
Performance Analysis of Different IO Methods between GPU Memory and
Storage

Tarun SREEPADA†, Tsuyoshi OZAWA††, Kiran UDAY RAGE†, and Kazuo GODA††

† The University of Aizu, 〒 965-0006 Fukushima, Aizuwakamatsu, Itsukimachi Oaza Tsuruga,
Kamiiawase-90

†† The University of Tokyo,〒 153-8505 Tokyo, Meguro-ku, Komaba 4-6-1
E-mail: †{m5281045,udayrage}@u-aizu.ac.jp, ††{ozawa,kgoda}@tkl.iis.u-tokyo.ac.jp

Abstract BaM, a new GPU system architecture, enables efficient, GPU-driven data transfers between Solid-State
Drives (SSDs) and GPU memory by bypassing the CPU. Unlike traditional CPU-managed approaches that rely on
sequential data parsing and memory transfers, BaM can leverage the GPU’s parallelism and introduce optimized
data pipelines for self-orchestrated storage access. It incorporates a fine-grained software cache to minimize I/O
amplification and high-throughput queues to maximize system interconnect and storage utilization. This paper
benchmarks BaM’s performance using SSD microbenchmarks, demonstrating its ability to accelerate data-intensive
workloads and improve overall system efficiency.
Key words GPU, GPUDirect, NVMe, SSDs, Memory Capacity, Benchmarking

1 Introduction

High-performance computing (HPC) workloads―including
machine learning, scientific simulations, and real-time ana-
lytics―require substantial I/O resources to manage and pro-
cess vast datasets efficiently. The introduction of compute
accelerators, such as Graphics Processing Units (GPUs), has
significantly improved processing speeds in computing clus-
ters. However, data transfer between networked nodes and
these accelerators remains a persistent challenge. Traditional
CPU-managed transfer methods often create bottlenecks, as
GPUs remain idle while waiting for the CPU to handle data
movement, leading to increased latency and reduced system
throughput.

Figure 1 illustrates the CPU-initiated data transfer pro-
cess between an SSD and system memory using the NVMe
protocol. The process begins when the CPU enqueues a read
or write command into the Submission Queue (SQ) (Step 1)
and notifies the NVMe controller by updating the doorbell
register (Step 2). The controller then retrieves the command
from the SQ (Step 3) and executes the requested read or
write operation on the SSD (Step 4). Once completed, the
controller updates the Completion Queue (CQ) and triggers
an interrupt to notify the CPU (Step 5), ensuring efficient
and low-latency communication between the CPU and SSD.

Once the data is copied to system memory, the CPU trans-
fers it to the GPU. This typically involves staging the data
in pinned memory―memory accessible to both the CPU and
GPU―to facilitate efficient direct memory transfers. The

CPU initiates a data copy to the GPU’s memory using APIs
such as CUDA’s ‘cudaMemcpy’. This transfer occurs over
the PCIe bus, increasing the time required to move data
from storage to the GPU.

As HPC, big data, and machine learning converge, the
demand for scalable, low-latency I/O solutions continues to
grow. In distributed computing environments, efficient data
movement is critical to maximizing performance. Network-
ing technologies like Remote Direct Memory Access (RDMA)
offer a path toward high-speed data transfers but still in-
troduce latency overhead due to protocol translations. Pe-
ripheral Component Interconnect Express (PCIe) remains
the dominant standard for connecting storage and compute
resources, and leveraging PCIe-based networking can help
minimize performance bottlenecks by reducing protocol over-
head. Additionally, emerging technologies such as GPUDi-
rect Storage (GDS) allow GPUs to bypass the CPU entirely
and access storage directly, reducing transfer latency and
improving system efficiency. Addressing these challenges is
essential for the next generation of high-performance and
cloud computing architectures.

BaM (Big Accelerator Memory) [12,15,16] is a new GPU-
driven system architecture designed to enable efficient data
transfers between Solid-State Drives (SSDs) and GPU mem-
ory by bypassing the CPU. Unlike traditional CPU-centric
approaches, BaM allows GPUs to initiate I/O operations di-
rectly, thereby reducing CPU involvement in essential tasks
and leveraging the inherent parallelism of GPUs. This
architecture integrates optimized data pipelines for self-

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



Figure 1: CPU initiated IO overview: (1) Enqueue
read/write IO to SQ, (2) Doorbell update, (3) Controller
retrieves command, (4) Read/write from/to SSD, (5) Up-
date submission queue and trigger interrupt.

orchestrated storage access, a fine-grained software cache to
minimize I/O amplification, and high-throughput queues to
maximize system interconnect and storage utilization.

Figure 2: GPU(BaM) initiated IO overview: (1) Enqueue
read/write IO to SQ, (2) Doorbell update, (3) Controller re-
trieves command, (4) Read/write from/to SSD, (5) Update
submission queue and trigger interrupt.

In this work, we implement the BaM architecture within
our system environment and develop benchmarks to eval-
uate its performance. Our benchmarks confirm that BaM
can fully utilize SSD performance and achieve the expected
throughput of the SSD. This demonstrates BaM’s effective-
ness in enhancing data transfer efficiency for GPU-intensive
applications, mitigating CPU-induced bottlenecks, and im-
proving overall system performance in HPC environments.
By validating BaM’s capabilities through our implementa-
tion and benchmarking efforts, we contribute to the ongoing
efforts to optimize I/O performance in distributed, GPU-
accelerated computing systems.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews background work on GPU-driven data trans-
fer architectures and benchmarking methodologies. Section
3 describes our implementation of BaM and the benchmark-
ing setup. Section 4 presents the benchmarking results and
analysis. Finally, Section 5 concludes the paper and outlines

future work.

2 GPUs in High-Performance Computing

Graphics Processing Units (GPUs) have become integral
to high-performance computing (HPC) due to their ability
to perform parallel computations efficiently [1, 10]. Initially
designed for rendering graphics, GPUs have evolved to sup-
port various scientific and engineering applications, including
machine learning, simulations, and data analytics. The mas-
sive parallelism offered by GPUs enables significant speedups
for workloads that can exploit data-level parallelism, making
them indispensable in modern HPC clusters.

2. 1 GPU Memory and Its Limitations
Despite their computational prowess, GPUs are con-

strained by memory limitations, both in bus width and
on-chip memory capacity [14]. The memory bandwidth of
GPUs, determined by the width of the memory bus and the
memory type, plays a crucial role in sustaining high com-
putational throughput. For instance, NVIDIA’s H100 GPU
features a 5120-bit memory bus and 80GB of HBM2 memory,
providing substantial bandwidth but still insufficient for vast
datasets that are orders of magnitude larger [3]. These lim-
itations necessitate efficient memory management and data
transfer strategies to prevent memory bottlenecks and ensure
that the GPU remains fully utilized [2].

2. 2 GPU Memory Pooling
Various memory pooling techniques have been proposed

to mitigate GPU memory constraints, including pinned and
unified memory architectures. Pinned memory involves al-
locating a portion of the host memory directly accessible by
the GPU, allowing faster data transfers through mechanisms
like Direct Memory Access (DMA) [4]. On the other hand,
Unified memory provides a single address space accessible
by both the CPU and GPU, simplifying memory manage-
ment and enabling more flexible data sharing [9]. These ap-
proaches aim to maximize memory utilization and reduce the
overhead associated with data movement between the host
and the GPU.

Additionally, leveraging multiple GPUs and pooling their
memory using technologies like NVIDIA NVLink and
NVSwitch allows for significant memory capacity and band-
width scaling. NVLink enables high-speed interconnects be-
tween GPUs, facilitating seamless data sharing and reducing
the latency of cross-GPU memory access. However, imple-
menting this approach requires an additional GPU and com-
patible hardware to support NVLink or NVSwitch. This
includes specialized interconnects and potentially a moth-
erboard that supports multi-GPU configurations. This ap-
proach alleviates memory bottlenecks and enhances paral-
lel processing capabilities, enabling efficient execution of

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



memory-intensive tasks across multiple GPUs [8].
2. 3 GPU RDMA and GPUDirect Storage
Remote Direct Memory Access (RDMA) and NVIDIA’s

GPUDirect Storage are advanced techniques designed to en-
hance data transfer efficiency between GPUs and storage
devices [7, 11]. RDMA allows direct memory access from
one computer to another without involving the CPU, reduc-
ing latency and CPU overhead. GPUDirect Storage extends
this concept by enabling GPUs to communicate directly with
storage devices such as NVMe SSDs, bypassing the CPU and
minimizing data transfer latency [6]. These technologies fa-
cilitate high-throughput and low-latency data transfers, es-
sential for data-intensive applications.

2. 4 libnvm
The libnvm library [13] is a userspace API implemented

in C for developing custom NVM Express (NVMe) drivers
and high-performance storage applications. Similar in con-
cept to SPDK, it transfers driver logic to userspace, utilizes
hardware polling, and leverages direct memory mapping to
eliminate the overhead associated with kernel-space context
switching. This architecture enables zero-copy access, sub-
stantially reducing I/O operation latency compared to tra-
ditional Linux kernel file system abstractions.

libnvm provides a low-level block interface with extremely
low latency and supports PCIe peer-to-peer communication
by allowing arbitrary memory mappings to device memory.
Furthermore, it offers a lockless interface that can be shared
across multiple computing instances, aligning with NVMe’s
design for modern parallel computing architectures. Notably,
libnvm integrates seamlessly with CUDA programs, facili-
tating direct high-performance storage access from CUDA
kernels. By placing I/O queues and data buffers directly in
GPU memory, the library bypasses the CPU in the I/O path,
thereby enhancing throughput and minimizing latency.

2. 5 BaM: Big Accelerator Memory
Building upon the libnvm driver, BaM introduces enhance-

ments in robustness, error checking, memory alignment, and
performance optimization for handling large requests. Simi-
lar to the approach employed by SmartIO [13], BaM enables
peer-to-peer data transfers between NVMe SSDs and GPU
memory, bypassing the CPU entirely in the data path.

BaM [12,15,16] proposes a new GPU-driven architecture to
address inefficiencies associated with traditional CPU-centric
data transfer methods. To enable GPU threads to access
data on NVMe SSDs directly, BaM employs the following
key strategies:

1. Migrating NVMe Queues and I/O Buffers to
GPU Memory: BaM relocates NVMe queues and I/O
buffers from host CPU memory to GPU memory by

leveraging GPUDirect RDMA APIs. These APIs pin
and map the queues and buffers directly into the GPU’s
address space.

2. Enabling GPU Threads to Interact with SSD
Doorbells: BaM permits GPU threads to write di-
rectly to the queue doorbell registers in the NVMe SSD’s
Base Address Register (BAR) space. This is accom-
plished using GPUDirect Async [5], which maps the
NVMe SSD doorbells into the CUDA address space.
GPU threads can then "ring" the doorbells on demand.
The SSD’s BAR space is first memory-mapped into the
application’s address space and subsequently mapped
into CUDA’s address space using the cudaHostRegister

API.

Implementing BaM within our system environment in-
volves developing comprehensive benchmarks to evaluate its
performance. These benchmarks confirm that BaM can fully
utilize SSD performance, achieving up to 100% of the ex-
pected throughput. This demonstrates BaM’s effectiveness
in mitigating CPU-induced bottlenecks and improving over-
all system performance in HPC environments.

3 GPU I/O Benchmark

3. 1 Objective
This study evaluates whether the BaM architecture can

meet the maximum performance of an NVMe SSD and ex-
amines how different GPU configurations (threads per block
and number of blocks) affect SSD performance. The hard-
ware configuration is listed in Table 1.

3. 2 Experimental Setup
a ) SQ/CQ and Page Cache
Using BaM APIs, Submission Queues (SQ) and Comple-

tion Queues (CQ) are initialized for direct GPU–SSD inter-
action. Page cache buffers are allocated in GPU memory to
streamline read/write operations.

b ) Access Methodology
Threads map to SSD pages via a GPU-side array. The

CPU generates random page numbers for random access,
while sequential access uses thread IDs directly.

c ) GPU Execution
Threads are grouped into blocks; each warp handles one

SQ. The kernel execution steps include (1) retrieving or com-
puting a logical page number, (2) mapping it to physical SSD
pages, (3) preparing the NVMe command, and (4) issuing
the I/O operation. Latency is measured by recording each
operation’s start and end times in GPU clock cycles.

3. 3 Preconditioning & Performance Testing
a ) Preconditioning
The SSD is brought to a steady state with 4 KB random

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



and 128 KB sequential read/write operations.
b ) Testing Conditions
All tests maintain a constant total thread count. Each

thread executes one I/O per iteration with a queue depth of
1024. Random operations use 4 KB page size, while sequen-
tial operations use 128 KB.

c ) Variables and Metrics
We vary (1) threads per block, (2) number of blocks, and

(3) total data accessed (1 GB, 16 GB, 64 GB). We measure:

• Throughput: IOPS and GB/s,

• Latency: GPU clock cycles.

Component Description
GPU NVIDIA H100 (80 GB HBM2e)
SSD Micron 7450 Pro, 3.8 TB, PCIe Gen 4
CPU Dual AMD EPYC 9224

Memory 377GB DDR5

Table 1: Hardware configuration

The GPU connects via PCIe Gen 5 (64 GB/s) and the SSD
via PCIe Gen 4 (8 GB/s), enabling direct GPU–SSD inter-
action.

4 Experiments

4. 1 Random Workloads
Random accesses use 4 KB pages. Threads per block vary

(1, 4, 8, 16), with larger blocks omitted if run time exceeds
50 min. Table 3 summarizes the configurations.

Number of Threads = Data Size
Page Size

Number of Blocks = Number of Threads
Block Size

Total Data Threads/Block Blocks
1 GB 1–1024 Computed accordingly
16 GB 1, 4, 8, 16 Computed accordingly
64 GB 1, 4, 8, 16 Computed accordingly

Table 2: Thread configurations for random workloads.

4. 1. 1 Random Read and Write Metrics
For 1 GB read and write tests (Figure 3), performance

drops sharply once the block size exceeds 32. Below this
threshold, random reads nearly reach the SSD’s rated peak of
1 M IOPS(Figure 3a), and random writes slightly surpass the
expected 180 K IOPS(Figure 3b). The sudden decline indi-
cates that larger thread-block configurations adversely affect
performance, likely due to warp-level scheduling constraints
in CUDA. Hence, for all remaining experiments, block sizes

(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 3: Random workload performance for 1GB data ac-
cess: Read (left) and Write (right) Bandwidth and IOPS vs.
Block Size.

(a) Latency histogram for Random Read.

(b) Latency histogram for Random Write.

Figure 4: Latency distributions for random workloads for
1 GB access (Read and Write).

are limited to the range of 1–16.
Analyzing the latency histogram(Figure 4) reveals sub-

stantial overlap for block sizes >= 32, whereas smaller block
sizes appear as minor peaks concentrated on the left side of
the graph.

Observing the 16 GB plot (Figure 5), a similar trend to the
1 GB case emerges. The initial read IOPS reaches the SSD’s
maximum before experiencing a sharp decline, whereas the
write IOPS gradually increases until it reaches the SSD’s
peak performance.

The latency histogram for the 16 GB workload (Figure 6)
reveals that the latency distribution becomes more spread

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 5: Random workload performance for 16GB data ac-
cess: Read (left) and Write (right) Bandwidth and IOPS vs.
Block Size.

(a) Latency histogram for Random Read.

(b) Latency histogram for Random Write.

Figure 6: Latency distributions for random workloads for
16 GB access (Read and Write).

out as block sizes increase. This trend was not observable in
the 1 GB case due to the higher number of block size varia-
tions, which made visualization more challenging.

The performance trends observed in the 1 GB and 16 GB
experiments persist in the 64 GB workload(Figures 7 and 8).
Although the measured IOPS exceeds the SSD’s nominal
maximum of 180 k, reaching approximately 250 k IOPS, this
is an anticipated behavior. Factors such as SSD internal
caching mechanisms can temporarily boost performance be-
yond the rated specifications. These reassuring results con-
firm that the experimental setup operates within the ex-
pected parameters.

(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 7: Random workload performance for 64GB data ac-
cess: Read (left) and Write (right) Bandwidth and IOPS vs.
Block Size.

(a) Latency histogram for Random Read.

(b) Latency histogram for Random Write.

Figure 8: Latency distributions for random workloads for
64 GB access (Read and Write).

Random workload experiments for 1 GB, 16 GB, and
64 GB show that SSD performance is highly sensitive to GPU
thread block configuration. For 1 GB tests, random read
IOPS nearly reach the SSD’s peak with block sizes up to
32 before dropping sharply; latencies remain low for block
sizes below 32. The 16 GB tests display a similar pattern,
with an initial IOPS peak and more dispersed latencies as
block sizes increase. In the 64 GB workload, trends persist,
with IOPS reaching about 250 k―likely boosted by internal
caching. These results validate our setup and justify limiting
block sizes to 1–16 in future experiments.

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



4. 2 Sequential Workload
Sequential accesses use 128 KB pages. Threads per block

vary (1, 4, 8,...). Table 3 summarizes the configurations.

Total Data Threads/Block Blocks
1 GB 1–1024 Computed accordingly
16 GB 1–1024 Computed accordingly
64 GB 1–1024 Computed accordingly

Table 3: Thread configurations for random workloads.

4. 2. 1 Sequential Read and Write Metrics

(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 9: Sequential workload performance for 1GB data ac-
cess: Read (left) and Write (right) Bandwidth and IOPS vs.
Block Size.

For 1 GB sequential reads (Figure 9a, the observed peak
performance reaches 6000 MB/s, slightly below the rated
6800 MB/s but close to full saturation. Sequential writes
achieve 2500 MB/s out of the rated 4000 MB/s, which, while
lower, remains within an expected range. Read performance
remains consistently stable at 6000 MB/s across all block
sizes, indicating that the SSD is fully saturated, and the
benchmark is operating at its maximum capacity. However,
write performance varies across block sizes, suggesting po-
tential influences from thread scheduling, warp behavior, or
other GPU-side execution dynamics.

Examining the latency histogram, read access latencies are
predominantly clustered around 3 × 108 cycles, except block
size 1, where some threads exhibit access latencies around
1.0×108. For sequential writes, latencies are more uniformly
distributed between 1 × 108 and 1.4 × 109, with block size
1 again showing a subset of threads with access latencies
around 5 × 108. This behavior is reminiscent of how block

(a) Latency histogram for sequential Read.

(b) Latency histogram for sequential Write.

Figure 10: Latency distributions for sequential workloads for
1GB access(Read and Write).

size 1 demonstrates relatively decent performance in random
operations.

(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 11: Sequential workload performance for 16GB data
access: Read (left) and Write (right) Bandwidth and IOPS
vs. Block Size.

For the 16 GB workload (Figure 11), read performance
drops sharply beyond 32 block sizes, similar to the trend
observed in random reads. However, there is a slight re-
covery at 512 and 1024 block sizes, though the increase is
minimal. In contrast, write performance initially declines
from 4000 MB/s to 1200 MB/s before recovering to approxi-
mately 2700 MB/s―still below its original peak but showing
noticeable improvement. Unlike the random workload, where
read and write performance degraded significantly, leading to

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



the exclusion of larger data sizes, we continue measuring at
higher block sizes (1024 and beyond) to observe performance
trends without limiting the maximum block size to 16.

(a) Latency histogram for sequential Read.

(b) Latency histogram for sequential Write.

Figure 12: Latency distributions for sequential workloads for
16GB access (Read and Write).

Read latencies (Figure 12) are primarily clustered around
1×109 and 2.5×1010. The first cluster corresponds to block
sizes smaller than 32, which exhibit faster read speeds, while
the second cluster represents block sizes greater than 32,
where latencies are significantly higher, leading to reduced
read performance. In contrast, write latencies are more uni-
formly distributed, reflecting the relatively stable write band-
width across most block-size configurations.

(a) Bandwidth and IOPS vs.
Block Size (Read)

(b) Bandwidth and IOPS vs.
Block Size (Write)

Figure 13: Sequential workload performance for 64GB data
access: Read (left) and Write (right) Bandwidth and IOPS
vs. Block Size.

For the 64 GB workload (Figure 13), both read and write
performance decline without recovery, similar to the ran-
dom workloads at 1 GB. Initially, performance approaches
the SSD’s rated capabilities before gradually deteriorating.
Sequential reads exhibit a slight recovery, mirroring the be-
havior observed in the 16 GB workload, but overall, the trend
remains one of sustained performance loss across larger block
sizes.

(a) Latency histogram for sequential Read.

(b) Latency histogram for sequential Write.

Figure 14: Latency distributions for sequential workloads for
64 GB access (Read and Write).

Regarding latencies (Figure 14, the distribution is rela-
tively uniform due to the consistent bandwidth and perfor-
mance across most block sizes. However, block sizes smaller
than 32 exhibits significantly lower latencies, as they achieve
faster read and write speeds before the performance decline.

For the 1 GB sequential tests, read performance con-
sistently saturates at around 6000 MB/s―just below the
rated 6800 MB/s―while sequential writes average about
2500 MB/s. Read latencies are primarily concentrated
around 3×108 cycles (with block size 1 even lower), whereas
write latencies are more uniformly spread. In the 16 GB
workload, read performance falls sharply beyond block sizes
of 32, with only a minor recovery at very high block sizes,
and write performance initially drops from 4000 MB/s to
1200 MB/s before partially recovering to roughly 2700 MB/s.
Latency distributions in this case show two distinct clusters
for reads (corresponding to block sizes below and above 32),
while write latencies remain relatively uniform. For 64 GB,
both read and write performances deteriorate further, with
sequential reads showing only a slight recovery. Overall, the
data indicate that while sequential read operations tend to
saturate the SSD, write performance is more variable and
strongly influenced by block size.

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



5 Conclusion

Our experiments reveal that random and sequential SSD
I/O performance is susceptible to GPU thread block config-
urations and workload size. For the 1 GB tests, we observed
that random read IOPS nearly reached the SSD’s rated max-
imum when using block sizes up to 32, with performance
dropping sharply beyond that threshold―likely due to warp-
level scheduling constraints in CUDA. This observation and
the clustered latency patterns for smaller block sizes led us to
constrain subsequent experiments to block sizes in the range
of 1–16.

In the 16 GB workload, similar trends persist: initial read
IOPS peak before a steep decline, while write IOPS grad-
ually increase toward the SSD’s maximum. The latency
distributions for reads and writes further illustrate the im-
pact of block size, with larger block sizes yielding higher
and more dispersed latencies. In contrast, sequential opera-
tions exhibit more consistent read performance across block
sizes, although write performance shows significant variation
―suggesting influences from threads scheduling and warp
execution.

At the 64 GB level, both read and write performances ini-
tially approach the SSD’s capabilities but then degrade con-
tinuously, with only a modest recovery in sequential read
performance. The latency profiles for these larger workloads
are generally uniform, except for the significantly lower la-
tencies observed at block sizes below 32, which continue to
deliver faster speeds.

Furthermore, our results demonstrate that BaM could sat-
urate the SSD’s IOPS and throughput in multiple cases.
This highlights its efficiency in leveraging direct GPU-to-SSD
communication for high-performance I/O. Moving forward,
these findings suggest that carefully considering BaM’s capa-
bilities should be integrated into the design of future appli-
cations to maximize performance when utilizing GPU-driven
storage access.

Overall, these results underscore the critical role of GPU
thread configuration in optimizing SSD performance. The
observed deviations―such as measured IOPS exceeding the
nominal SSD ratings, likely due to internal caching effects
―confirm that our experimental setup operates within the
expected parameters. Fine-tuning block sizes, therefore, is
essential for balancing throughput and latency, ensuring that
the full potential of GPU-accelerated SSD I/O is realized.

6 Future Work

Future work will focus on enhancing our GPU-SSD sys-
tem’s scalability and performance. One key direction is de-
veloping a dynamic memory manager that supports in-kernel

memory allocation via CUDA. Such a manager would enable
the extension of GPU memory space onto the SSD through
an efficient swapping mechanism, thereby facilitating the
execution of larger workloads that exceed the native GPU
memory capacity.

In addition, we plan to implement specialized database and
file parsers designed to accelerate extensive file processing.
This improvement is expected to boost overall throughput
and reduce latency in data-intensive applications, enhancing
the system’s responsiveness and utility in real-world scenar-
ios.

Together, these enhancements will broaden the applica-
bility of our approach and address emerging challenges in
high-performance computing.

Acknowledgments

This work was supported in part by Cross-ministerial
Strategic Innovation Promotion Program (SIP) on Inte-
grated Health Care System.

References
[1] NVIDIA HPC Application Performance.
[2] Anastasiia Arefyeva, David Broneske, and Gunter Saake.

Memory management strategies in cpu/gpu database sys-
tems: A survey. In 14th International Conference BDAS
2018 Held at the 24th IFIP World Computer Congress
WCC 2018, pages 129–141. Springer, 2018.

[3] NVIDIA Corporation. Nvidia h100 tensor core gpu archi-
tecture, 2022. Accessed: 2025-01-06.

[4] NVIDIA Corporation. CUDA C++ Best Practices Guide,
2023.

[5] NVIDIA Corporation. GPUDirect Async, 2023. Accessed:
2025-01-06.

[6] NVIDIA Corporation. GPUDirect RDMA, 2023. Accessed:
2025-01-06.

[7] NVIDIA Corporation. NVIDIA GPUDirect Storage
Overview Guide, 2023.

[8] NVIDIA Corporation. NVIDIA NVLink and NVSwitch:
Fastest HPC Data Center Platform, 2023. Accessed: 2025-
01-06.

[9] Mark Harris. Unified memory in cuda 6, 2013.
[10] John L. Hennessy and David A. Patterson. A new

golden age for computer architecture. Commun. ACM,
62(2):48–60, January 2019.

[11] Patrick MacArthur. An introduction to remote direct mem-
ory access, 2013.

[12] Vikram Sharma Mailthody. Application Support And Adap-
tation For High-throughput Accelerator Orchestrated Fine-
grain Storage Access. PhD thesis, University of Illinois
Urbana-Champaign, 2022.

[13] Jonas Markussen, Lars Bjørlykke Kristiansen, Pål
Halvorsen, Halvor Kielland-Gyrud, Håkon Kvale Stensland,
and Carsten Griwodz. Smartio: Zero-overhead device shar-
ing through pcie networking. ACM Transactions on Com-
puter Systems, 38(1–2), jul 2021.

[14] Onur Mutlu, Saugata Ghose, and Rachata Ausavarung-
nirun. Recent advances in overcoming bottlenecks in mem-
ory systems and managing memory resources in GPU sys-
tems. CoRR, abs/1805.06407, 2018.

[15] Zaid Qureshi. Infrastructure to Enable and Exploit GPU
Orchestrated High-Throughput Storage Access on GPUs.

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -



PhD thesis, University of Illinois Urbana-Champaign, 2022.
[16] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado,

Seung Won Min, Amna Masood, Jeongmin Park, Jinjun
Xiong, CJ Newburn, Dmitri Vainbrand, I-Hsin Chung,
Michael Garland, William Dally, and Wen-mei Hwu. Gpu-
initiated on-demand high-throughput storage access in the
bam system architecture. In Proceedings of the Twenty-
Eigth International Conference on Architectural Support
for Programming Languages and Operating Systems, AS-
PLOS ’23, 2023.

6C-03 17th Forum on Data Engineering and Information Management

- 6C-03 -


