value, es-
pecially for cross-topic pages. If the ordering list of related
pages may be able to be changed under some constraints,
then the users will be supplied with more candidates of re-
lated pages.

Based on the above facts, we propose a user-assisted esti-
mation approach for similarity search in this paper. Our ap-
proach uses three bibliometrics measures, and has three ma-
jor steps: computing similarity scores of pairs of pages, ex-
tracting connected subgraphs from the neighborhood graph
of similarity, and applying sequential, agglomerative, hierar-
chical, nonoverlaping (SAHN) clustering on these subgraphs
for ranking related pages. The flexibility in the SAHN clus-
tering makes it possible for users to take part in the process
of searching related pages. The main contributions of this
paper are as follows.

(1) We put forward the problem of similarity estimation
for searching related pages.

(2) A novel rank mechanism is proposed to put in order
the related pages based on the monotonicity of the suc-
cessive combination distances in the SAHN clustering.

(3) Through our approach, users can become active partic-
ipants during the search instead of just being passive
acceptors of results.

The rest of this paper begins with a review of the related
work. We then describe three bibliometrics measures in Sec-
tion 3. In Section 4, concerns regarding the SAHN clustering
method are addressed. The details of our approach are given
in Section 5. Finally, we report on the experimental results
and follow them up with our conclusions and directions to-
wards future works.

2. RELATED WORK
A considerable amount of research has focused on examin-

ing collections of hyper-linked pages and structures. These
works have been very cross-disciplinary, touching the hyper-
media, the World Wide Web, Sociology, bibliometrics, and
even culture and the communication fields. We summarize
a small part of these works to put our own study within the
proper context.

2.1 Content-Based Analysis
Chakrabarti et al. [6] developed text-based methods for

automatically classifying hypertext into a given topic hier-
archy. Haveliwala et al. [15] presented a technique for auto-
matically evaluating strategies for answering Related Pages
queries by using Web hierarchies, such as open directory,
in place of user feedback. Zheng et al. [28] built an offline
clustering tool to allow the topical clustering of the entire
Web. Clustering Web pages by content, however, may re-
quire storage and manipulation of an overwhelming amount
of data, and is not generally scalable to an online cluster-
ing of the whole Web. Moreover, these text-based methods
are not applicable, at least in principle, in settings including:
non-text pages like multimedia (image) files, Usenet archives
and documents in non-HTML file formats such as PDF and
DOC documents, pages with limited access like sites that
require registration, and dynamic pages which are returned
in response to a submitted query or accessed only through
a form. As pages are modified, the text-based methods are
more susceptible to placing a URL in different clusters than
link-based methods.

2.2 Link-Based Analysis
Kleinberg’s HITS [20], a topic distillation algorithm, is ap-

plied in [7, 10, 13] to identify groups of similar pages. Dean
et al. [10] described the Companion algorithm to find related
pages by building a weighted graph around the starting page
and then running a modified version of HITS. Chirita et
al. [7] help users to find hubs related to a given initial set of
pages on the original Web graph. On the other hand, ran-
dom walk based methods are also alternatives. SimRank [18]
analyzes similarity between graph nodes by constructing a
node-pairs graph with SimRank similarity scores. The scores
are based on the theory that two objects are similar when
they are referred by similar objects and reflect node similar-
ities at a pair level. Sun et al. [27] computed the relevance
score for each node using random walk with restarts and
graph partitioning to identify similar nodes and anomaly
nodes.

In a different way, He et al. [16] explored textual infor-
mation, hyperlink structure, and co-citation relations and
applied the normalized-cut graph partitioning to the task
of clustering. If time and space complexity issues were ir-
relevant, then the approach proposed in [16] could identify
tightly coupled communities. Flake et al. [11] calculated
the Web community in the maximum-flow and minimum-



cut framework based on the Web graph that is locally stored
to yield results fast. Ino et al. [17] proposed Web page par-
titioning with the aid of equivalence relation to overcome
boundary ambiguity of a Web community defined by [11].

2.3 Bibliometrics
In bibliometrics, a range of metrics have been widely used

to assess the similarities of documents. Co-citations [26]
were proposed under the assumption that two articles that
are frequently cited together are likely to have something
important in common. Bibliographic coupling [19] is a com-
plementary measure. Two papers share one unit of biblio-
graphic coupling if both cite a same paper. Although the
purpose of most of these techniques is to provide the primary
mechanism to map and traverse the intellectual structure of
scientific information space, they have also been explicitly
cited as motivation for computer link based methods and
have been applied to the problem of mining Web pages [24].
Pitkow et al. [25] clustered sets of hypertext Web pages,
transferring the concept of scientific publication citations
to hypertext links on the Web. However, applying these
methods to systems such as the Web with at least 11.5 bil-
lion pages [14], would obviously be challenging, if not at all
daunting.

3. BIBLIOMETRICS MEASURE
To determine how related two Web pages are, we used

three different similarity measures derived from their link
information: co-citation, bibliographic coupling, and Am-
sler measures [5] that were all introduced in bibliometrics as
measures of how related two scientific papers. In this paper,
we evaluate how they perform in the Web graph. Hyper-
links are a generalized form of citation, acting diverse roles
such as advertising, in-site navigation, providing access to
pages that are the results of database queries, and so on.
Therefore, links are a less reliable source of evidence, when
used as an indicator of similarity between Web pages. How-
ever, we assume that it is still promising to regard Web links
as analogous to conventional citations.

3.1 Co-citation
A Web page author will insert links to pages related to his

own page. In this case, by treating links as citations, we say
that two pages are co-cited if a third page has links to both
of them. To further make it clear, let p be a Web page and
let I(p) be the set of pages that link to p, called the in-links
of p. The co-citation similarity between two pages p1 and
p2 is defined as:

cit(p1, p2) =
|I(p1) ∩ I(p2)|

|I(p1) ∪ I(p2)|
. (1)

Equation 1 shows that the more in-links of p1 and p2 have in
common, the more similar they are. This value is normalized
by the total set of in-links, so that the co-citation similarity
varies between 0 and 1. If both I(p1) and I(p2) are empty,
we define the co-citation similarity as zero.

3.2 Bibliographic Coupling
Two authors of Web pages on the same topic tend to insert

links to the same pages. More formally, let p be a Web page.
We define O(p) as the set of pages that p links to, also called
out-links of p. Bibliographic coupling between two pages p1

and p2 is defined as:

bib(p1, p2) =
|O(p1) ∩ O(p2)|

|O(p1) ∪ O(p2)|
. (2)

According to Equation 2, the more out-links in common page
p1 has with page p2, the more related they are. This value is
normalized by the total set of out-links, ranging from 0 to 1.
If both O(p1) and O(p2) are empty, we set the bibliographic
coupling similarity as zero.

3.3 Amsler
Calado et al. [5] introduced a measure of similarity called

Amsler that combines both co-citation and bibliographic
coupling in an attempt to take the most advantage of the
link information available between pages. On the principle
of Amsler, two pages p1 and p2 are related if 1) p1 and p2

are linked by a third page, 2) p1 and p2 link the same page,
or 3) p1 links a third page p3 that links p2. p is denoted as
a Web page, let I(p) be the set of in-links of p, and let O(p)
be the set of out-links of p. The Amsler similarity between
two pages p1 and p2 is defined as:

ams(p1, p2) =
|(I(p1) ∪ O(p1)) ∩ (I(p2) ∪ O(p2))|

|(I(p1) ∪ O(p1)) ∪ (I(p2) ∪ O(p2))|
. (3)

Equation 3 shows that the more links (either in-links or out-
links) p1 and p2 have in common, the more they are related.
The measure is normalized by the total number of in-links
and out-links. If neither p1 nor p2 have any in-links or out-
links, the similarity is assigned to zero.

3.4 Our Measure
We find that the above three measures do not take into

account the direct links between two pages. For example, if
an in-link of a page p1 is from a page p2, the common in-links
between p1 and p2 do not include p2. But p2 definitely con-
tributes to the similarity score. The same problem occurs
in bibliographic coupling and Amsler measures. Therefore,
we modify them by adding the effect of direct links between
pages. We give a generalization for the above three mea-
sures, listed as follows:

sim(p1, p2) =
|C(p1) ∩ C(p2)| + direct(p1, p2)

|(C(p1) ∪ C(p2) ∪ p1 ∪ p2|
, (4)

where C(p) represents I(p) in Equation 1, O(p) in Equa-
tion 2, or I(p) ∪ O(p) in Equation 3. In the rest of our pa-
per, we still call them“co-citation”, “bibliographic coupling”,
and “Amsler” for simplicity. In Equation 4, direct(p1,p2) is
defined as

direct(p1, p2) =

8

<

:

0 if no direct links between p1 and p2

1 if p1 links p2 OR p2 links p1

2 if p1 links p2 AND p2 links p1

.

4. SAHN CLUSTERING
Before producing an ordering list of related pages, we clus-

ter and rank the candidates by the SAHN clustering which
outputs a hierarchy, more informative than the unstructured
set clusters in flat clustering algorithms like k-means and
EM. The SAHN clustering treats each object as a singleton
group at the beginning, and then merges pairs of groups iter-
atively until all groups have been merged into a single group
structured as a hierarchy that contains all objects. The
fundamental assumption is that the best possible merger



is found at each step. Furthermore, it may have an interest-
ing property that suggests that distance measures associated
with successive merge operations could be monotonic; if d1,
d2, · · · , dk (the definition will be expressed soon) are suc-
cessive combination distances of the SAHN clustering, then
d1 ≤ d2 ≤ · · ·≤ dk must hold. Urged by the monotonic
property, we think that pages which have the shortest dis-
tances will be merged first. At each remaining step in the
hierarchy, the next closest pair of pages (or groups) should
be merged. The sequence of merge operations scores the
relevance of two pages and produces an ordering of related
pages for a specific page.

Lance et al. [22, 23] derived a flexible method of the SAHN
clustering by the constraint (0 < α ≤ 1), defined as

dhk = αdhi + αdhj + (1 − 2 ∗ α)dij , (5)

where (h), (i), and (j) are three groups, containing nh, ni,
and nj elements, respectively, with inter-group distances al-
ready defined as dhi, dhj , and dij . They further assume
that the smallest of all distances still to be considered dij ,
so that (i) and (j) fuse to form a new group (k), with nk

(=ni+nj) elements. The constraint suggests a set of mono-
tonic methods such that as α increases from 0 to 1, the
hierarchy changes from an almost completely “chained” sys-
tem to one with increasingly intense clustering. A given set
of pages may now, by varying the parameter α, be made
to appear as sharply clustered as a user may desire. Thus,
we can adaptively rank the related pages by combination
distances that vary with α as well.

5. OUR APPROACH
After the collection and preprocessing of Web link infor-

mation that are presented in Section 6, our approach consists
of the following three steps.

5.1 Step 1: Computation of Similarity Scores
Given that the in-links and out-links data are stored in

search engines, should we have to compute similarities for all
pairs of pages that will count a quadratic number of values?
Notice that we are interested in pairs of pages whose similar-
ity is above a specified threshold, a high quality collection.
The latest work [2] addressed this scalability issue without
relying on approximation methods or extensive parameter
tuning. Inspired by their work, we describe a monotone
minimum size constraints on the number of in-links (out-
links) of candidate pages before computing the similarity
scores. Given a threshold δ, the following inequalities are
established:

|C(pi) ∩ C(pj)| + d(pi, pj)

|(C(pi) ∪ C(pj) ∪ pi ∪ pj |
<

|C(pi) ∩ C(pj)| + 2

|(C(pi) ∪ C(pj)|

≤
|C(pi)| + 2

|C(pj)|
≤ δ .

The above equation tells us if the (|C(pi)|+2)/|C(pj)| ≤ δ,
their similarity score does not need to be stored to reduce
the amount of candidate pairs. Furthermore, we sort pages
in the decreasing order of C(p) to save on computation time.
This preprocess means if (|C(pi)| + 2)/|C(pj)| ≤ δ is met,
the pages pi to pn can be skipped without doing similarity
computation with pj (the total number of all pages is n),
thus accelerating our approach.

Finally, we eliminate the similarity scores between pages
which are larger than 0.95 because of duplicated pages (e.g.,

mirror sites, different aliases for the same page). The re-
main pages compose the whole neighborhood graph of sim-
ilarity, denoted as G, which is quietly different from the
original hyper-link graph. Its nodes correspond to pages,
but edges are weighted according to a distance score mea-
sured by dis(p1, p2) = 1 − sim(p1, p2). An simple example
is shown in Figure 2.

Applying the SAHN clustering to cluster pages in the
whole graph G is a direct way, however, its complexity is
at least quadratic in the number of pages because of the
distance matrix of all pairs of pages. Moreover, one ob-
servation from our experiments indicates that the neighbor-
hood graph of similarity is an unconnected graph which may
be subdivided into connected subgraphs. These encourage
our approach to partition the original neighborhood graph
of similarity to connected subgraphs, and then perform the
SAHN clustering only on the subgraphs.

5.2 Step 2: Extraction of Neighborhood
Subgraphs of Similarity

To obtain connected subgraphs from G, each vertex in
G is first in its own set on the basic initialization of the
disjoint-sets structure. We then calculated connected sub-
graphs based on the edges in G, embedding the results in
the disjoint-sets data structure. The disjoint-sets structure
is updated when an edge (p1, p2), whose similarity score is
above the given thresholds, is added into the graph. Last, we
extract all connected components, also called neighborhood
subgraphs of similarity here. Refer to [8] for the disjoint-sets
structure in detail.

5.3 Step 3: Ranking Related Pages with User
Assistance

Given a page, we run the SAHN clustering on the neigh-
borhood subgraph containing the input page. All the pages
in the subgraph are candidates for related pages. Then, we
rank them to form an ordering list. The pseudo code of this
step is described in Table 1. In each iteration, the two most
similar clusters are merged (Line 11 ∼ Line 13) and the rows
and columns of the merger cluster i in D are updated (Line
14 ∼ Line 18). Ties in the SAHN clustering are broken ran-
domly. The process of the SAHN clustering is stored as an
N by 2 matrix in M , where N is the number of candidates.
Row i of M describes the merging of clusters at the step i of
the clustering. If a number j in the row is negative, then the
single page |j| is merged at this stage. If j is positive, the
merger is with the cluster formed at stage j of the algorithm.
I indicates which clusters are still available to be merged. H
stores the combination distances between merging clusters
at the successive stages.

We last specify how to output the ordering list of related
Web pages. Given that the value of α in Equation 5 is
decided by a user, the SAHN clustering outputs a hier-
archical structure where an input page (ip) and a candi-
date page (cp) will come together at a combination distance
(dip,cp) (Line 27 ∼ Line 28), and at a distance (dip), the
input page is merged with a group (page) in the first time
(Line 21 ∼ Line 22), and the first merging for the candi-
date page is at a distance (dcp) (Line 25 ∼ Line 26). Then,
the distance score between the two pages is estimated to
|dip−dip,cp|+|dcp−dip,cp| which ranks each candidate in the
neighborhood subgraph (Line 29). The clustering structure
is illustrated in Figure 3, where “Height”, the label of the or-



Table 1: SAHN clustering and Rank Mechanism
Input: N candidates in the neighborhood subgraph of

similarity, α in the Equation 5 chosen by a user
Output: an ordering of related pages for the input page
Distance matrix
1. for k=1 to N
2. for l=1 to N
3. D[k][l] = dis(pk, pl)
Initialization
4. H[N ] (for combination distances)
5. M [N ][2] (for collecting merge sequence)
6. O[N ] (for the ordering list)
7. for k=1 to N
8. I[k] = 1 (keeps track of active cluster)
Compute clustering
9. for k=1 to N
10. Begin Loop
11. (i, j) = argmin(i,j)l6=m,I[i]=I[j]=1D[i][j]
12. M .append(< i, j >)
13. H.append((i, j))
14. for h=1 to N
15. Begin Loop
16. dh(i,j) = α∗D[h][i]+α∗D[h][j]+(1−2∗α)∗D[i][j]
17. D[i][h] = D[h][i] = dh(i,j)

18. End Loop
19. I[j] = 0 (deactivate cluster)
20. End Loop
Rank Mechanism
21. if M [i][j] == −ip
22. d[ip] = H[i] (the first merge for ip)
23. for cp=1 to N (cp 6= ip)
24. Being Loop
25. if M [i][j] == −cp
26. d[cp] = H[i] (the first merge for cp)
27. if row i of M [N ][2] are clusters that include cp

and ip respectively
28. d[(ip, cp)] = H[i]
29. O[cp] = |d[ip] − d[(ip, cp)]| + |d[cp] − d[(ip, cp)]|
30. End Loop
31. Sort O[N ] in increasing order

dinate axis, means the combination distance at each merging
operation. In this way the similarity propagation is implic-
itly and adaptively realized by the rank mechanism. Give a
simple example shown in Figure 1 and 2. If our approach
computes sim(a, b) = 0.5, sim(b, c) = 0, sim(a, c) = 0.4,
sim(d, a) = 0.3, and sim(d, b) = 0.2 in the first step, the
page a and the page b are merged in the first combination
under α = 0.02. The page c will be merged with a(b) in
the second combination, and then the page d will be merged
in the third combination. The ordering of related pages
of the page b is a, c, and d, despite of sim(b, c) = 0 and
sim(b, d) = 0.2. And if the user chooses α = 0.5, the order-
ing list becomes a, d, and c.

6. EXPERIMENTS

6.1 Experimental Setup
The notion of “similarity” is subjective and difficult to

measure. To make experimental results more objective, we
used the Google Directory as a form of “ground truth” for
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Figure 1: (a) α = 0.02 and (b) α = 0.5 in Equation 5
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Figure 2: An Example of similarity propagation.
The edges are weighted by 1− sim. (e.g., 0.7=1-0.3)

relatedness to evaluate three similarity measures discussed
in Section 3.

6.1.1 Datasets
To test our approach of identifying related pages, we first

extracted 481 web pages related to three categories: Com-
puters − > Software − > Databases − > Data Mining,
Reference − > Knowledge Management − > Knowledge
Discovery, and Computers − > Artificial Intelligence − >
Machine Learning, as our core set on which we focused the
following analyses. The three categories were chosen to pose
a more difficult clustering problem: there is a large vocab-
ulary overlap and cross-linkage between the categories. For
each page in the core set, we utilized the Google API2 link:

query to obtain its in-links with in-degree restricted to 50
(how we determined 50 will be described in Section 6.3), and
downloaded its HTML to fetch all out-links. The pages in
the core set and their in-links and out-links are a level one
expansion, which we called the Expansion1 dataset. Then
we expanded the Expansion1 dataset by including the top
50 in-links and all out-links of each page in the Expansion1
dataset, which resulted in the Expansion2 dataset. In some
cases there was an insufficient level of in-links with a page
to provide adequate result. If there were not at least 10
in-links of a page, we then used the page’s URL with one
path element removed. If the resulting URL was invalid, we
continued to chop elements until we were left with just a
hostname, or we found a valid URL [10].

6.1.2 Data Preprocessing
We counted the number of out-links for each page. Once

the number was larger than 1000, we eliminated the page

1There are 53 pages from the three categories, but 5 of them
are unaccessible now.
2http://code.google.com/apis/



because it was very likely to be a portal and we also wanted
to keep the overall dataset within a reasonable size. Fur-
thermore, as we know, a large fraction of web pages point to
popular sites like Google or Yahoo!, even though the topic
of these pages may be completely unrelated. Dean et al. [10]
used a stoplist STOP of URLs to ignore all the URLs on the
stoplist when forming the vicinity graph. Keeping an up-
dated stoplist is troublesome in the dynamic web. Besides
a stoplist, our measure mechanism has cushioned us from
the effects of popular sites. Bibliometrics measure is based
on the frequency of common in-links or out-links, which re-
duces the likelihood of the computation being dominated by
a single page (e.g., a popular site). In other words, although
there are many in-links for a popular site, the frequency of
common in-links with another page is relatively low enough
to be omitted by a given threshold. After performing data
preprocessing, we ran our three-step algorithm as described
in Section 5.

6.2 Statistics about Datasets
Table 2 and Table 3 summarize the statistics about the

distinct in-link and out-links of our two datasets. In the
tables, “E1(50,1000)” means that the maximal numbers of
in-links and out-links of a page are 50 and 1000, respec-
tively in the Expansion1 dataset. “IL”, “IPP”, “OL”, “OPP”,
and “ALL” are short for “in-links”, “in-links per page”, “out-
links”, “out-links per page”, and “all pages”, respectively in
each data set.

Table 2: In-links and Out-links of Expansion1
Data set IL IPP OL OPP ALL
E1(10,1000) 538 12.2 1490 33.9 2072
E1(20,1000) 620 14.1 1490 33.9 2154
E1(50,1000) 1001 22.8 1490 33.9 2535

E2c in Table 3, represents the chopped Expansion2 dataset
where each page URL was chopped to its hostname to elim-
inate the navigational links. This operation unified pages
that are on the same host. Thus, the number of out-links
per page was greatly reduced (e.g., dropping from 24.3 to 5.5
in the E2(50,50) data set). On the other hand, the number of
in-links per page were kept relatively stable (e.g., dropping
from 5.7 to 3.7). It also tells us that allowing pages with the
same hostname to remain separate can greatly mar the re-
sults. Moreover, our experiments on the Expansion2 dataset
observed that most of the top related pages are navigational
links. In terms of quantity the out-link exceeds the in-link,
especially for the Expansion2 dataset. The next experiments
will check whether the out-links superior in number are more
informative than the in-links.

6.3 Results and Discussion

6.3.1 Results of Step 1 of our approach
We explain the notations used in Table 4 and Table 5

that are statistics about neighborhood graph of similarity.
“Cit(10)”means that the number of in-links used to compute
co-citations is 10 at the most. “Bib(1000)” represents that
the number of out-links used to compute bibliographic cou-
pling is 1000 at the most. “Ams(10,1000)” means that the
numbers of in-links and out-links used to compute Amsler
measure are 10 and 1000 at the most, respectively. The rest

Table 3: In-links and Out-links of Expansion2
Data Set IL IPP OL OPP ALL
E2(50,50) 16326 5.7 69,025 24.3 88,194
E2(50,100) 16326 5.7 78,431 27.6 97,600
E2(50,500) 16326 5.7 90,579 31.8 109,748
E2(50,1000) 16326 5.7 92,967 32.7 112,136
E2c(50,50) 8845 3.7 13,172 5.5 24,405
E2c(50,100) 8845 3.7 18,441 7.7 29,674
E2c(50,500) 8845 3.7 27,409 11.5 38,642
E2c(50,1000) 8845 3.7 30,017 12.6 41,250

of the measures in the “Measure” column are explained in
the same way. If the number pages is N , the total number of
pairs of pages will reach (N ∗N−N)/2 that divides the num-
ber of pairs of pages in the neighborhood graph of similarity.
The result of the division is denoted as the “Percentage”.
“Average Similarity” is computed by using (N ∗ N − N)/2
to divide the the sum of the similarity scores.

N is 48, in Table 4. From Table 2, the out-links per page
(i.e., 33.9) is much more than the in-links per page (the max-
imum is 22.8). However, the size of the neighborhood graph
similarity under the bibliographic coupling measure is terri-
bly small, only 2.4%, and not to be compared with the size
of the graph under co-citation or Amsler (the maximal size
is 19.9%). This observation exists in Table 5 as well, indi-
cating that the out-link information is more sparse and less
informative than the in-link information. It motivates us to
investigate whether small quantities of similarities between
pages are enough to properly retrieve the pages in the core
set. We present the experiment results in the next part.

Table 4: Neighborhood Graph of Similarity of E1
Measure Pairs of

Pages
Percentage Average

Similarity
Cit(10) 107 11.3% 0.0632
Cit(20) 126 13.3% 0.0547
Cit(50) 175 18.4% 0.0381
Bib(1000) 23 2.4% 0.0301
Ams(10,1000) 121 12.8% 0.0314
Ams(20,1000) 142 15.0% 0.0298
Ams(50,1000) 188 19.9% 0.0236

Furthermore, we further processed Expansion1 dataset by
omitting pairs of pages whose similarity scores are larger
than 0.95 and smaller than 0.004. The lowerbound (i.e.,
0.004) is selected at 10% of the average similarity score be-
cause we trust that the larger values are more reliable in
determining the relatedness. The upperbound (i.e., 0.95) is
used to delete the duplicated pages. Processed in the same
way as the Expansion1 dataset, the upperbound and the
lowerbound are 0.95 and 0.002 respectively for the chopped
Expansion2 dataset. Here N is 2843 for the Expansion2 data
set and 2388 for the chopped one in Table 5.

From the above tables, the data were worked with lower-
bound thresholds like 0.002 or 0.004. Increasing the values
of the thresholds can trade off recall against precision. The
absolute values of similarity are small, but our algorithm
is interested in the ordering decided by the values, not the
actual values themselves.



Table 5: Neighborhood Graph of Similarity of E2c

Measure Pairs of
Pages

Percentage Average
Similarity

Cit(50) 10331 0.36% 0.0423
Bib(50) 16385 0.57% 0.0325
Bib(100) 20318 0.71% 0.0267
Bib(500) 23761 0.83% 0.0230
Bib(1000) 24083 0.84% 0.0227
Ams(50,50) 36351 1.28% 0.0228
Ams(50,100) 38385 1.35% 0.0216
Ams(50,500) 40998 1.44% 0.0201
Ams(50,1000) 41281 1.45% 0.0199

6.3.2 Results of the Step 2 of Our Approach
We report the results of the following data sets: E1(20,1000),

E1(50,1000), E2c(50,50), and E2c(50,100) after completing
Step 2 of our approach in Table 6. The core set consists of
pages from three categories of the Google Directory. We re-
gard pages in the same category as related pages. Our goal
is to retrieve as many pages in the core set as possible. Tak-
ing the three categories as a whole, we evaluate the recall
over all categories performed on the above four data sets,
defined as:

Recall =
|{pages in the core set} ∩ {retrieved pages}|

|{pages in the core set}|
,

which considers the proportion of pages in the core set are
retrieved out of all pages in the core set by the three different
measures.

Table 6: Overall Recalls of E1 and E2c

E1(20,1000) E1(50,1000)
Measure Cit Bib Ams Cit Bib Ams
Recall (%) 72.73 38.64 84.09 79.55 38.64 88.64

E2c(50,50) E2c(50,100)
Measure Cit Bib Ams Cit Bib Ams
Recall (%) 85.42 79.17 93.75 85.42 79.17 93.75

For the Expansion1 dataset, we keep the number of out-
links of each page unchanged, and increase the number of
in-links during computing the co-citation and the Amsler
similarity scores (the Bibliographic coupling measure only
needs the out-link information, so it is not influenced by the
augmentation of the in-link information). The results show
that the recall has been improved from 72.73% to 79.55%
under the co-citation measure, and from 84.09% to 88.64%
under the Amsler measure, and that the in-link based mea-
sure performed much better than the out-link based one (the
recall of bibliographic coupling is only 38.64%). As a result,
we choose 50 as the in-degree restrict to obtain the Expan-
sion2 dataset.

The number of pages in the chopped Expansion2 dataset
is much larger than that in the Expansion1 dataset, which
supplies more chances to bridge the pages in the core set.
Therefore, the chopped Expansion2 dataset performed bet-
ter than the Expansion1 dataset on all three measures. We
especially saw a big improvement of the bibliographic cou-
pling measure, from 38.64% to 79.17%. In addition, we kept
the number of in-links of each page unchanged, and increase
dthe number of out-links from 50 to 100 during the compu-

tation of the Bibliographic coupling and the Amsler scores,
but the recall did not go up. Even after raising the num-
ber to 1000, the improvement had been very limited in our
experiments.

In summary, the results in Table 6 tell us that the in-link
information and the size of candidates of related pages have
much more effect on recall than the out-link information.

6.3.3 Results of the Step 3 of Our Approach
Using the Expansion1 dataset as an example and choosing

α = 0.5 in Equation 5, we explain the clustering results of
Step 3 in Table 7. Our goal is not only to retrieve relevant
pages, to also cluster pages from the same category. There-
fore, recall alone is not enough but we need to measure the
number of correctly clustered pages in their corresponding
categories. Recall and precision scores were necessary to be
computed for individual categories. Here, precision is de-
fined as the proportion of correctly clustered pages in the
set of all pages clustered to a category. Recall is defined
as the proportion of correctly clustered pages out of all the
pages having the category. They are given as follows:

Precisioni =
|{pages in category i} ∩ {retrieved pages in cluster i}|

|{retrieved pages in cluster i}|
,

Recalli =
|{pages in category i} ∩ {retrieved pages in cluster i}|

|{pages in category i}|
,

where i are c1, c2, or c3. The notations, c1, c2, and c3 are
three categories, namely Data Mining, Knowledge Discov-
ery, and Machine Learning, respectively.

Table 7: Precision and Recall of Each Category of E1

E1(20,1000) Precision (%) recall (%)
c1 c2 c3 c1 c2 c3

Cit 81.82 62.50 82.35 50.00 33.33 68.75
Bib 80.00 0.00 66.67 25.00 0.00 33.33
Ams 66.67 57.14 78.57 56.25 41.67 81.25
E1(50,1000) Precision (%) recall (%)

c1 c2 c3 c1 c2 c3
Cit 86.67 66.67 93.33 68.75 41.67 75.00
Bib 80.00 33.33 66.67 25.00 8.33 33.33
Ams 84.62 62.50 85.71 81.25 50.00 87.50

Compared with the E1(20,1000) data set, the E1(50,1000)
data set holds better performance on both precision and re-
call for almost all three categories (the bibliographic cou-
pling measure is an exception because of the same reason
addressed in the above part). The co-citation measure out-
performed the Amsler measure on precision, though the re-
calls under the co-citation measure are inferior to that under
the Amsler measure. This observation showed that mixing
the in-link information and the out-link information gener-
ally hurts precision while helping recall. The bibliographic
coupling measure outperformed the Amsler measure on pre-
cision for the E1(20,1000) data set (we explain the rea-
son that c2 is an exception in next paragraph). However,
when adding more in-links to the Amsler measure in the
E1(50,1000)data set, the bibliographic coupling measure failed
in precision. Moreover, although we included much more
out-links than in-links in the dataset, the values of the re-
call under the bibliographic coupling measure are terribly



low. This fact further demonstrates that the out-link infor-
mation is sparse and noisy and that the in-link information
is more reliable.

The pages from the Knowledge Discovery category present
unsatisfactory precision and recall. It is a complex topic
and has cross-links between the Data Mining and Machine
Learning categories. As we know, the knowledge discovery
process takes the raw results from data mining and trans-
forms them into useful and understandable information un-
covered through the use of AI techniques such as machining
learning, and so on. These closely related categories pose
a more difficult clustering problem. We are now combining
content-based measures to solve it.

The neighborhood subgraph of similarity extracted from
the E1(50,1000) data set under the co-citation measure is
shown in Figure 4. We also easily found many related pages
are not adjacent because their similarity scores are zero, such
as page x and page z. But our SAHN clustering can identify
them through propagating similarity via page y. Moreover,
the structures of the cluster changed in accordance with the
variable α, shown in Figure 3. As α increases from 0.06
to 0.80, the hierarchy changes from an almost completely
“chained” system to one with increasingly intense clustering.
Thus, it is obvious that the ordering in the list of related
pages partly changed as well. We represented this changing
in Table 8 and compared the ordering lists produced by co-
citation counts with those computed by our rank mechanism
(here our subgraph is based on the Co-citation measure, but
we rank the candidates by the combination distances). The
simple co-citation counts can only sort pages with similarity
scores of non-zero. But in our context, all the pages in the
same category are related. The similarity estimation based
on our rank mechanism adaptively recommends more related
pages some of which are with similarity scores of zero.

6.3.4 Preliminary Results of Cross-Topic Page
The pages from the Data Mining (c1) and Machine Learn-

ing (c3) categories form into densely connected subgraphs
respectively while the pages from the Knowledge Discovery
(c2) category are built like a bridge between the other two
categories, circled by the broken line in Figure 4 (we omitted
some nodes to see it clearly). If coarsely regarding them as
one cluster, the concept of related pages is generalized that
pages are related if they are related to related topics, not
the same topic. This generalization contributes to finding
cross-topic pages.

We now describe a new idea to estimate the likelihood
that a page is cross-topic. Based on the ordering list of
related pages for a page A, we can easily obtain the similarity
scores for pairs of pages in the final ordering list through our
rank mechanism. Among these scores, if there exists a low
similarity score between a page B and a page C, it means
that the two pages, B and C, with a high probability are
related to different topics. Thus the page A is likely a cross-
topic page. Experimenting on pages from the Knowledge
Discovery category, we found that some estimated scores
from the ordering lists are nearly zero. We are planning to
do further experiments on this idea. Our purpose of this part
is not to present the best algorithm for identifying cross-
topic pages, but to show the potential of using estimated
similarity scores in a new way without expensive analysis
overhead.
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Figure 4: 1: Data Mining; 2: Knowledge Discovery;
3: Machine Learning.

7. CONCLUSION
In this paper, we put forward the problem of the simi-

larity estimation for searching related pages. To solve this
problem, our proposed approach efficiently computed the
similarity graph above a specified threshold and used the
combination distances of the SAHN clustering method to
adaptively rank the related pages according to a parame-
ter adjusted by users. Our experimental results show that
the co-citation measure, an in-link based method, generally
outperformed the other two measures in precision. Explor-
ing larger out-links on the web can be futile and danger-
ous. The results may be offset by incorrect information col-
lected in the search. In addition, the flexible strategy of the
SAHN clustering makes users pick up different related pages
in terms of their requirements. Finally, we described the
potential of similarity scores used in a novel way to identify
cross-topic pages. We are now crawling much larger amount
of web page information to further test our approach. In
the future, scalable evaluation strategies should be studied,
especially when tuning parameters is needed.
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