
Proactive Energy Management in Database Systems
Yuto Hayamizu∗

The University of Tokyo
Meguro, Tokyo, Japan

haya@tkl.iis.u-tokyo.ac.jp

Masaru Kitsuregawa
The University of Tokyo
Meguro, Tokyo, Japan

kitsure@tkl.iis.u-tokyo.ac.jp

Kazuo Goda
The University of Tokyo
Meguro, Tokyo, Japan

kgoda@tkl.iis.u-tokyo.ac.jp

ABSTRACT
Reducing carbon footprint of datacenters is an unavoidable chal-
lenge for sustainable IT infrastructure. As the core software for data
processing and management, energy efficiency in database systems
has arisen as an important research subject. The tradeoff between
power consumption and performance has been extensively stud-
ied across various workloads and query optimization techniques
have been proposed to improve energy efficiency. Utilization of
general-purpose power management methods such as dynamic
frequency/voltage scaling and device hibernation in the context of
database systems has also been studied.

However, many other components that make up database sys-
tems still remain largely untouched from the perspective of energy
management. Energy-oriented behavioral changes in these compo-
nents can unlock the potential for further energy management.

This paper explores the opportunity that database systems can
proactively manage energy consumption during query execution.
We particularly focused on the query execution and storage man-
agement layers, which largely determine the behavior of the system
during query execution. We propose an initial design of the query
execution model that proactively manages energy consumption
coupled with the energy-aware storage layout. Our prototype using
PostgreSQL demonstrated up to 29.6% energy reduction with 7.6%
execution time overhead in an empirical evaluation using TPC-
H benchmark. We also discuss the future directions of proactive
energy management in database systems.

KEYWORDS
Database systems, proactive energy management, energy saving,
query execution model, query optimization, storage management
ACM Reference Format:
Yuto Hayamizu, Masaru Kitsuregawa, and Kazuo Goda. 2024. Proactive
Energy Management in Database Systems. In Proceedings of 3rd Workshop
on Sustainable Computer Systems (HotCarbon’24). ACM, New York, NY, USA,
6 pages.

1 INTRODUCTION
Reducing carbon footprint of datacenters is an unavoidable chal-
lenge for sustainable IT infrastructure [2].When it comes to improv-
ing the energy efficiency of datacenters, it is certainly necessary
∗He was affiliated with the University of Tokyo at the time of this research and is
currently affiliated with Justice Technologies Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotCarbon’24, July 9, 2024, Santa Cruz, CA
© 2024 Copyright held by the owner/author(s).

to enhance the energy efficiency of hardware components and fa-
cilities. However, re-architecting the software that actually drives
these hardware components is also a crucial challenge.

As the core software for data processing and management, en-
ergy efficiency in database systems has arisen as an important
research subject [5, 6]. The Claremont Report[1], which brought
together leading researchers and practitioners in the database field,
highlighted energy efficiency as one of the important research di-
rections. Coinciding with the publication of the report, pioneering
studies focusing on the energy efficiency of database systems were
published [16, 18, 19, 22].

State-of-the-art studies on energy efficiency in database sys-
tems can be broadly categorized into the following three areas:
(1) power-performance analysis of query operators s.t. full-table
scans, index scans, hash joins, etc. on various types of workloads,
(2) utilization of general-purpose power management techniques
such as dynamic processor frequency and voltage scaling (DVFS)
and idle device hibernation, (3) energy-aware cost modeling for
query optimization. However, many other components that make
up database systems remain largely untouched. In other words,
these components can still be seen as reactively benefiting from
the effects of the aforementioned energy management techniques.

We believe that database systems can take more proactive ap-
proaches to manage energy consumption. This is because database
systems have a high degree of flexibility in determining the spe-
cific procedural steps to serve requested queries, which is usually
described by declarative query languages such as SQL. Energy-
oriented behavioral changes of database systems can unlock the
potential for further energy management.

This paper explores the opportunity that database systems can
proactively save energy consumption during query execution. In
the case study, we particularly focus on the query execution and
storage management layers, which largely determine the behavior
of the system during query execution. We present the idea of incor-
porating power-state control commands of storage devices into the
query execution model and demonstrates how to apply it to basic
relational query operators. Furthermore, we discuss a tablespace
layout that allows device power control commands issued by query
operators to effectively reduce energy consumption.

To empirically evaluate the proposed model, we have prototyped
the proposed query execution model using PostgreSQL, and built
an experimental environment to measure the energy consumption
of the database server. In experiments using the 100GB-scale TPC-
H benchmark, our prototype consistently reduced the consumed
energy compared to the original PostgreSQL for multiple queries,
up to 29.6% energy reduction, anticipating further improvement
with the sophistication of the proposed model in the follow-up
studies.

The contributions of this paper are summarized as follows:

1

https://orcid.org/0000-0002-5746-1743
https://orcid.org/0000-0003-4027-2994
https://orcid.org/0000-0003-0618-4157

HotCarbon’24, July 9, 2024, Santa Cruz, CA Yuto Hayamizu, Masaru Kitsuregawa, and Kazuo Goda

• This paper introduces proactive energy management for data-
base systems, an idea of creating opportunities for energy
management by redesigning the behavior of the database
engine.
• This paper presents an initial design of the query execution
model that proactively manages power-state of storage de-
vices and demonstrates the effectiveness of the proposed
model through an empirical evaluation using PostgreSQL
and TPC-H benchmark.
• This paper explores the future directions of proactive energy
management in database systems.

The remainder of this paper is organized as follows. Section
2 summarizes the related work. Section 3 describes the concept
of proactive energy management in database systems. Section 4
presents the case study of proactive energy management in the
query execution model and experimental evaluation. Section 5
discusses the future directions of proactive energy management in
database systems. Finally, Section 6 concludes the paper.

2 RELATEDWORK
In the late 2000s, the energy efficiency of datacenters started to
gain attention. The U.S. government agency reported that power
consumption of datacenters doubled from 2000 to 2006[2], and the
Claremont Report[1] highlighted energy efficiency as one of the
important research directions in the database field.

As fundamental studies for energy efficiency, characteristics of
power-performance relationship were analyzed in various aspects
such as operator-level analysis[24], or workload level analysis such
as transactional workloads[18], analytical workloads[12, 16, 19, 20,
22], etc.

Based on these analyses, Xu et al. pointed out the importance of
energy-aware query optimization [25], and proposed a query opti-
mization under the tradeoff annotated by database administrators
[26]. In the follow-up study, they also provide dynamic correction
of cost models based on control theory[27]. Luo et al. modeled
energy costs of analytical queries with processor speed scaling[15].

Another approach of energy management in database systems
is to utilize general-purpose power management techniques. DVFS
has been studied in the context of database systems[8, 10, 11, 13, 23].
Hibernation of hardware components is also a common technique to
save energy, and several approaches have been made such as mem-
ory module hibernation[9], storage device hibernation[17], cluster
node hibernation[21], and MapReduce node hibernation[14].

3 PROACTIVE ENERGY MANAGEMENT
The first possibility of proactive energy management is to treat
power control commands to hardware devices as primitive opera-
tions in query processing. Database systems inherently know the
exact storage areas it is going to access and the computational
resources that are going to be required for upcoming operations.
Database systems have all the necessary information to plan the
optimal timing for switching the power-state of hardware devices,
which cannot be directly obtained from other peripheral programs
or the operating system.

Thus, it is natural that database systems can take the initiative
in managing the power-state of hardware devices. Treating power

control commands as primitives on par with operations such as
storage access and record processing appears to be an effective
fundamental approach for applying the idea of proactive energy
management.

The second possibility of proactive energy management is to
fully leverage the design flexibility in query processing.

After the relational model[3] was invented, database systems
typically receive requests in declarative query languages such as
SQL. This allowed the decoupling of the logical requirements and
the physical implementation of the query processing, and enables
database systems to have a high degree of design flexibility in
determining the specific procedural steps for processing queries.

Database systems typically modularize query processing as a
query execution model, and many of today’s database system imple-
mentations adopt a derivative of Volcano-style iterator model[4] as
their foundation. In Volcano-style iterator model, common opera-
tions such as table scan, join, sort, and aggregation are formalized
as logical operators, and implementations can provide multiple phys-
ical operators for each logical operator. The combination of logical
operators describes the logical steps (tables to be scanned, join or-
derings, requirements of sorting, etc.), and each physical operator
chosen for a logical operator describes the procedural steps (table
access methods, join algorithms, sorting algorithms, etc.).

Query optimization is a process of selecting the optimal combi-
nation of logical operators and corresponding physical operators
for each logical operator based on predefined cost functions of
physical operators. Incorporating energy-related metrics into the
cost function is a solid step forward to improve the energy effi-
ciency of database systems. On the other hand, it is not possible to
switch behaviors beyond the scope of the query execution model
that serves as the basis for query optimization.

In the context of energy management, the iterator model en-
counters the issue of logical operators losing their logical nature.
In the iterator model, physical operators for each logical operator
are assumed to be interchangeable, and the physical operators are
designed to be independent of each other. However, in the context
of energy management, physical operators affect each other be-
cause of the statefulness of the power-state of hardware devices.
Hardware devices necessitate a certain amount of time overhead for
power-state transitions, and there may be additional energy costs
for state transitions. This means that possible power-states may
change depending on the sequence in which physical operators
are executed and the combination of physical operators that are
executed concurrently in a pipelined manner.

Considering these factors, to fully leverage the intrinsic design
flexibility of database systems, it is time to rethink the query execu-
tion model. As an initial step toward proactive energy management,
we will discuss an initial design of the query execution model that
proactively manages power-state of storage devices.

4 CASE STUDY: QUERY EXECUTION MODEL
4.1 Extension of query execution model
In the conventional iterator model, a logical operator 𝑙 serves as an
iterator that produces a tuple per each call of getNext interface, and
typically corresponds to a relational operator: e.g. selecting tuples
from table 𝑅 (denoted as 𝜎 (𝑅)), joining two tables 𝑅, 𝑆 (denoted

2

Proactive Energy Management in Database Systems HotCarbon’24, July 9, 2024, Santa Cruz, CA

as 𝑅 ⊲⊳ 𝑆). Each call of getNext may return a tuple, or NULL to
indicate the end of processing. A logical operator can take up to two
inputs, which are also logical operators or tables. A logical operator
may call getNext interface of these inputs to obtain necessary
tuples for processing. Input-output relationship of logical operators
forms a binary-tree structure, which is called a query execution
plan. Based on this structure, the database system can complete the
processing of a query by repeatedly calling getNext of the root
logical operator until it returns NULL.

As discussed in Section 3, the iterator model has a limitation in
that it does not consider the statefulness of hardware devices. So,
we propose to introduce a concept of a quasi-logical operator to
explicitly handle power-state control commands and statefulness
of underlying devices in the query execution model.

A quasi-logical operator 𝑞 is a sequence of unit operators 𝑢𝑘
denoted as 𝑞 = ⟨𝑢1, 𝑢2, · · · ⟩, where a unit operator 𝑢𝑘 may be a
logical operator or a power-state control command. We define
the semantics of getNext interface for quasi-logical operators as
follows:
• A quasi-logical operator 𝑞 keeps track of the current unit
operator. Initially the current unit operator is the first unit
operator 𝑢1.
• When getNext interface of 𝑞 is called, it calls getNext
interface of the current unit operator and returns its result.
• If the current unit operator returns NULL, 𝑞 advances the
current unit operator to the next unit operator and calls
getNext interface of the new current unit operator.
• If there is no more unit operator, 𝑞 keeps returning NULL.

Next, we introduce power-state control commands ↑ 𝑑 and ↓ 𝑑
for wake-up and stand-by of a set of storage device 𝑑 . Where 𝑑𝑅
denotes a set of storage devices that store table 𝑅, we can define
the following quasi-logical operator for example:

𝑞 = ⟨↑ 𝑑𝑅, 𝜎 (𝑅), ↓ 𝑑𝑅⟩
This is a simple alternative to the logical operator 𝜎 (𝑅) with energy
management. It wakes up the storage devices that store table 𝑅
before accessing the table, and puts them into standby state after
accessing the table.

We move on to a bit more complex cases. Consider a join op-
eration 𝑅 ⊲⊳ 𝑆 . When hash join (HJ) is employed as the physical
operator, the database system first builds a hash table from 𝑅, and
then probes the hash table with tuples from 𝑆 . So the operation on 𝑅
and 𝑆 are executed in a serial manner, and a quasi-logical operator
can naturally describe these operations for example:

⟨↑ 𝑑𝑅, Build(𝜎 (𝑅)), ↓ 𝑑𝑅, ↑ 𝑑𝑆 , Probe(𝜎 (𝑆)), ↓ 𝑑𝑆 ⟩
Apparently, a single logical-operator corresponds to a number

of quasi-logical operators, and theoretical design space is more
complex. Since this paper aims to initiate the discussion of proactive
energy management in database systems, complete design space
exploration is left for future work. In this paper, we focus on scan
and join operations, storage device power-state control, and the
basic pattern of quasi-logical operators ⟨↑ 𝑑𝑅, 𝑢 on 𝑅, ↓ 𝑑𝑆 ⟩.

4.2 Storage layout consideration
With the introduction of quasi-logical operators, we can explic-
itly handle power-state control commands in the query execution

model. However, the effectiveness of proactive energy management
depends on the layout of storage devices.

⟨↑ 𝑑𝑅, Build(𝜎 (𝑅)), ↓ 𝑑𝑅, ↑ 𝑑𝑆 , Probe(𝜎 (𝑆)), ↓ 𝑑𝑅⟩

Let us consider the case of hash join shown above.When𝑅, 𝑆 resides
on the same storage device, ↓ 𝑑𝑅, ↑ 𝑑𝑆 cancel each other out, and
the whole storage needs to be active during the join operation.
On the other hand, when 𝑅, 𝑆 resides on different storage devices,
each device can be partially stand-by during the join operation and
there should be a potential for energy reduction. Thus, independent
storage allocation for each table, especially for large tables such
as fact tables in analytical workloads, is one effective approach to
proactive energy management.

Another possibility is the partitioning for proactive energy man-
agement. Suppose that 𝑅 and 𝑆 are partitioned into 𝑅𝑘 , 𝑆𝑘 (𝑘 =

1, 2, · · ·) with the join key, and 𝑅𝑘 , 𝑆𝑘 resides on the storage 𝑑𝑘 .

⟨· · · , ↑ 𝑑𝑘 , Build(𝜎 (𝑅𝑘)), Probe(𝜎 (𝑆𝑘)), ↓ 𝑑𝑘 , · · · ⟩

This quasi-logical operator enables energy reduction by activating
only the necessary storage devices for the partition being processed.

The potential design space of storage layout for proactive energy
management is also quite large and it is difficult to cover completely
in this paper. Again, since this paper aims to initiate the discussion
of proactive energy management, we focus on the following policy
in prototyping and evaluation: allocate an independent storage
region for each large table such as fact tables, and another region
for small tables such as dimension tables.

4.3 Prototype implementation
To evaluate the effectiveness of the proposed query executionmodel,
we have implemented a prototype using PostgreSQL, a widely used
open source database system. The architecture of the query executor
and the structure of the query execution plan in PostgreSQL adhere
to the Volcano-style iteratormodel, and it is relatively easy to extend
the query execution model by introducing quasi-logical operators.
Since the counterpart of getNext interface in PostgreSQL is the
ExecProcNode function, and we have inserted codes to spin up and
down storage devices 1 around ExecProcNode function calls based
on the annotated mapping between the tablespaces and storage
devices. Based on PostgreSQL 14, we have modified 1175 lines
of code to implement the proposed query execution model for
proactive energy management.

4.4 Experimental setup
We prepared the database server equipped with a Xeon E3-1240
v5 (3.5GHz, 4c/8t) processor, 16GB DRAM, and eight 4TB 7.2krpm
SATAHDDs connected via the host bus adapter for database storage.
Figure. 1 shows the connection diagram of the database server, disk
drives, and the power measurement circuit. To measure the power
consumption of the database server and the disk drives, we designed
a custom power outlet box that allows us to probe the current and
voltage on the AC 100V power line. We used a Yokogawa WT1800
power meter to measure the power consumption of two power lines
in the custom power outlet box.

1hdparm command was invoked to spin up and down devices.

3

HotCarbon’24, July 9, 2024, Santa Cruz, CA Yuto Hayamizu, Masaru Kitsuregawa, and Kazuo Goda

Power meter
WT1800

Database server

SAS HBA
SAS to SATA cables

PSU
SATA power cables

AC100V cables

Ch #1

Ch #2

AC100V
supply

Figure 1: Connection diagram of the database server, disk
drives and the power measurement circuit.

SSD HDD#1 HDD#2 HDD#3 HDD#4 HDD#5 HDD#6 HDD#7 HDD#8

Volume #1 Volume #2 Volume #3

Tablespace #1 Tablespace #2 Tablespace #3

Tablespace #0 (for temporary objects)

CUSTOMER

NATION
REGION
PART

PARTSUPP
SUPPLIER

ORDERS LINEITEM

Figure 2: Storage organization and tablespace layout for our
prototype. For normal PostgreSQL, all hard disk drives were
organized as a single volume.

We prepared TPC-H benchmark dataset with ScaleFactor=100
(raw input data is approximately 100GB). When we conducted the
measurement with normal PostgreSQL, all hard disk drives were
organized as a single RAID0 volume and a single tablespace was cre-
ated on it. On the other hand, when we conducted the measurement
with our prototype, we created 3 RAID0 volumes and 3 tablespaces
on the hard disk drives, placed dimension tables (NATION, RE-
GION, PART, PARTSUPP, SUPPLIER, CUSTOMER) on tablespace
#1, and placed fact tables (LINEITEM, ORDERS) on tablespace #2
and #3 respectively as shown in Figure. 2. Any temporary tables
were created on tablespace #0 on system storage.

4.5 Experimental results
We have measured the query execution time and the power con-
sumption of TPC-H queries from Q.1 to Q.10 except Q.22. Since
the query optimizer of PostgreSQL is not aware of our prototyped
query execution model, we hinted the ordering of joins to the opti-
mizer in SQL statements. We used the same pattern of the query
execution plan for each query in both normal PostgreSQL and our
prototype.

Figure. 3 shows the comparison of power consumption of the
database server during the execution of TPC-H Q.7 between Normal
PG (normal PostgreSQL) and Proactive PG (our prototype). For this
query, both case employed the same pattern of query execution plan
shown in the following steps: (1) 𝑇1 ← NATION ⊲⊳ CUSTOMER,
2Q.2 was omitted because our prototype did not support semi-join operators.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

spin up ts#1

spin down ts#1/spin up ts#2

spin down ts#2/spin up ts#3

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 [

W
]

Elapsed time [sec]

Normal PG
Proactive PG

Figure 3: Power consumption of TPC-HQ.7: Normal PG (Post-
greSQL) and Proactive PG (our prototype).

(2) 𝑇2 ← NATION ⊲⊳ SUPPLIER, (3) 𝑇3 ← 𝑇1 ⊲⊳ ORDERS, and (4)
𝑇4 ← 𝑇3 ⊲⊳ (𝑇2 ⊲⊳ LINEITEM) as final output. Note that all joins
were hash joins. In the case of Proactive PG, all disk drives were in
stand-by state before query execution, and the power-state of disk
drives were switched to active state only when the corresponding
tablespace was accessed. Step (1) and (2) accessed only tablespace
#1 (NATION, CUSTOMER, SUPPLIER. From 𝑡 = 0 to 18), step (3)
accessed only tablespace #2 (ORDERS. From 𝑡 = 18 to 118), and
step (4) accessed only tablespace #3 (LINEITEM. From 𝑡 = 118 to
the end).

As shown in Figure. 3, wait time of disk power-state transition
was observed at the beginning of steps (1), (3), and (4) in Proactive
PG and the query execution time was 68.5 seconds longer than
that of Normal PG. On the other hand, the power consumption of
Proactive PG was lower than that of Normal PG and reduced 39.6W
in average because only one tablespace was active at a time. The
enegy consumption of Normal PG and Proactive PGwere 45.4kJ and
36.7kJ, respectively. This observation confirmed that Proactive PG
reduced the average power consumption by 31.9% and the energy
consumption by 19.1% despite 18.7% execution time overhead.

Figure 4 shows the comparison of query execution time and
energy consumption between Normal PG and Proactive PG for all
measured TPC-H queries. For all queries, a similar trend to Q.7
described earlier was observed. For each query, although there
was an overhead in execution time due to power-state transitions,
the energy consumption was consistently reduced, up to 29.6%
reduction with 7.6% execution time overhead in Q.4.

In summary, our prototype based the idea of proactive energy
management successfully reduced the energy consumption of the
database server by up to 29.6% even with the execution time over-
head in the empirical evaluation using TPC-H benchmark.

5 FUTURE DIRECTIONS
5.1 Query execution model, storage

management and query optimization
We have introduced the concept of quasi-logical operators and
storage layout to explicitly handle power-state control commands
for proactive energy management. As described in Section 4, we
have just defined the basic framework and provided several cases
corresponding to basic relational operations. Compared to the con-
ventional logical operators, quasi-logical operators involve poten-
tially more complex design space and there exists a large room for

4

Proactive Energy Management in Database Systems HotCarbon’24, July 9, 2024, Santa Cruz, CA

 0

 100

 200

 300

 400

 500

 600

 700

q1 q3 q4 q5 q6 q7 q8 q9 q10

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
e

c
] Normal PG

Proactive PG

(a) Query execution time

 0

 20

 40

 60

 80

 100

q1 q3 q4 q5 q6 q7 q8 q9 q10

C
o

n
s
u

m
e

d
 e

n
e

rg
y
 [

k
J
] Normal PG

Proactive PG

(b) Energy consumption

Figure 4: Query execution time and energy consumption
between Normal PG (PostgreSQL) and Proactive PG (out pro-
totype) for TPC-H queries. Although power-state control com-
mands incurred execution time overhead, the energy consump-
tion is consistently lower in Proactive PG, up to 29.6% reduc-
tion.

further exploration including, but is not limited to, the following
aspects: (1) coverage of common operations in database queries
such as sorting, aggregation, subqueries, user-defined procedures,
etc, (2) scheduling of unit operators in quasi-logical operators, (3)
equivalent transformation of quasi-logical operators, (4) coupling
with storage layout, and (5) quasi-logical operator-based query
optimization.

5.2 Scheduling of multiple queries
In addition to intra-query scheduling of power-state control com-
mands, we can further consider the inter-query scheduling of
power-state control commands. Consolidating usage of specific
resources such as storage devices among multiple queries is ex-
pected to have a great impact on energy efficiency. Approaches
studied in work sharing among multiple queries[7] can be a good
starting point for this direction. However, energy-oriented schedul-
ing is not necessarily the best in terms of performance, as shown
in our empirical evaluation, so there would be another opportunity
of multiple query scheduling for proactive energy management.

5.3 Hardware heterogeneity
The heterogeneity of hardware components is one of the prominent
trends in modern datacenters. Even in a single processor, memory
access is not uniform anymore in the era of NUMA architecture,
and multicore processors with different types of cores are becom-
ing more popular. Purpose-specific accelerators such as GPUs and
FPGAs are also becoming quite popular in datacenters. Proactive

energy management in database systems can be a good fit for these
heterogeneous hardware components, and there are many oppor-
tunities to explore in this direction.

5.4 Cluster and cloud orchestration
In production environments, it is rare that a single server serves
all of the tasks of database systems. Database servers are often
deployed in a cluster, and sometimes multiple clusters cooperate
to satisfy the application requirements. In addition, modern IT
infrastructure usually deploys a number of application servers and
cache servers around the database servers, sometimes in virtualized
cloud environments. For proactive energy management, power
control of these servers and clusters can be also an another unit of
primitive operations.

5.5 Facility integration
The energy consumption of datacenter facility is the largest and
the most challenging opportunity for proactive energy manage-
ment. Cooling and power distribution facilities are the most energy-
consuming components in datacenters. For most software, these
facilities are not considered as targets of any form of control in the
first place. However, database systems that subordinate numerous
servers and storage resources have the potential to cooperate with
these facilities. In large scale deployment of database systems such
that spans multiple racks in datacenters, scheduling of operations
could create changes in power consumption at a level that affects
the operation modes of these facilities.

6 CONCLUSION
This paper introduced the idea of proactive energy management in
database systems, which creates opportunities for energy manage-
ment by redesigning the behavior of the database system itself. As
an initial step toward proactive energy management, we presented
a design of the query execution model that proactively manages
power-state of storage devices and demonstrated the effectiveness
of the proposed model through an empirical evaluation using Post-
greSQL and TPC-H benchmark. Experimental evaluation with our
prototype demonstrated that the proposed query execution model
consistently reduces the energy consumption for tested TPC-H
queries, up to 29.6% reduction with 7.6% execution time overhead.
Although the proposed model is a simple and naïve design, the
results showed its effectiveness in reducing energy consumption.
Since there exist many opportunities for the sophistication of the
proposed model, this evaluation result indicated that proactive
energy management can be a promising approach to improving
energy management in database systems. We also envisioned the
future possibilities of proactive energy management in hopes of
stimulating research communities.

ACKNOWLEDGMENTS
This work has been partially supported by Cross-cutting Technol-
ogy Development for IoT Promotion program of NEDO and Big
Data Value Co-creation Platform Engineering social cooperation
program at UTokyo-IIS with Hitachi.

5

HotCarbon’24, July 9, 2024, Santa Cruz, CA Yuto Hayamizu, Masaru Kitsuregawa, and Kazuo Goda

REFERENCES
[1] Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer,

Michael J. Carey, Surajit Chaudhuri, AnHai Doan, Daniela Florescu, Michael J.
Franklin, Hector Garcia-Molina, Johannes Gehrke, Le Gruenwald, Laura M. Haas,
Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. Ioannidis, Hank F. Korth, Donald
Kossmann, Samuel Madden, RogerMagoulas, Beng Chin Ooi, TimO’Reilly, Raghu
Ramakrishnan, Sunita Sarawagi, Michael Stonebraker, Alexander S. Szalay, and
Gerhard Weikum. 2008. The Claremont report on database research. SIGMOD
Rec. 37, 3 (sep 2008), 9–19. https://doi.org/10.1145/1462571.1462573

[2] Richard Brown, Eric Masanet, Bruce Nordman, Bill Tschudi, Arman Shehabi,
John Stanley, Jonathan Koomey, Dale Sartor, Peter Chan, Joe Loper, Steve Capana,
and Bruce Hedman. 2007. Report to Congress on Server and Data Center Energy
Efficiency: Public Law 109-431. (01 2007). https://doi.org/10.2172/929723

[3] E. F. Codd. 1970. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (jun 1970), 377–387. https://doi.org/10.1145/362384.362685

[4] G. Graefe. 1994. Volcano: An Extensible and Parallel Query Evaluation System.
IEEE Trans. on Knowl. and Data Eng. 6, 1 (feb 1994), 120–135. https://doi.org/10.
1109/69.273032

[5] Goetz Graefe. 2008. Database servers tailored to improve energy efficiency. In
Proceedings of the 2008 EDBT Workshop on Software Engineering for Tailor-Made
Data Management (Nantes, France) (SETMDM ’08). Association for Computing
Machinery, New York, NY, USA, 24–28. https://doi.org/10.1145/1385486.1385494

[6] Stavros Harizopoulos, Mehul A. Shah, Justin Meza, and Parthasarathy Ran-
ganathan. 2009. Energy Efficiency: The New Holy Grail of Data Management
Systems Research. In Fourth Biennial Conference on Innovative Data Systems Re-
search, CIDR 2009. Asilomar, CA, USA. http://www-db.cs.wisc.edu/cidr/cidr2009/
Paper_112.pdf

[7] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005.
QPipe: a simultaneously pipelined relational query engine. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data (Baltimore,
Maryland) (SIGMOD ’05). Association for Computing Machinery, New York, NY,
USA, 383–394. https://doi.org/10.1145/1066157.1066201

[8] Yuto Hayamizu, Kazuo Goda, Miyuki Nakano, and Masaru Kitsuregawa. 2011.
Application-Aware Power Saving for Online Transaction Processing Using Dy-
namic Voltage and Frequency Scaling in a Multicore Environment. In Architecture
of Computing Systems - ARCS 2011, Mladen Berekovic, William Fornaciari, Uwe
Brinkschulte, and Cristina Silvano (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 50–61.

[9] Alexey Karyakin and Kenneth Salem. 2019. DimmStore: memory power opti-
mization for database systems. Proc. VLDB Endow. 12, 11 (jul 2019), 1499–1512.
https://doi.org/10.14778/3342263.33422629

[10] Thomas Kissinger, Marcus Hähnel, Till Smejkal, Dirk Habich, Hermann Härtig,
and Wolfgang Lehner. 2018. Energy-Utility Function-Based Resource Control
for In-Memory Database Systems LIVE. In Proceedings of the 2018 International
Conference onManagement of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 1717–1720. https://doi.org/10.
1145/3183713.3193554

[11] Mustafa Korkmaz, Alexey Karyakin, Martin Karsten, and Kenneth Salem. 2015.
Towards Dynamic Green-Sizing for Database Servers.. In ADMS@ VLDB. 25–36.

[12] Willis Lang, Stavros Harizopoulos, Jignesh M. Patel, Mehul A. Shah, and Dimitris
Tsirogiannis. 2012. Towards energy-efficient database cluster design. Proc. VLDB
Endow. 5, 11 (jul 2012), 1684–1695. https://doi.org/10.14778/2350229.2350280

[13] Willis Lang and Jignesh M. Patel. 2009. Towards Eco-friendly Database Man-
agement Systems. In Fourth Biennial Conference on Innovative Data Systems
Research, CIDR 2009, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings.
www.cidrdb.org. http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_51.pdf

[14] Willis Lang and Jignesh M. Patel. 2010. Energy management for MapReduce
clusters. Proc. VLDB Endow. 3, 1–2 (sep 2010), 129–139. https://doi.org/10.14778/
1920841.1920862

[15] Boming Luo, Yuto Hayamizu, Kazuo Goda, and Masaru Kitsuregawa. 2018. Mod-
eling Query Energy Costs in Analytical Database Systems with Processor Speed
Scaling. In Database and Expert Systems Applications: 29th International Con-
ference, DEXA 2018, Regensburg, Germany, September 3–6, 2018, Proceedings,
Part II (Regensburg, Germany). Springer-Verlag, Berlin, Heidelberg, 310–317.
https://doi.org/10.1007/978-3-319-98812-2_27

[16] Justin Meza, Mehul A. Shah, Parthasarathy Ranganathan, Mike Fitzner, and
Judson Veazey. 2009. Tracking the power in an enterprise decision support
system. In Proceedings of the 2009 ACM/IEEE International Symposium on Low
Power Electronics and Design (San Fancisco, CA, USA) (ISLPED ’09). Association
for Computing Machinery, New York, NY, USA, 261–266. https://doi.org/10.
1145/1594233.1594295

[17] Norifumi Nishikawa, Miyuki Nakano, and Masaru Kitsuregawa. 2012. Energy
Efficient Storage Management Cooperated with Large Data Intensive Applica-
tions. In 2012 IEEE 28th International Conference on Data Engineering. 126–137.
https://doi.org/10.1109/ICDE.2012.47

[18] Meikel Poess and Raghunath Othayoth Nambiar. 2008. Energy cost, the key
challenge of today’s data centers: a power consumption analysis of TPC-C results.

Proc. VLDB Endow. 1, 2 (aug 2008), 1229–1240. https://doi.org/10.14778/1454159.
1454162

[19] Meikel Poess and Raghunath Othayoth Nambiar. 2010. Tuning servers, storage
and database for energy efficient data warehouses. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). 1006–1017. https://doi.org/10.1109/
ICDE.2010.5447806

[20] Meikel Poess and Raghunath Othayoth Nambiar. 2010. A power consumption
analysis of decision support systems. In Proceedings of the First Joint WOSP/SIPEW
International Conference on Performance Engineering (San Jose, California, USA)
(WOSP/SIPEW ’10). Association for Computing Machinery, New York, NY, USA,
147–152. https://doi.org/10.1145/1712605.1712629

[21] Daniel Schall and Volker Hudlet. 2011. WattDB: an energy-proportional cluster of
wimpy nodes. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (Athens, Greece) (SIGMOD ’11). Association for Computing
Machinery, New York, NY, USA, 1229–1232. https://doi.org/10.1145/1989323.
1989461

[22] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. 2010. Analyz-
ing the energy efficiency of a database server. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (Indianapolis, Indiana,
USA) (SIGMOD ’10). Association for Computing Machinery, New York, NY, USA,
231–242. https://doi.org/10.1145/1807167.1807194

[23] Yi-Cheng Tu, Xiaorui Wang, Bo Zeng, and Zichen Xu. 2014. A system for
energy-efficient data management. SIGMOD Rec. 43, 1 (may 2014), 21–26. https:
//doi.org/10.1145/2627692.2627696

[24] Annett Ungethüm, Dirk Habich, Tomas Karnagel, Wolfgang Lehner, Nils As-
mussen, Marcus Völp, Benedikt Nöthen, and Gerhard Fettweis. 2015. Query
processing on low-energy many-core processors. In 2015 31st IEEE International
Conference on Data Engineering Workshops. 155–160. https://doi.org/10.1109/
ICDEW.2015.7129569

[25] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. 2010. Exploring power-performance
tradeoffs in database systems. In 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). 485–496. https://doi.org/10.1109/ICDE.2010.5447840

[26] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. 2012. PET: reducing database energy
cost via query optimization. Proc. VLDB Endow. 5, 12 (aug 2012), 1954–1957.
https://doi.org/10.14778/2367502.2367546

[27] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. 2013. Dynamic Energy Estimation
of Query Plans in Database Systems. In 2013 IEEE 33rd International Conference
on Distributed Computing Systems. 83–92. https://doi.org/10.1109/ICDCS.2013.21

6

https://doi.org/10.1145/1462571.1462573
https://doi.org/10.2172/929723
https://doi.org/10.1145/362384.362685
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://doi.org/10.1145/1385486.1385494
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf
https://doi.org/10.1145/1066157.1066201
https://doi.org/10.14778/3342263.33422629
https://doi.org/10.1145/3183713.3193554
https://doi.org/10.1145/3183713.3193554
https://doi.org/10.14778/2350229.2350280
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_51.pdf
https://doi.org/10.14778/1920841.1920862
https://doi.org/10.14778/1920841.1920862
https://doi.org/10.1007/978-3-319-98812-2_27
https://doi.org/10.1145/1594233.1594295
https://doi.org/10.1145/1594233.1594295
https://doi.org/10.1109/ICDE.2012.47
https://doi.org/10.14778/1454159.1454162
https://doi.org/10.14778/1454159.1454162
https://doi.org/10.1109/ICDE.2010.5447806
https://doi.org/10.1109/ICDE.2010.5447806
https://doi.org/10.1145/1712605.1712629
https://doi.org/10.1145/1989323.1989461
https://doi.org/10.1145/1989323.1989461
https://doi.org/10.1145/1807167.1807194
https://doi.org/10.1145/2627692.2627696
https://doi.org/10.1145/2627692.2627696
https://doi.org/10.1109/ICDEW.2015.7129569
https://doi.org/10.1109/ICDEW.2015.7129569
https://doi.org/10.1109/ICDE.2010.5447840
https://doi.org/10.14778/2367502.2367546
https://doi.org/10.1109/ICDCS.2013.21

	Abstract
	1 Introduction
	2 Related Work
	3 Proactive Energy Management
	4 Case Study: Query Execution Model
	4.1 Extension of query execution model
	4.2 Storage layout consideration
	4.3 Prototype implementation
	4.4 Experimental setup
	4.5 Experimental results

	5 Future Directions
	5.1 Query execution model, storage management and query optimization
	5.2 Scheduling of multiple queries
	5.3 Hardware heterogeneity
	5.4 Cluster and cloud orchestration
	5.5 Facility integration

	6 Conclusion
	References

